
Saving Space by Fully Exploiting Invisible
Transitions

Hillel Miller "~ and Shmuel Katz ~*

Department of Computer Science
The Technion
Haifa, Israel

hillelm,katz@cs.technion.ac.il

Abst rac t . Checking that a given finite state program satisfies a linear
temporal logic property suffers from a severe space and time explosion.
One way to cope with this is to reduce the state graph used for model
checking. We present an algorithm for constructing a state graph that is
a projection of the program's state graph. The algorithm maintains the
transitions and states that affect the truth of the property to be checked.
The algorithm works in conjunction with a" partial order reduction algo-
rithm. We show a substantial reduction in memory over current partial
order reduction methods, both in the precomputation stage, and in the
result presented to a model checker, with a price of a single additional
traversal of the graph obtained with partial order reduction. As part of
our space-saving methods, we present a new way to exploit Holzmann's
Bit Hash Table, which assists us in solving the revisiting problem.

1 I n t r o d u c t i o n

In order to reduce the space needed for model checking of linear temporal logic
properties, several pre-processing techniques have been suggested to construct
smaller graphs such that a property to be checked is true of the original state
graph iff it is true of the reduced graph.

In particular, partial order methods such as [GW91],[Val90], and [pe194] ex-
ploit the fact that certain operations are independent of other operations, and
that not all interleavings of independent operations need to be explicitly exam-
ined. Here, we exploit the fact that the specification - the property to be proven-
is independent of certain operations to obtain a further reduction. Invisible op-
erations are those that do not affect the truth of any of the atomic propositions
of the specification, while visible operations do affect them. A node is considered
visible if some edge corresponding to a visible operation enters it, and invisible
otherwise. We also exploit the fact that an operation can be invisible or visible,
depending on the state from which it is executed. In this paper, a program's
projected visible state space relative to a specification is constructed through a

* Presently with Motorola Semiconductors-Israel, Herzlia, Israel
*~ Supported by the Technion V.P.R. Fund-Promotion of Sponsored Research

337

DFS traversa!, and the invisible states are eliminated. Thus we present to the
model checker a much smaller structure that represents the program.

The construction of the visible state space requires a linear traversal of a
state graph that is somewhat reduced from the original, but can still be large
in some cases. This is still worthwhile because a standard temporal logic model
checker requires space and time complexity which is the multiplication of the size
of the state space by a term exponential in the length of the formula. Thus for a
formula of length 20, the time and memory complexity for the model checker are
multiplied by 106 . We are therefore motivated to reduce the state graph given
to the model checker.

Moreover, we will show that the reduced structure can be produced with a
low space overhead. During any such pre-processing, and also during a traversal
of the state-space for purposes of reachability analysis and deadlock detection,
the question arises of whether to record for future reference that a particular
state was already visited. Not indicating that a state was visited saves space,
but may be costly in time: if the state is later reached again along another path,
its descendants must be recomputed unnecessarily. We can define the revisiting
degree of a state as the number of incoming edges not including those that close
loops~ (Those that close loops are on the stack used for a depth-first traversal,
and thus are easily identified with no additional space needed). The question is
whether a state should be identifiable as having already been visited even after
backtracking from that state, in the DFS traversal. For graphs with many states
having a large revisiting degree, the time can increase exponentially if states
are reexpanded each time they are reached. Identifying such states avoids this
problem, but can lead to memory overflow. This trade-off can be called the state
revisiting problem.

In [GHP92], the state revisiting problem is considered, for teachability anal-
ysis, in the context of a partial order reduction method. Their conclusion is that
in that context, the state revisiting problem can be ignored, states should not be
saved after visiting, and that the price to be paid in recomputation is tolerable
(3 to 4 times a single traversal, for their examples). In general model checking,
however, the number of recompntations can be unacceptably large.

