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Abst rac t .  This paper presents a methodology ~br the verification of 
temporal properties of systems based on the gradual construction and 
algorithmic checking of fairness diagrams. Fairness diagrams correspond 
to abstractions of the system and its progress properties, and have a 
simple graphical representation. 
In the proposed methodology, a proof of a temporal property consists of 
a chain of diagram transformations, starting from a diagram representing 
the original system and ending with a diagram that either corresponds 
directly to the specification, or that can be shown to satisfy it by purely 
algorithmic methods. Each diagram transformation captures a natural 
step of the gradual process of system analysis and proof discovery. The 
structure of fairness diagrams simplifies reasoning about progress proper- 
ties, and the graphical representation provided by the diagrams enables 
the user to direct the construction of the proof. The resulting method- 
ology is complete for proving specifications written in first-order linear- 
time temporal logic, provided no temporal operator appears in the scope 
of a quantifier. 

1 Introduction 

This paper presents a methodology for the verification of temporal properties 
of fair transition systems based on the gradual construction and algorithmic 
checking of fairness diagrams. Fairness diagrams represent abstractions of the 
system, and provide a graphical formalism for the study of its temporal prop- 
erties. Fairness diagrams are graphs whose vertices are labeled by first-order 
assertions and whose edges are labeled by first-order transition relations. Their  
progress properties are represented by fairness constraints, which generalize the 
classical concepts of fairness [8]. 

In the proposed methodology, a proof of a temporal specification consists of a 
chain of diagram transformations, starting with a fairness diagram representing 
the original system and ending with a fairness diagram that  either corresponds 
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directly to the specification, or that can be shown to satisfy it by purely al- 
gorithmic methods. Since the transformations preserve containment of system 
behaviors, the existence of this chain of transformations implies that the set of 
behaviors of the original system is a subset of the set of behaviors that satisfy 
the specification. 

Fairness diagram transformations are intended to capture the step-by-step 
nature of the process of system analysis and proof constructiom We introduce 
two types of transformations. The first type relies on the construction of sim- 
ulation relations between diagrams, and provides a flexible way to analyze the 
safety properties of the system. The second type relies on the proof of new 
progress properties of a fairness diagram. Once proved, these properties can be 
represented as fairness constraints and added to the diagram. The form of the 
fairness constraints has been chosen to make it possible to use simple but com- 
plete rules to reason about progress properties. The resulting methodology is 
complete for proving specifications written in first-order linear-time temporal 
logic, provided no temporal operator appears in the scope of a quantifier. 

Related work. Methods based on stepwise system transformations for the study 
of branching-time temporal properties of finite-state systems have been proposed 
in [3], and the use of simulation relations to study the temporal behavior of fair 
transition systems has been discussed in [4]. A related approach to the proof of 
temporal properties of systems is based on the use of verification diagrams [10, 1]. 
Like fairness diagrams, verification diagrams are graphs labeled with first-order 
assertions, and enable the proof of general temporal properties. Unlike fairness 
diagrams, verification diagrams represent a completed proof, and trade the ad- 
vantage of gradual proof construction for conciseness of proof representation. 

2 Fairness Diagrams 

A fairness diagram (diagram, for short) A = ('P, Z, V, p, T, 6~, iT) consists of the 
following components: 

1. A set Y of typed variables, called state variables. 
2. A state space Z: each state s E Z is a type-consistent value assignment of 

all the variables in ]2. For x E ]2, we denote by s(x) the value of x at state s. 
3. A set V of vertices. 
4. A mapping p : V ~ 2 E, that labels each vertex v E V with a subset 

p(v) C Z.  The set p(v) represents the possible states of the system when the 
diagram is at vertex v, and is specified by a first-order formula ~(v) over ~2, 
such that p(v) = {s e E i s ~ ~(v)}. 

5. A mapping r : V 2 ~-~ 2 E• that labels each edge (u,v) E V 2 with a relation 
T(u, v) C_ Z 2. The relation is specified by a formula ~(u, v) over )2, )3 I, such 
that T(U,V) = {(S,S') ] (S,S') ~ ?(U,V)}, where (s,s') interprets x E Y as 
s(x) and x' e ~' as s'(x). 

