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Abst rac t .  Checking that a given finite state program satisfies a linear 
temporal logic property suffers from a severe space and time explosion. 
One way to cope with this is to reduce the state graph used for model 
checking. We present an algorithm for constructing a state graph that is 
a projection of the program's state graph. The algorithm maintains the 
transitions and states that affect the truth of the property to be checked. 
The algorithm works in conjunction with a" partial order reduction algo- 
rithm. We show a substantial reduction in memory over current partial 
order reduction methods, both in the precomputation stage, and in the 
result presented to a model checker, with a price of a single additional 
traversal of the graph obtained with partial order reduction. As part of 
our space-saving methods, we present a new way to exploit Holzmann's 
Bit Hash Table, which assists us in solving the revisiting problem. 

1 I n t r o d u c t i o n  

In order to reduce the space needed for model checking of linear temporal logic 
properties, several pre-processing techniques have been suggested to construct 
smaller graphs such that a property to be checked is true of the original state 
graph iff it is true of the reduced graph. 

In particular, partial order methods such as [GW91],[Val90], and [pe194] ex- 
ploit the fact that  certain operations are independent of other operations, and 
that not all  interleavings of independent operations need to be explicitly exam- 
ined. Here, we exploit the fact that the specification - the  property to be proven- 
is independent of certain operations to obtain a further reduction. Invisible op- 
erations are those that do not affect the truth of any of the atomic propositions 
of the specification, while visible operations do affect them. A node is considered 
visible if some edge corresponding to a visible operation enters it, and invisible 
otherwise. We also exploit the fact that an operation can be invisible or visible, 
depending on the state from which it is executed. In this paper, a program's 
projected visible state space relative to a specification is constructed through a 
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DFS traversa!, and the invisible states are eliminated. Thus we present to the 
model checker a much smaller structure that  represents the program. 

The construction of the visible state space requires a linear traversal of a 
state graph that  is somewhat reduced from the original, but can still be large 
in some cases. This is still worthwhile because a standard temporal  logic model 
checker requires space and time complexity which is the multiplication of the size 
of the state space by a term exponential in the length of the formula. Thus for a 
formula of length 20, the time and memory complexity for the model checker are 
multiplied by 106 . We are therefore motivated to reduce the state graph given 
to the model checker. 

Moreover, we will show that  the reduced structure can be produced with a 
low space overhead. During any such pre-processing, and also during a traversal 
of the state-space for purposes of reachability analysis and deadlock detection, 
the question arises of whether to record for future reference that  a particular 
state was already visited. Not indicating that  a state was visited saves space, 
but may be costly in time: if the state is later reached again along another path, 
its descendants must be recomputed unnecessarily. We can define the revisiting 
degree of a state as the number of incoming edges not including those that  close 
loops~ (Those that  close loops are on the stack used for a depth-first traversal, 
and thus are easily identified with no additional space needed). The question is 
whether a state should be identifiable as having already been visited even after 
backtracking from that  state, in the DFS traversal. For graphs with many states 
having a large revisiting degree, the time can increase exponentially if states 
are reexpanded each time they are reached. Identifying such states avoids this 
problem, but can lead to memory overflow. This trade-off can be called the state 
revisiting problem. 

In [GHP92], the state revisiting problem is considered, for teachability anal- 
ysis, in the context of a partial order reduction method. Their conclusion is that  
in that  context, the state revisiting problem can be ignored, states should not be 
saved after visiting, and that  the price to be paid in recomputation is tolerable 
(3 to 4 times a single traversal, for their examples). In general model checking, 
however, the number of recompntations can be unacceptably large. 

It is clear that  partial order reductions as in [GHP92] lessen the state revis- 
iting problem because one cause of reaching the same state by different paths 
is that  independent operations are executed in a different order. Nevertheless, 
recomputation is still sometimes necessary both because such methods only elim- 
inate some of the redundancy of various orderings of independent operations, and 
because sometimes the same state is reached through truly different sequences 
of operations. Partial order methods consider operations dependent and/or  in- 
fluencing the specification, if they might have such an influence. Here we check 
more carefully whether an occurrence of an operation actually affects atomic 
clauses in the specification, as in [KP92], and thus can have greater savings. 