It is clear that partial order reductions as in [GHP92] lessen the state revis-
iting problem because one cause of reaching the same state by different paths
is that independent operations are executed in a different order. Nevertheless,
recomputation is still sometimes necessary both because such methods only elim-
inate some of the redundancy of various orderings of independent operations, and
because sometimes the same state is reached through truly different sequences
of operations. Partial order methods consider operations dependent and/or in-
fluencing the specification, if they might have such an influence. Here we check
more carefully whether an occurrence of an operation actually affects atomic
clauses in the specification, as in [KP92], and thus can have greater savings.

Another approach to the state revisiting problem was proposed in [Ho188] by
using a hash table where the keys are the states themselves, to indicate whet-her
a state has already been visited, without saving the full states. The difficulty

338

with this approach is that there may be a hash conflict, and then a state can
map to a hash entry indicating that it has been visited, even if it has not beem
and thus some parts of the graph may never be explored. Here we both achieve
a greater reduction in the graph to be used for model checking, and overcome
the state revisiting problem while exploring all of the state space, at a cost of a
single additional traversal of the graph obtained by the partial order expansion,
beyond the one needed by the partial order method itself.

In order to overcome the state recomputation problem, a preliminary DFS
traversal is used to compute the revisiting degree of each state, so that it is clear,
on the second traversal, when a state should be retained, and when it can be
eliminated. Thus, we can manage a caching method that does not randomly free
memory. During this preliminary traversal, a hashing method similar to that in
[Ho188] can be used. A significant difference is that when conflicts do occur in
the hash table, the worst effect will be some additional recomputation, but the
entire graph will ult imately be examined.

In the following section some preliminary definitions are given, the visible
state graph is defined and theorems with its properties are given. In Section
3 the basic traversal algorithm to eliminate invisible states is first described,
then related to a partial order method, and finally combined with a preliminary
traversal to determine revisiting degrees. In Section 4 we summarize the memory
and time complexity both of the pre-computation, and of the graph presented
to the model checker, and present some simulation results.

In Figures 1 to 3, an example program, and several of its state-space graphs
are shown. The specification is of mutual exclusion and of liveness. Y1 and Y2
represent flags that are true when processes P1 and Pu respectively are in crucial
sections. The assertion is that Y1 and Y2 are never both true at the same time,
and that if one flag is true, the other will eventually become true. The program is
represented as a labeled set of guarded commands, for each of the two processes.
Each process has its own program" counter (denoted PCi), to control the internal
flow of the process. A command is enabled if its guard is true and if the program
counter of the process containing it is equal to the command's number. Figure
2 shows the full state-space graph, while the graph without the grey nodes and
the dotted lines is the reduced graph after the partial order method of [Pe194] is
applied. In Figure 3 the graph is shown in an intermediate stage, after some of
the invisible states have been removed, with the candidates for elimination in the
rest of the algorithm indicated in gray. The graph without the grey nodes, and
with edges connected to their successors is the fully reduced graph relative to
the given specification. Note that the original graph has 30 states, the one after
partial order reduction has 26, and the graph that fully exploits the elimination
of invisible states has only 14. The stages in this reduction will be explained
later in the paper.

In this toy example, the specification includes both of the program variables~
and only operations involving the control counters are invisible. When the pro-
gram is more realistic, and the property to be proven only involves part of the
variables, much greater savings can be expected, as is shown in the simulations

summarized in Section 4.

339

This paper demonstrates that a careful combination of a partial order reduc-
tion method with an algorithm to eliminate states not relevant for the specifi-
cation, along with a hashing technique to save only relevant information about
which states have already been considered, can yield a result tha t makes previ-
ously infeasible problems treatable.

- Global State Representation = (PC1, PC2, !11, Y2)
- Initial State = (0, 0, F, F)
- Specification Checked = D-,((Y~ = T) A (Y~ = T)), [:]((Y~ = T) =~ O(Y~ = T))

PROCESS 1
PC1
0:PC1:=1 {al}
1: PC1:=2; Y2:=T {a2}
2: (Y~=T) =~ P61:=3; Y~:=F {a3}
3: PCI:=O { a 4 }

PROCESS 2
PC2
0: PC2:=I {bl}
1: PC2:=2; Y~:=T {b2}
2: (Y~=T) =~ PC2:=3;Y2:=F {bS}
3:PC2:=0 {b4}

Fig. 1. Example of a program P.