6. An initial region 8.  Regions are defined below. 
7. A ]airness set iT, defined below. 
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Locations and runs. A location of a diagram is a pair (v, s) : v C V, s E p(v) 
composed of a vertex and of a corresponding state. We denote by Ioc(A) = 
{(v, s) I v E V, s E p(v)} the set of all the locations of a diagram A. A location 
represents an instantaneous configuration of the diagram, similarly to a state of 
an FTS. A run of a diagram is an infinite sequence of locations (v0, so), (vl, sl), 
(v2,s2), . . . ,  such that  So E O(Vo), and (si, s~+l) C r(v~,v~+l) for all i > 0 

Regions. A region q~ is a set of locations. We denote by ~(v) the set of states 
{s E Z ] (v, s) E ~} that  are part of �9 at vertex v. A region �9 is represented 
by the set of formulas {~(v)}vey, where for each v C V the formula ~(v) over 
1; defines the set ~(v). We say that  �9 is an integral region if ~(v) is equal to 
either ~ or p(v) for every v C V. We can specify an integral region ~ by the set 
of vertices {v E V ~(v) ~ ~}. 

Modes. A mode ~ V 2 ~ 2 ~• labels each edge (u,v) E V 2 with a transition 
relation A(u,v) C_ ~-(u,v). For u,v C V, X(u,v) is represented by a formula 
~(u, v) over 12, 1; ~. A mode represents a subset of the possible transitions between 
locations of the diagram. An integral mode is a mode ~ such that  )~(u, v) is either 
O or T(u, v), for all u, v E V. We can specify an integral mode )~ by listing the 
set of edges {(u,v) [ A(u,v) r ~}. 

Fairness constraints. A fairness constraint (constraint, for short) is a triple (J, C, 
G), where J, C are regions s.t. C _ J and G is a mode. Constraints are used to 
specify the fairness properties of the diagram, and the fairness set J: is a set of 
constraints. 

A diagram must satisfy the eonsecution condition, which states that  if a 
transition is taken from a location, it will lead to another location: formally, for 
all u, v E V and for all s, t E E, 

s E A (s, t) e v) - ,  t e p (v ) .  

In the following, we denote by Cs the formula obtained from a first-order logic 
formula r by replacing each free x C F with x ~ E]Y. With this convention, the 
consecution condition holds iff the logical implication ~(u) A ?(u, v) -+ ~(v)  is 
valid for all u, v E V. 

The computations of a diagram are defined in terms of its accepting runs. 

D e f i n i t i o n l .  A run a : (v0,s0), (Vl,Sl), (v2,s2), . . .  of a diagram A is an ac- 
cepting run if the following condition holds. 

For each constraint (J, C, G) E jz, if there is n > 0 such that (vi, s~) E J 
for all ~ > n and (v~, si) E C for infinitely many i > O, then there are 
in.finitely many j > 0 s.t. (8 j , s j+l)  E G(vd,vd+I ). 

If ~r : (vo, so), (vl, Sl), (v2, s2) , . . ,  is an accepting run of A, the sequence of states 
so, sl, s2 , . . ,  is a computation of A. We denote by Runs(A), s  the sets of 
accepting runs and computations of A, respectively. | 
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According to the above definition, the informal reading of a constraint (J, C, G) 
is that  every accepting run that  stays in J forever and visits C infinitely often 
must follow a transition in G infinitely often. The chosen names J,  C and G re- 
flect the notions of Justice set, Compassion set and Gratify action that  describe 
fairness of transition systems in [8]. 

A fair transition system (FTS), defined as in [9], can be represented by a 
diagram having only one vertex. 

Construction 2 (from FTS to d i a g r a m ) .  Let S = (12, Z,  8, T, ,7 ,  C) be an 
FTS, where 12 is the set of state variables, Z is the state space, t9 c_ Z is 
the initial condition, T = {71,.-. ,Tin} is the set of transitions, and i7 C_ T, 
C c_ T are the just and compassionate transitions, respectively. The FTS can be 
represented by a diagram fd(S) = (~, Z,  V, p, T, O, jr), where ]2, Z are as in the 
FTS, V = {v0}, p(vo) = Z, O(Vo) = 8, and T and jr  are defined as follows. 