Another approach to the state revisiting problem was proposed in [Ho188] by 
using a hash table where the keys are the states themselves, to indicate whet-her 
a state has already been visited, without saving the full states. The difficulty 
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with this approach is that there may be a hash conflict, and then a state can 
map to a hash entry indicating that it has been visited, even if it has not beem 
and thus some parts of the graph may never be explored. Here we both achieve 
a greater reduction in the graph to be used for model checking, and overcome 
the state revisiting problem while exploring all of the state space, at a cost of a 
single additional traversal of the graph obtained by the partial order expansion, 
beyond the one needed by the partial order method itself. 

In order to overcome the state recomputation problem, a preliminary DFS 
traversal is used to compute the revisiting degree of each state, so that  it is clear, 
on the second traversal, when a state should be retained, and when it can be 
eliminated. Thus, we can manage a caching method that does not randomly free 
memory. During this preliminary traversal, a hashing method similar to that  in 
[Ho188] can be used. A significant difference is that when conflicts do occur in 
the hash table, the worst effect will be some additional recomputation, but the 
entire graph will ult imately be examined. 

In the following section some preliminary definitions are given, the visible 
state graph is defined and theorems with its properties are given. In Section 
3 the basic traversal algorithm to eliminate invisible states is first described, 
then related to a partial order method, and finally combined with a preliminary 
traversal to determine revisiting degrees. In Section 4 we summarize the memory 
and time complexity both of the pre-computation, and of the graph presented 
to the model checker, and present some simulation results. 

In Figures 1 to 3, an example program, and several of its state-space graphs 
are shown. The specification is of mutual exclusion and of liveness. Y1 and Y2 
represent flags that  are true when processes P1 and Pu respectively are in crucial 
sections. The assertion is that  Y1 and Y2 are never both true at the same time, 
and that if one flag is true, the other will eventually become true. The program is 
represented as a labeled set of guarded commands, for each of the two processes. 
Each process has its own program" counter (denoted PCi), to control the internal 
flow of the process. A command is enabled if its guard is true and if the program 
counter of the process containing it is equal to the command's  number. Figure 
2 shows the full state-space graph, while the graph without the grey nodes and 
the dotted lines is the reduced graph after the partial order method of [Pe194] is 
applied. In Figure 3 the graph is shown in an intermediate stage, after some of 
the invisible states have been removed, with the candidates for elimination in the 
rest of the algorithm indicated in gray. The graph without the grey nodes, and 
with edges connected to their successors is the fully reduced graph relative to 
the given specification. Note that  the original graph has 30 states, the one after 
partial order reduction has 26, and the graph that fully exploits the elimination 
of invisible states has only 14. The stages in this reduction will be explained 
later in the paper. 

In this toy example, the specification includes both of the program variables~ 
and only operations involving the control counters are invisible. When the pro- 
gram is more realistic, and the property to be proven only involves part of the 
variables, much greater savings can be expected, as is shown in the simulations 

summarized in Section 4. 
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This paper  demonstrates  that  a careful combination of a partial  order reduc- 
tion method with an algorithm to eliminate states not relevant for the specifi- 
cation, along with a hashing technique to save only relevant information about  
which states have already been considered, can yield a result tha t  makes previ- 
ously infeasible problems treatable.  

- Global State Representation = (PC1, PC2, !11, Y2) 
- Initial State = (0, 0, F, F) 
- Specification Checked = D-,((Y~ = T) A (Y~ = T)), [:]((Y~ = T) =~ O(Y~ = T)) 

PROCESS 1 
PC1 
0:PC1:=1 {al} 
1: PC1:=2; Y2:=T {a2} 
2: (Y~=T) =~ P61:=3; Y~:=F {a3} 
3: PCI:=O { a 4 }  

PROCESS 2 
PC2 
0: PC2:=I  {bl} 
1: PC2:=2; Y~:=T {b2} 
2: (Y~=T) =~ PC2:=3;Y2:=F {bS} 
3:PC2:=0 {b4} 

Fig. 1. Example of a program P. 