2 P r e l i m i n a r i e s

A finite state program P is a triple < T, Q, I > where T is a finite set of oper-
ations, Q is a finite set of states, and I 6 Q is the initial state. The enabling
condition en~ C Q of an operation a E T is the set of states from which a can
be executed. Each operation a E T is a partial t ransformation a : Q ~-+ Q which
needs to be defined at least for each q E enc~ . For simplicity we assume tha t for
each q E Q there exists an operation a E T such that q E en,~.

An interleaving sequence of a program is an infinite sequence of operations
v = a 0 a l . . , that generates the sequence of states (= qoqlq2.., from Q such
that (1) q0 = I , (2) for each 0 <_ i, qi C end, and q i + l = ai(qi).

A nexttime-free LTL formula (denoted LTL-X) is composed of a tomic propo-
sitions from a set A P , boolean operators (A, -% V) and the usual temporal modals
[] ('always') , ~ ('eventually ') and U ('Until ') but not the modal O ('next ') .

D e f i n i t i o n l . A state graph, Gp = (g ,S ,E) , for a program P is a directed,
rooted graph, such that :

1. S is a finite set of nodes, a E S is the graph 's root and E is a finite set of
edges (we denote an edge from node s to node t as s --~ t).

2. The graph is total, i.e. from every node there is an exiting edge.

340

3. There is an injective h o m o m o r p h i s m st : S --+ Q tha t maps nodes to p rogram
states such that : st(g) = I and if s --* t E E then there exists an opera t ion
a such tha t st(s) E en~ and st(t) = or(st(s)).

4. "The graph is maximal , i.e, for each state s in a sequence of states generated
f rom some sequence of operat ions f rom P , and for each opera t ion c~ enabled
at s such tha t a (s) = t, we have tha t s t -~(s) ~ s t - l (t) E E.

We will identify a state and a node with this mapping .

D e f i n i t i o n 2 . M = (Gp, V) is a model for a program P and a specification
iff G p is a state graph of P and V is a funct ion V : S --* 2 AP (where A P are
the a tomic proposi t ions of ~) such tha t for all nodes s E S, V(s) = {a I a E A P
and a is t rue in s tate st(s)} .

Fig. 2. P~s full and partial ordered state graph.

D e f i n i t i o n 3 . Let M(Gp(g , S, E), V) be a model of a p rogram P and specifica-
t ion ~, s --+ s' E E is a visible edge iff V(s) 7s V(s ') . A node t is a visible node
iff 1) t = g (i.e. the initial node) or, 2) there is a visible edge entering t.

341

Fig. 3. An intermediate stage in the reduction algorithm.

The visible state graph Gv is the state graph of an abstraction of a program
P. Its set of nodes is exactly the.visible nodes of the state graph Gp (denoted
V I S (G p)) . Its edges satisfy the following two properties:

P 1 For any 2 nodes s, s ~ E VIS(Gp) , there is a sub-path ssl . . . sns ~ of a
pa th of Gp such that V(s) = V(s l) = . . . = V(sn) and V(s) r V(sl) iff
there is subpath s t l t 2 . . , t,~s' of a path of G v such that V(s) = V(t~) =
. . . = v(tm) and V(s) # V(s')

P 2 For any node s E V I S (G p) , there is a suffix ssls~ . . . of a pa th of
Gp such that V(s) = V(Sl) = V(s2) = . . . iff there is a suffix s t l t 2 . . , of
a pa th of G v such that Y(s) = V(t l) = Y(t2) =

These properties guarantee that paths in the two graphs have the same prop-
erties when repetitions of the relevant t ruth values are ignored, i.e., they are
stuttering equivalent [LAMB3] (denoted by ~" -,~ ~").

T h e o r e m 4. Let Gp and G v be the state graph and a visible state graph respec-
tively of a program P. For each path 7c in Gp there exists a path 7d in G v such
that 7c ,,~ ~r~.For each path 7c in Gv there exists a path 7c in Gp such that ~r ,,~ 7d.