"~ t Z 2 1.  (v0,v0)= {(s ,s)I  s e ) e  I t e 
2. For 1 <  i < m, let Ei(vo) = Dom (7i), Gi(vo) = {(s,t) e i7 2 I t  �9 7{(s)}. If 

"y~ �9 `7 (resp. "y~ �9 C) we add (E{, El, G~) (resp. (loc(A), E{, Gi)) to $-. | 

We assume that  an FTS S includes among its transitions the idling transition, 
that  does not change the state. Given an FTS S, we will indicate with s  the 
computations admitted by S. Comparing the definitions of FTSs and diagrams, 
we have the following theorem. 

T h e o r e m 3 .  For an FTS S, s = LOrd(S)). 

3 F a i r n e s s  D i a g r a m  T r a n s f o r m a t i o n s  

The temporal behavior of a diagram is studied by means of diagram transfor- 
mations. These transformations preserve containment of behaviors, and they 
are reminiscent of the preorders of [3]. If a diagram A can be transformed into a 
diagram B by using one of the transformations, we write A =~ B. Since the trans- 
formations preserve containment of behaviors, A =~ B implies s C_ s  We 
will denote by =~ the reflexive transitive closure of =~. 

3.1 Simulation Transformations 

Simulation transformations transform a diagram into a new one, such that  the 
second diagram is capable of simulating the first one. These transformations 
modify the set of vertices of a diagram, rearranging the grouping of states in the 
vertices, and are used to study the safety properties of the diagram. 

A simulation relation between two diagrams A1 and A2 is a function V1 ~ 2 72 
from the vertices of A1 to those of A2, which induces a simulation relation that  
maps each location (u, s) of A1 into the subset [.Jvet,(~)(v, s) of locations of A2. 
The following rule determines whether there is a simulation relation between 
two diagrams. 
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A 1 

t~ t  

O: t=2Ax=O @: r t--1 x'=x+l A 2 t'=l x'=x+lA x'<lO 

t:'=t 

u3 x x+l^x<lO " ~  
x'=x + l V 3 

x'>=lO h O<t'<4 

Fig. 1. Fairness diagram A1 and A2, related by the simulation~ relation arising from 
#(m) = {vl,v4}, #(u2) = {v2,v4}, #(ua) = {v3,v4}. Variables not mentioned in the 
transition relations are left unchanged. 

R u l e  4 ( s imu la t ion ) .  Let A1 --= (12, Z,  V1, Pl, ~-1, O1, ~l ) ,  A2 = (]2, Z,  V2, P2, T2, 
02, J:2) be two diagrams sharing the same variables and state space. We say that 
A2 simulates A1, written A1 _~ A~, if there is a mapping # : V1 ~+ 2 y~ such that 
the following logical assertions are valid. 

1. For all u E V1, ~)l(u) --+ W e , ( , )  6)2(v). 

2. For allu, u' e 171 andv  e it(u), ( ' f i l(u)A'~(v)A~l(u,u')) ~ Vv, e~(~,) ?2(v,v'). 
3. For each (J2, C2, G2) e ~c2 there is (Jt ,  C1, G1) E Z1 such that the following 

conditions are satisfied, for all u e V1 and v E #(u): 

(a) (J2(v)A ~l(u)) -+ ~ ( u ) ,  and (C2(v)A ~l(U)) ~ Cl(u); 

(b) for all u' e~Vl, ( p ' l (U)A~(v )AGl (U ,  ut)) --+ Vv, e ,{u,)G2(v,v ' ) ,  ii 

T h e o r e m 5 .  I f  A~, A2 are two diagrams s.t. A1 ~ A2, then s _C s 

Proof. Conditions 1 and 2 insure that for each run al of At there is a related 
run a2 of A2. Condition 3 insures additionally that  if al is accepting, there is a 
related a2 of A2 which is also accepting. The result then follows from the fact 
that  the simulation relation is an identity with respect to the state space E. | 