2 P r e l i m i n a r i e s  

A finite state program P is a triple < T, Q, I > where T is a finite set of oper- 
ations, Q is a finite set of states, and I 6 Q is the initial state. The enabling 
condition en~ C Q of an operation a E T is the set of states from which a can 
be executed. Each operation a E T is a partial  t ransformation a : Q ~-+ Q which 
needs to be defined at least for each q E enc~ . For simplicity we assume tha t  for 
each q E Q there exists an operation a E T such that  q E en,~. 

An interleaving sequence of a program is an infinite sequence of operations 
v = a 0 a l . . ,  that  generates the sequence of states ( = qoqlq2..,  from Q such 
that  (1) q0 = I ,  (2) for each 0 <_ i, qi C end, and q i + l  = ai(qi). 

A nexttime-free LTL formula (denoted LTL-X) is composed of a tomic propo- 
sitions from a set A P ,  boolean operators (A, -% V) and the usual temporal  modals  
[] ( 'always') ,  ~ ( 'eventually ')  and U ( 'Until ' )  but not the modal  O ( 'next ' ) .  

D e f i n i t i o n l .  A state graph, Gp = (g ,S ,E) ,  for a program P is a directed, 
rooted graph, such that  : 

1. S is a finite set of nodes, a E S is the graph 's  root and E is a finite set of 
edges (we denote an edge from node s to node t as s --~ t). 

2. The graph is total, i.e. from every node there is an exiting edge. 
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3. There  is an injective h o m o m o r p h i s m  st : S --+ Q tha t  maps  nodes to p rogram 
states such that :  st(g) = I and if s --* t E E then there exists an opera t ion 
a such tha t  st(s) E en~ and st(t) = or(st(s)). 

4. "The graph  is maximal ,  i.e, for each state s in a sequence of  states generated 
f rom some sequence of operat ions  f rom P ,  and for each opera t ion c~ enabled 
at s such tha t  a ( s )  = t, we have tha t  s t -~(s)  ~ s t - l ( t )  E E. 

We will identify a state and a node with this mapping .  

D e f i n i t i o n 2 .  M = (Gp,  V) is a model for a program P and a specification 
iff G p  is a state graph  of  P and V is a funct ion V : S --* 2 AP (where A P  are 
the a tomic  proposi t ions of  ~) such tha t  for all nodes s E S, V(s)  = {a I a E A P  
and a is t rue in s tate  st(s)} .  

Fig.  2. P~s full and partial ordered state graph. 

D e f i n i t i o n 3 .  Let M(Gp(g ,  S, E),  V) be a model  of  a p rogram P and specifica- 
t ion ~, s --+ s'  E E is a visible edge iff V(s)  7s V(s ' ) .  A node t is a visible node 
iff 1) t = g (i.e. the initial node) or, 2) there is a visible edge entering t. 
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Fig. 3. An intermediate stage in the reduction algorithm. 

The visible state graph Gv is the state graph of an abstraction of a program 
P.  Its set of nodes is exactly the.visible nodes of the state graph Gp (denoted 
V I S ( G p ) ) .  Its edges satisfy the following two properties: 

P 1  For any 2 nodes s, s ~ E VIS(Gp) ,  there is a sub-path ssl  . . .  sns ~ of a 
pa th  of Gp such that  V(s) = V(s l )  = . . .  = V(sn)  and V(s) r V(sl)  iff 
there is subpath s t l t 2 . . ,  t,~s' of a path  of G v  such that  V(s)  = V(t~) = 
. . . =  v(tm) and V(s) # V(s') 

P 2  For any node s E V I S ( G p ) ,  there is a suffix ssls~ . . .  of a pa th  of 
Gp such that  V(s) = V(Sl) = V(s2) = . . .  iff there is a suffix s t l t 2 . . ,  of 
a pa th  of G v  such that  Y(s)  = V(t l )  = Y(t2) = . . . .  