342

The proof is done by building a linear s tut ter ing equivalent relation based on
properties P1 and P2, and using the fact tha t LTL-X is insensitive to stut tering.

3 V i s i b l e s t a t e g r a p h g e n e r a t i o n

In this section we first show the basic a lgor i thm (Figure 4) which generates
the visible state graph~ In the a lgor i thm we do not keep an indicator whether
invisible nodes have been visited (after backtracking f rom it). Therefore the t ime
may increase exponential ly for graphs tha t have m a n y invisible nodes with high
revisiting degrees. Later we show how to solve this problem.

In the a lgor i thm we abstract f rom implementa t ion details. We create a visible
state graph G, which is represented by a set of nodes S and a set of edges E.
We operate on the sets with the s tandard set operat ions (U, N, \) and operands
(E, C). The search pa th is kept on a stack~ In intermediate stages, S will con-
tain bo th the visible nodes already examined and all nodes on the stack. The
a lgor i thm uses the following functions and indicators:

- s E S - Either s is a visible node already examined or is on the search stack.
- s --+ s / E E - An edge f rom node s to visible node s t was created.
- e n (s) - The set of operat ions enabled at state s t (s) .
- a(s) - The node obta ined after executing an opera t ion a on state s t (s) .
- v i s i b l e (s) - The node s is visible (only for nodes in S).
- R C L (s --+ s t) - The edge s --* s t mus t be reconnected when backtracking

from s t .

- o p e n (s) - Node s is on the search stack.

The a lgor i thm is based on a s tandard DFS traversal, implemented in a re-
cursive procedure: At each node s we calculate its set of successors. We then
recursively examine all successors tha t are not indicated as having already been
examined (remember we sometimes reexamine a node more than once). The
reduct ion comes when backtracking f rom a successor s t of the node s. If s t is
invisible we replace each edge exiting s ~ with an edge tha t exits s and tha t enters
the same target . We then remove the set of edges exiting s ~, which is followed by
the removal of the invisible node s ~ (lines 10 - 16). In lines 13-14 before removing
an edge tha t is marked RCL (see explanat ion below) and exiting s ~ we mark the
respective replacing edge tha t exits s as RCL. In line 11 if s t has a self loop
we give s a self loop. This mainta ins diverging sequences. Note tha t even if the
state later proves to be visible when approached along a different path, and is
theretbre reintroduced, the edges we remove are invisible. When s t is visible we
add the edge s -+ s ~ to E (line 18).

If a successor s ~ of s is in S then this indicates tha t either s ' is visible and has
been examined or s t is open (i.e. s * closes a loop), thus we add the edge s --+ s ~
to Eo If s ' closes a loop and. s --~ s * is invisible (i.e V (s) = V (s ')) we mark tha t
edge RCL, s tanding for reconnec t later. In the DFS traversal when we arrive at
an invisible open node s ' f rom s, there m a y be successors of s ' t ha t have not yet
be%n examined. We therefore do not know all the visible successors of s' and we

343

cannot know which are s 's successors (that go th rough s ' in the original graph)
in the Visible graph. Hence, we indicate (i.e. RCL(s --* s ') := T R U E in line 24)
t ha t we still have to upda te the set of edges exiting s. Final ly when we backtrack
froth s I, the sub- t ree f rom s ~ has been examined. Thus we know which are J ' s
visible successors. We then replace the set of edges which enter s / and tha t are
marked RCL (lines 25-28) by edges tha t enter s/ 's visible successors. Note tha t
any edge entering s ~ tha t is marked RCL when we backtrack f rom s I is f rom a
visible node or a self loop f rom s ~ (because an edge marked RCL closed a loop,
the node it came f rom has already been backtracked from, and was removed if
it was invisible).