T r a n s f o r m a t i o n  6 ( s i m u l a t i o n  t r a n s f o r m a t i o n ) .  Given two diagrams At, 
A2, if A1 ~ A2 we can transform A1 into A2. R 

E x a m p l e  7. Consider the diagrams A1 and A2 of Figure 1. With A1 are asso- 
ciated the fairness constraints 
C~ 1) = ({~1,1/,2, I/,3}, {t/,1}, {(t/,1, 'u,1)}), C~ 1) = ({'u,1, t/,2, u3} , {1/,3}, {(u3, I/,3)}) , 
c~ 1) = ({,~}, {~ } ,  {(~,,~1), (~,  u~)}), 
represented with the convention for integral regions and modes. With A2 are 
associated the constraints 

c~ ~) = ({v,, v~,,,~}, {,,1}, {(,~,, vl), (vl, v,,)}), 
c~ ~ = ({vt, ~ ,  v~}, {,~}, { (~,  ~),  (v~, v.,)}), 
c~ ~ = ({v~}, {v~}, {(,~,vl), (v~, v~)}). 

Since the function # of Figure 1 satisfies the conditions of Rule 4, A~ can be 
transformed into A2 using a simulation transformation. | 
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The proof of A1 ~ A2 using Rule 4 fails if there is a constraint (J2, C2, G2) E 
jr2 for which there is no constraint (J1,C1,G1) E jr1 that  satisfies conditions 
(3a) and (3b). In this case, to construct the simulation relation we must first add 
a suitable constraint to A1. This can be done using fairness transformations. 

3.2 Fa i rness  T r a n s f o r m a t i o n s  

Fairness transformations analyze the structure of a diagram to derive new con- 
straints that  can be added to the set j r  without restricting the set of accepting 
runs of the diagram. These constraints are said to be compatible, and they rep- 
resent progress properties of the diagram. 

De f in i t i on  8. Given a diagram A = (~2, Z,  V, p, T, O, jr) and a constraint (J, C, 
G), let A' = (37, Z,  V, p, ~-, 8 ,  jrU {(J, C, G)}) be the diagram obtained from A by 
adding (J, C, G) to the set jr. We say that  the constraint (J, C, G) is compatible 
with A if Runs(A) = Runs(A'). | 

T r a n s f o r m a t i o n  9 ( fa i rness  t r a n s f o r m a t i o n ) .  If diagram A' is obtained from 
diagram A by adding a compatible constraint, we can transform A into A t. | 

To prove that  a constraint is compatible with a diagram, we present veri- 
fication rules. These rules are related to the rules for response and reactivity 
properties presented in [7]. The structure of the constraints enables two sim- 
plifications. First, separate rules for response and reactivity properties are not 
needed, since constraints can represent both types of properties. Second, it is 
possible to decompose the rules of [7] into simpler ones while retaining com- 
pleteness. 

We present three rules for proving the compatibility of constraints. The 
first rule shows the compatibility of a constraint independently from other con- 
straints. The second rule uses one or two constraints in j r  to show that  a third 
one is compatible, and can be thought as a rule to concatenate constraints. The 
third rule can be used to show that  the union of constraints in j r  is compatible. 
Before presenting the rules, we introduce the notion of ranking functions. 

De f in i t i on  10. A well-founded domain is a set D together with an order rela- 
tion >, such that  there is no infinite descending chain do > dl > d2 > . . .  of 
elements of D. A ranking function ~ : loc(A) ~-~ D for a diagram A is a func- 
tion mapping pairs (v, s) E loc(A) into elements of a well-founded domain D. A 
ranking function 5 is represented by the family of terms {~(u)}~e7 on )2, where 
term ~(u) denotes a function p(u) ~-~ D. | 

R u l e  11 (single c o n s t r a i n t ) .  A constraint (J,C,G) is compatible with the 
given diagram if there is a ranking function ~ such that  the assertions 

J(u) ^ ~(u, v) -~ G(~, v) V ~(~) > ~'(~) V ~ 2 ( v )  