These properties guarantee that  paths in the two graphs have the same prop- 
erties when repetitions of the relevant t ruth  values are ignored, i.e., they are 
stuttering equivalent [LAMB3] (denoted by ~" -,~ ~"). 

T h e o r e m  4. Let Gp and G v  be the state graph and a visible state graph respec- 
tively of a program P.  For each path 7c in Gp there exists a path 7d in G v  such 
that 7c ,,~ ~r~.For each path 7c in Gv  there exists a path 7c in Gp such that ~r ,,~ 7d. 
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The proof  is done by building a linear s tut ter ing equivalent relation based on 
properties P1 and P2, and using the fact tha t  LTL-X is insensitive to stut tering.  

3 V i s i b l e  s t a t e  g r a p h  g e n e r a t i o n  

In this section we first show the basic a lgor i thm (Figure 4) which generates 
the visible state graph~ In the a lgor i thm we do not  keep an indicator  whether  
invisible nodes have been visited (after backtracking f rom it). Therefore the t ime 
may  increase exponential ly for graphs tha t  have m a n y  invisible nodes with high 
revisiting degrees. Later  we show how to solve this problem. 

In the a lgor i thm we abstract  f rom implementa t ion  details. We create a visible 
state graph G, which is represented by a set of  nodes S and a set of  edges E.  
We operate  on the sets with the s tandard  set operat ions  (U, N, \ )  and operands  
(E, C). The  search pa th  is kept on a stack~ In intermediate  stages, S will con- 
tain bo th  the visible nodes already examined and all nodes on the stack. The  
a lgor i thm uses the following functions and indicators:  

- s E S - Either s is a visible node already examined or is on the search stack. 
- s --+ s / E E - An edge f rom node s to visible node s t was created. 
- e n ( s )  - The  set of  operat ions  enabled at state s t ( s ) .  
- a(s )  - The  node obta ined after executing an opera t ion a on state s t ( s ) .  
- v i s i b l e ( s )  - The  node s is visible (only for nodes in S). 
- R C L ( s  --+ s t) - The  edge s --* s t mus t  be reconnected when backtracking 

from s t . 

- o p e n ( s )  - Node s is on the search stack. 

The a lgor i thm is based on a s tandard  DFS traversal, implemented in a re- 
cursive procedure:  At each node s we calculate its set of  successors. We then 
recursively examine all successors tha t  are not  indicated as having already been 
examined ( remember  we sometimes reexamine a node more  than  once). The  
reduct ion comes when backtracking f rom a successor s t of  the node s. If  s t is 
invisible we replace each edge exiting s ~ with an edge tha t  exits s and tha t  enters 
the same target .  We then remove the set of edges exiting s ~, which is followed by 
the removal of  the invisible node s ~ (lines 10 - 16). In lines 13-14 before removing 
an edge tha t  is marked RCL (see explanat ion below) and exiting s ~ we mark  the 
respective replacing edge tha t  exits s as RCL. In line 11 if s t has a self loop 
we give s a self loop. This  mainta ins  diverging sequences. Note tha t  even if the 
state later proves  to be visible when approached along a different path,  and is 
theretbre reintroduced,  the edges we remove are invisible. When  s t is visible we 
add the edge s -+ s ~ to E (line 18). 