1 procedure .expand(s)
2 open(s) := TRUE
3 foreach a E en(s) do
4 s ' :=a (s)
5 if not (s' E S) then
6 visible(s') :=FALSE
7 S : = S u { s ' }
8 expand(s')
9 if (trot visible(s')) and (V (s) = V(s ')) then
10 foreach u such that (s' ~ u) E E
11 i f s ' = u t h e n u : = s
12 E := E U {s --~ u}
13 if RCL(s ' ~ u)and(s' ~- u) then
14 RCL(s --* u) := TRUE ;RCL(s' --* u) := FALSE ;
15 E := E \ {s' ---* u}
16 s := s \ { s ' }
17 else
18 E := E u {s - . s ' }
19 visible(s') := TRUE
20 else
21 if V(s) # V(s') then visible(s') := T R U E
22 E := E U {s ~ s'}
23 if open(s') and (V(s) = V(s')) then
24 RCL(s ---, s ') := TRUE
25 foreach u such that RCL(u --* s)
26 foreach v such that (s --* v) E E
27 E := E U {u --* v}
28 if RCL(s ---* v) then RCL(u --* v) := TRUE
29 RCL(u ~ s) := FALSE
30 open(s) := FALSE
31 end

Fig. 4. Algorithm for generating the visible state graph.

344

We demonstrate the backtracking in Figure 2 where nodes are represented
by a 4-tuple of values (PC1,PC2,Y1,Y2). In Figure 2 the algorithm first starts
backtracking when it does a step from (2,1,F,F) and arrives a second time at
node (2,2,T,F) (on the lower right). This node is visible because it has a vis-
ible operation (b2) entering it (e.g., the truth value of the atomic proposition
"YI=T" is changed). Therefore it is not deleted when backtracking from it. On
the other hand, node (2,1,F,F) has only an invisible operation (bl) entering it
(because only the program counter, irrelevant to the specification, is changed).
Therefore it is deleted when backtracking. Its successors are now added to the
successor set of its predecessor (state (2,0,F,F)). Next, node (2,0,F,F) is also
deleted because it is an invisible node. Its successor (i.e. node (2,2,T~F)) will
now become a successor of the visible node (2,3,F,F). The result of the above
can be seen in Figure 3.

The use of RCL can be seen in Figure 3 where invisible node (1,1,F,F) (the
second from the top center) has an edge marked RCL entering it. When back-
tracking from node (1,1,F,F), before removing it we reconnect node (3,1,F,F) to
the nodes (2~I,F,T), and (1,2,T,F).

To show the algorithm correct we must prove that properties P1 and P2
hold with respect to the full state graph and the graph constructed (i.e, it is a
visible state graph). This is done by induction on the set of backtracking steps
executed by the algorithm. For each step of the induction we look at: (1) the
(intermediate) full state graph obtained from the edges backtracked from, (2)
the (intermediate) graph obtained from edges in the set E (see algorithm). We
then show that an intermediate version of P1 and P2 hold for these two graphs.
When the algorithm terminates, the "full" version of P] and P2 hold.

We can combine our algorithm with any algorithm for partial order reduction,
e.g., A1 from [Pel94]. In that algorithm we execute a DFS traversal of a program's
state space. At each state only a subset of the enabled transitions (called the
ample set) are expanded. This is due to the fact that expanding all enabled
transitions will lead to a graph with more than one interleaving per partial
order. The only change to our algorithm is that instead of expanding all the
enabled operations from a particular state s, we expand only those operations
that belong to the ample set of state s. Therefore, we replace line 3 in Figure 4
with: fo reach o~ E amp le (s) do. Other algorithms differ in the way that a
subset of enabled transitions are selected, but can be used in the same way.

To solve the revisiting problem, we present an algorithm that pre-processes
the state space. The algorithm calculates the revisiting degree of each state. This
information is passed on to the algorithm that generates the visible state graph,
which then can more selectively delete states. The preliminary DFS algorithm
traverses the state space in a partial order manner, which is the exact same order
used in the later reduction algorithm (both are deterministic).