If  a successor s ~ of  s is in S then this indicates tha t  either s '  is visible and has 
been examined or s t is open (i.e. s * closes a loop), thus we add the edge s --+ s ~ 
to Eo If s '  closes a loop and. s --~ s * is invisible (i.e V ( s )  = V ( s ' )  ) we mark  tha t  
edge RCL, s tanding for reconnec t  later.  In the DFS traversal  when we  arrive at 
an invisible open node s '  f rom s, there m a y  be successors of  s '  t ha t  have not  yet 
be%n examined.  We therefore do not know all the visible successors of  s'  and we 
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cannot  know which are s 's  successors ( that  go th rough  s '  in the original graph) 
in the Visible graph.  Hence, we indicate (i.e. RCL(s  --* s ')  :=  T R U E  in line 24) 
t ha t  we still have to upda te  the set of edges exiting s. Final ly when we backtrack 
froth s I, the sub- t ree  f rom s ~ has been examined.  Thus  we know which are J ' s  
visible successors. We then replace the set of  edges which enter s / and tha t  are 
marked  RCL (lines 25-28) by edges tha t  enter s/ 's visible successors. Note tha t  
any edge entering s ~ tha t  is marked RCL when we backtrack f rom s I is f rom a 
visible node or a self loop f rom s ~ (because an edge marked  RCL closed a loop, 
the node it came f rom has already been backtracked from, and was removed if 
it was invisible). 

1 procedure .expand(s) 
2 open(s) := TRUE 
3 foreach a E en(s) do 
4 s ' :=a ( s )  
5 if not (s'  E S) then 
6 visible(s' ) :=FALSE 
7 S : = S u { s ' }  
8 expand(s') 
9 if (trot visible(s')) and ( V ( s ) =  V(s ' ) )  then 
10 foreach u such that (s' ~ u) E E 
11 i f s ' = u t h e n  u : = s  
12 E := E U {s --~ u} 
13 if RCL(s '  ~ u)and(s'  ~- u) then 
14 RCL(s --* u) := TRUE ;RCL(s'  --* u) := FALSE ; 
15 E := E \ {s' ---* u} 
16 s :=  s \ { s ' }  
17 else 
18 E := E u {s - .  s ' }  
19 visible(s') := TRUE 
20 else 
21 if V(s)  # V(s')  then visible(s') := T R U E  
22 E := E U {s ~ s'} 
23 if open(s') and (V(s) = V(s'))  then 
24 RCL(s ---, s ') := TRUE 
25 foreach u such that RCL(u --* s) 
26 foreach v such that (s --* v) E E 
27 E := E U {u --* v} 
28 if RCL(s ---* v) then RCL(u --* v) := TRUE 
29 RCL(u ~ s) := FALSE 
30 open(s) := FALSE 
31 end 

Fig.  4. Algorithm for generating the visible state graph. 
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We demonstrate the backtracking in Figure 2 where nodes are represented 
by a 4-tuple of values (PC1,PC2,Y1,Y2). In Figure 2 the algorithm first starts 
backtracking when it does a step from (2,1,F,F) and arrives a second time at 
node (2,2,T,F) (on the lower right). This node is visible because it has a vis- 
ible operation (b2) entering it (e.g., the truth value of the atomic proposition 
"YI=T"  is changed). Therefore it is not deleted when backtracking from it. On 
the other hand, node (2,1,F,F) has only an invisible operation (bl) entering it 
(because only the program counter, irrelevant to the specification, is changed). 
Therefore it is deleted when backtracking. Its successors are now added to the 
successor set of its predecessor (state (2,0,F,F)). Next, node (2,0,F,F) is also 
deleted because it is an invisible node. Its successor (i.e. node (2,2,T~F)) will 
now become a successor of the visible node (2,3,F,F). The result of the above 
can be seen in Figure 3. 

The use of RCL can be seen in Figure 3 where invisible node (1,1,F,F) (the 
second from the top center) has an edge marked RCL entering it. When back- 
tracking from node (1,1,F,F), before removing it we reconnect node (3,1,F,F) to 
the nodes (2~I,F,T), and (1,2,T,F). 

To show the algorithm correct we must prove that  properties P1 and P2 
hold with respect to the full state graph and the graph constructed (i.e, it is a 
visible state graph). This is done by induction on the set of backtracking steps 
executed by the algorithm. For each step of the induction we look at: (1) the 
(intermediate) full state graph obtained from the edges backtracked from, (2) 
the (intermediate) graph obtained from edges in the set E (see algorithm). We 
then show that an intermediate version of P1 and P2 hold for these two graphs. 
When the algorithm terminates, the "full" version of P]  and P2 hold. 

We can combine our algorithm with any algorithm for partial order reduction, 
e.g., A1 from [Pel94]. In that algorithm we execute a DFS traversal of a program's 
state space. At each state only a subset of the enabled transitions (called the 
ample set) are expanded. This is due to the fact that expanding all enabled 
transitions will lead to a graph with more than one interleaving per partial 
order. The only change to our algorithm is that  instead of expanding all the 
enabled operations from a particular state s, we expand only those operations 
that  belong to the ample set of state s. Therefore, we replace line 3 in Figure 4 
with: fo reach  o~ E amp le ( s )  do. Other algorithms differ in the way that  a 
subset of enabled transitions are selected, but can be used in the same way. 

To solve the revisiting problem, we present an algorithm that pre-processes 
the state space. The algorithm calculates the revisiting degree of each state. This 
information is passed on to the algorithm that  generates the visible state graph, 
which then can more selectively delete states. The preliminary DFS algorithm 
traverses the state space in a partial order manner, which is the exact same order 
used in the later reduction algorithm (both are deterministic). 

We use a Hash Table [Ho188] (called the revisited hash table), as a revisiting 
degree counter for each node. The hash table is accessed with a hash function 
whose argument is a state. When visiting a node in the DFS traversal, we cheek if 
its revisiting degree is zero. If this is the case we set its revisiting degree counter 
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to 1, and then we recursively calculate the revisiting degree of all its successors 
(from the ample set of the underlying partial order traversal). Otherwise, we 
increase the counter of the node by 1, and backtrack from that  node. Note that  
all this only relates to revisits that  do not close a loop, for reasons explained 
already in the Introduction. 

Here we use Holzmann's hash table to assist us in calculating the revisiting 
degree of each node. This is a novelty in itself: until now the use of this technique 
was problematic, because of the small probability of a hash collision when model 
checking (resulting in not checking part of the state space). Here in the worst 
case, a hash collision will cause us to calculate an incorrect revisiting degree, 
resulting in additional state reeomputation in the latter DFS. 

Now, in the latter DFS that  generates the visible state graph, when back- 
tracking from a state, we check if the node will be revisited (according to the 
revisited hash table). If an invisible node will not be revisited we remove it and 
all its pointers to its successors from internal memory, otherwise we maintain it 
and pointers to its successors in memory. (If we were in error because of hash 
conflicts, we might have to regenerate the node and its pointers later on, when 
we reach that  state along another path.) If a visible node will not be revisited we 
remove it from the internal memory and store'it  on external memory, otherwise 
we maintain it in memory. The pointers of a visible node to its successors are 
always stored in external memory, because they are not needed for later revisits 
in the traversal. When we revisit such a node we decrement its counter in the 
revisited hash table. 

When we run out of memory, we can do a form of garbage collection: For 
each node s in memory (stored in a balanced tree) we check if s's counter is zero. 
If this is the case, we delete that  state from the internal memory, and store it 
on the external memory (if it is visible). Note that  some nodes may have the 
same entry in the revisited hash table. This means that  they can only be deleted 
together (i.e. when they all will not be revisited anymore). Thus we must execute 
a garbage collection to dispose of these kinds of nodes. This is a better  caching 
method for memory management because states are not deleted randomly. 

Note that  this method of an initial traversal of the state space can be applied 
to all current state space generation algorithms. For example [Pel94] presented 
an on-line model checker, by traversing the product of the state space and spec- 
ification graphs. We also can initially traverse the product and calculate the 
revisiting degree of all nodes, saving space as shown in the following section. 