We use a Hash Table [Ho188] (called the revisited hash table), as a revisiting
degree counter for each node. The hash table is accessed with a hash function
whose argument is a state. When visiting a node in the DFS traversal, we cheek if
its revisiting degree is zero. If this is the case we set its revisiting degree counter

345

to 1, and then we recursively calculate the revisiting degree of all its successors
(from the ample set of the underlying partial order traversal). Otherwise, we
increase the counter of the node by 1, and backtrack from that node. Note that
all this only relates to revisits that do not close a loop, for reasons explained
already in the Introduction.

Here we use Holzmann's hash table to assist us in calculating the revisiting
degree of each node. This is a novelty in itself: until now the use of this technique
was problematic, because of the small probability of a hash collision when model
checking (resulting in not checking part of the state space). Here in the worst
case, a hash collision will cause us to calculate an incorrect revisiting degree,
resulting in additional state reeomputation in the latter DFS.

Now, in the latter DFS that generates the visible state graph, when back-
tracking from a state, we check if the node will be revisited (according to the
revisited hash table). If an invisible node will not be revisited we remove it and
all its pointers to its successors from internal memory, otherwise we maintain it
and pointers to its successors in memory. (If we were in error because of hash
conflicts, we might have to regenerate the node and its pointers later on, when
we reach that state along another path.) If a visible node will not be revisited we
remove it from the internal memory and store'it on external memory, otherwise
we maintain it in memory. The pointers of a visible node to its successors are
always stored in external memory, because they are not needed for later revisits
in the traversal. When we revisit such a node we decrement its counter in the
revisited hash table.

When we run out of memory, we can do a form of garbage collection: For
each node s in memory (stored in a balanced tree) we check if s's counter is zero.
If this is the case, we delete that state from the internal memory, and store it
on the external memory (if it is visible). Note that some nodes may have the
same entry in the revisited hash table. This means that they can only be deleted
together (i.e. when they all will not be revisited anymore). Thus we must execute
a garbage collection to dispose of these kinds of nodes. This is a better caching
method for memory management because states are not deleted randomly.

Note that this method of an initial traversal of the state space can be applied
to all current state space generation algorithms. For example [Pel94] presented
an on-line model checker, by traversing the product of the state space and spec-
ification graphs. We also can initially traverse the product and calculate the
revisiting degree of all nodes, saving space as shown in the following section.

4 M e m o r y a n d T i m e C o m p l e x i t y

For analysis of memory and time complexity we distinguish between two stages:
1) The memory and time complexity of the algorithm that constructs the vis-
ible state graph (denoted VSG), and 2) The memory and time complexity of
the algorithm for the model checking. In both cases the analysis is relative to
the complexity of the algorithms that construct and model check the graph ob-
tained by applying a partial order method (denoted POG). When we refer to

346

memory complexity, our intention is internal memory. We assume that we have
an unrestricted amount of external memory (used for the caching method). For
the model checking itself, the savings is in checking a smaller model. Standard
model checking of linear time temporal logic specifications has time and space
complexity O(IVSG]. 21~'l), whereas previously we had the same formula over
the original state graph or the POG.

As for the preprocessing stage to compute the revisiting degree and then
generate the visible state graph, the time complexity is the same as for existing
methods for partial order reductions, namely O (pc. Iog(ps)), where pe is the num-
ber of edges in the partial order graph that would be produced by that method
alone, and ps is the number of nodes in that graph. As explained previously, our
algorithm makes one additional traversal.

The partial order method we considered uses O(m .ps + log(m), pc) space
in its original form, where m is the space needed for a single state.

For our algorithm, the memory complexity of the first DFS is O(rn. ss + ps)
(where ss is the size of the stack). The data structures used are the search stack
and the revisited hash table (using O(ps) for the size of the hash table). The
memory complexity for the subsequent reduction traversal is also O(m. ss + ps).
Here the data structures used are the search stack, the revisited hash table and
the intermediate stages of the visible state graph construction. We use a caching
method, therefore we bound by a constant the memory needed for the full states
retained in intermediate stages. Our simulations show that the number of states
needed at any one time is actually small, and the cache will not cause extraneous
recomputation. The simulation was constructed using the high level language
ICON. We implemented the algorithms that calculate the revisiting degree of a
program's state graph and that generate the visible state graph. The ample set
for the partial order method is calculated according to [HP94].

In one test, we simulated a leader election protocol in a unidirectional ring
from [DKR82] and several alterna'tive specification formulas. The algorithm uses
a local variable maxi in each process to show its version of the maximal value.

We executed our algorithm on the state space of the protocol for 5 processes
for 5 different specification formulas. In Figure 6, we compare for each formula
the original size of the state graph (first states, and then edges), the state graph
that was obtained only with the partial method, and the state graph that was
obtained with our method (which. includes the partial order method). The last
column of the table presents the number of full nodes that were in memory at
any time, in addition to the hash table.

The fifth formula was especially complex, namely: ~>(((maxl = 5)A'~((rnax2 =
5) V . . . (max5 = 5))) U (((max1 = 5) A (rnax2 = 5)) A~((rnax3 = 5) V (rnax4 =
5) V (max5 = 5))) U . . . ((max1 = 5) A (rnax~ = 5) A (max3 = 5) A (max4 =
5) A (maxs = 5)))), i.e., the processes obtain the correct maximum in the fixed
order 1,2,3,4,5. This formula's tableau state graph has on the order of 1000
states. In the model checking stage, multiplying this by the program's partial
order state graph will result in a quarter of a million states, while multiplying
this by the visible state graph will result in about 5,000 states. This formula is
not satisfied by the protocol, because the order is actually random.

347

FORM,LA oRiG-s ORIG-E P6G-SIPOG-EIVSG-SlVSG-EF,LL]
1 11099 68717 7030 121548]75]163]222]
2 11099 68717 203]352]10]19]61]
3 11099 68717 630]1373]42 198]81 I
4 11099 68717 723 1329 56 137 97
,5 . 11099 68717 263 351 5 9 57

Fig. 5. Simulation results for leader election protocol.

In the table, for formula 1 our algorithm has reduced a state space of 11,099
states and 68,717 transitions to a state space of 75 states and 163 transitions,
where the partial order method succeeded in reducing by less than one order of
magni tude relative to the original. In addition to the hash table, only 222 full
nodes were needed at any one t ime in the generation of the reduced graph. The
reader can observe tha t the rest of the results are similarly impressive.

R e f e r e n c e s

[DKR82]

[GHP92]

[GW91]

[Ho188]

[HP94]

[KP92]

[LAM83]

[Pe194]

[Val90]

[vw86]

D. Dolev, M. Klawe and M.Rodeh. An O(nlogn) unidirectional distributed
algorithm for extrema finding in a circle. Journal of Algorithms, volume 3,
pages 245-260, 1992.
P. Godefroid, G.J Holzman and D. Pirottin. State space caching revisited. In
Proc. Sth International Conference on Computer Aided Verification, LNCS
697, pages 178-191, Canada, June 1992.
P.Godefroid and P.Wolper. A partial order approach to model checking. In
Proc. 6th Symposium on Logic in Computer Science, pages 406-415, Amster-
dam, July 91.
G.J.Holzmann. An improved protocol peachability analysis technique.
Software-Practice and Experience, Vol 18(2), pages 137-161,February 1988.
G.J. Holzmann and D. Peled. An improvement in formal verification. In Pro-
ceedings FORTE 1994 Conference, Switzerland, October 1994.
S. Katz and D. Peled. Conditional independence using collapses. Theoretical
Computer Science, vohme 101, pages 337-359, 1992.
L. Lamport, What good is temporal logic? in: Proc. IFIP 9th World
Congress, Paris, France (1983) 657-668.
D. Peled. Combining partial order reductions with on-the-fly model checking.
In Proc. 6th International Conference on Computer Aided Verification, LNCS
818, pages 377-390, California, USA, June 1994.
A. Valmari. A stubborn attack on state explosion. Formal methods in System
Design 1, pages 297-322, 1992.
M. Vardi and P.Wolper. An automata-theoretic approach to automatic pro-
gram verification. In Proc. 1st Symposium on Logic in Computer Science,
pages 322-331, Cambridge, June 1986.