4 M e m o r y  a n d  T i m e  C o m p l e x i t y  

For analysis of memory and time complexity we distinguish between two stages: 
1) The memory and time complexity of the algorithm that  constructs the vis- 
ible state graph (denoted VSG), and 2) The memory and time complexity of 
the algorithm for the model checking. In both cases the analysis is relative to 
the complexity of the algorithms that  construct and model check the graph ob- 
tained by applying a partial order method (denoted POG).  When we refer to 
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memory complexity, our intention is internal memory. We assume that  we have 
an unrestricted amount of external memory (used for the caching method). For 
the model checking itself, the savings is in checking a smaller model. Standard 
model checking of linear time temporal logic specifications has time and space 
complexity O(IVSG]. 21~'l), whereas previously we had the same formula over 
the original state graph or the POG. 

As for the preprocessing stage to compute the revisiting degree and then 
generate the visible state graph, the time complexity is the same as for existing 
methods for partial order reductions, namely O (pc. Iog(ps)), where pe is the num- 
ber of edges in the partial order graph that would be produced by that method 
alone, and ps is the number of nodes in that graph. As explained previously, our 
algorithm makes one additional traversal. 

The partial order method we considered uses O(m .ps + log(m), pc) space 
in its original form, where m is the space needed for a single state. 

For our algorithm, the memory complexity of the first DFS is O(rn. ss + ps) 
(where ss is the size of the stack). The data structures used are the search stack 
and the revisited hash table (using O(ps) for the size of the hash table). The 
memory complexity for the subsequent reduction traversal is also O(m. ss + ps). 
Here the data  structures used are the search stack, the revisited hash table and 
the intermediate stages of the visible state graph construction. We use a caching 
method, therefore we bound by a constant the memory needed for the full states 
retained in intermediate stages. Our simulations show that the number of states 
needed at any one time is actually small, and the cache will not cause extraneous 
recomputation. The simulation was constructed using the high level language 
ICON. We implemented the algorithms that calculate the revisiting degree of a 
program's state graph and that  generate the visible state graph. The ample set 
for the partial order method is calculated according to [HP94]. 

In one test, we simulated a leader election protocol in a unidirectional ring 
from [DKR82] and several alterna'tive specification formulas. The algorithm uses 
a local variable maxi in each process to show its version of the maximal value. 

We executed our algorithm on the state space of the protocol for 5 processes 
for 5 different specification formulas. In Figure 6, we compare for each formula 
the original size of the state graph (first states, and then edges), the state graph 
that was obtained only with the partial method, and the state graph that  was 
obtained with our method (which. includes the partial order method). The last 
column of the table presents the number of full nodes that were in memory at 
any time, in addition to the hash table. 

The fifth formula was especially complex, namely: ~>(((maxl = 5)A'~((rnax2 = 
5) V . . .  (max5 = 5))) U (((max1 = 5) A (rnax2 = 5)) A~((rnax3 = 5) V (rnax4 = 
5) V (max5 = 5))) U . . .  ((max1 = 5) A (rnax~ = 5) A (max3 = 5) A (max4 = 
5) A (maxs = 5)))), i.e., the processes obtain the correct maximum in the fixed 
order 1,2,3,4,5. This formula's tableau state graph has on the order of 1000 
states. In the model checking stage, multiplying this by the program's partial 
order state graph will result in a quarter of a million states, while multiplying 
this by the visible state graph will result in about 5,000 states. This formula is 
not satisfied by the protocol, because the order is actually random. 
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FORM,LA oRiG-s ORIG-E P6G-SIPOG-EIVSG-SlVSG-EF,LL ] 
1 11099 68717 7030 121548 ]75 ]163 ]222] 
2 11099 68717 203 ]352 ]10 ]19 ]61 ] 
3 11099 68717 630 ]1373 ]42 198 ]81 I 
4 11099 68717 723 1329 56 137 97 
,5 . 11099 68717 263 351 5 9 57 

Fig. 5. Simulation results for leader election protocol. 

In the table, for formula 1 our algorithm has reduced a state space of 11,099 
states and 68,717 transitions to a state space of 75 states and 163 transitions, 
where the partial  order method succeeded in reducing by less than one order of 
magni tude relative to the original. In addition to the hash table, only 222 full 
nodes were needed at any one t ime in the generation of the reduced graph. The 
reader can observe tha t  the rest of the results are similarly impressive. 
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