~ ( ~ ) ^ ~ ( ~ , v )  -* 0 (u ,v )  V~(~) > ~ ' ( ~ ) V ~ 2 ( ~ )  

are valid for all u, v E V. I 
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Jus t i f i ca t i on .  Assume that  the conditions of the rule are satisfied and assume, 
towards the contradiction, that  there is an accepting run a that  beyond position 
k > 0 stays forever in J and visits C infinitely often, without taking any transi- 
tiofi in G. Beyond k, the value of 5 along a will not increase, and wilt decrease 
each time a is in C. Since C is visited infinitely often, this contradicts the fact 
that  the domain of 5 is well-founded. | 

R u l e  12 ( c o n c a t e n a t i o n  of  cons t r a in t s ) .  A constraint (Y, C, G) is compat- 
ible with the given diagram if there is a constraint (Yo, Co,Go) E .~ with 
J(u) --+ ~ ( u )  for all u E Y and a ranking function ~ such that  the following 
logical assertions are valid. 

1. For all u, v E V, 

#(u) ^ ~(,~,v) ~ O(u,v) v-~2(v) v~g(,~) >'g'(v) 

J(~)^Oo(u,v) ---+ O(,~,,~)v-~2(~)v~(~) >~"(v). 

2. Either C(u) -+ Co(u) for all u C V, or there is ( J l , C l , a l )  E .~ such that  
for all u,v E V, .~(u) --+ [~(u)  v Co(u)], C(u) --+ [Cl(u) v Co(u)], and 

J(u)a~(,.,,,~) -~ d(u ,v)va; (v )vW'(v) ,  m 

Jus t i f i ca t i on .  Assume that  the conditions of the rule are satisfied and assume, 
towards the contradiction, that  beyond a certain position k > 0 an accepting 
run ~ stays forever in J and visits C infinitely often without taking transitions 
in G. Prom the first condition of the rule, beyond position k the value of ~ will 
not increase, and it will decrease whenever a transition in Go is taken. Thus, 
if we can prove that  infinitely many transitions in Go are taken we reach the 
desired contradiction. 

If C C_ Co, this follows from Y c_ J0 and (Jo, Co, Go) E ~ .  If C q2 Co, the 
region C - Co is non-empty, and'there are two cases. If c~ visits infinitely often 
Co, the result follows as before. If a beyond position j > 0 visits infinitely often 
C - Co without entering Co, then. a after j will be confined to J1 and will visit 
C1 infinitely often, and the result follows from (J1,C1,G1) E .T" and from the 
condition on G1 in the rule. | 

R u l e  13 (un ion  of  cons t r a in t s ) .  Given n constraints (J1, C1, G1), . . . ,  (Jn, C,~, 
G~) E .1 c and a region Jo, the constraint (J, C, G) defined by 

J = J o U O J ,  C = 0 C ,  Vu, v E V :  G(u ,v )=OG,(u ,v  ) 
i = 1  i = 1  i = l  

is compatible with the given diagram if there is a ranking function g such that  
the following assertions are valid, for 1 < i < n: 

~(~) A ~(~, ~) A 2~(~) -+ ~(~, v) v ~(~) > ~'(~) 

~(~)^~(~,~)A~2~(v) -~ ff(~,v)v~(~) >~ ' (v)v~2(~)  

~(u)^~(~,v)  -~ ~(~,~)v~(~) >~ ' (~ )v~2(v ) .  t 
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Justification. Assume that the conditions of the rule are satisfied and, towards 
the contradiction, that  beyond a certain position k > 0 an accepting run a stays 
forever in J visiting C infinitely often without taking transitions in G. As beyond 
k the value of 5 never increases, and decreases every time a leaves a region Ji, 
1 < i < n, a can leave only finitely many times every J~. Since Ci _C Ji for all 

n 1 < i < n and a visits infinitely often [.Ji=l Ci, there must be m C [1..n] s.t. 
eventually a is confined to J,~ and visits C,~ infinitely often. The contradiction 
then follows from the fact that (Jm,C,~,G,~) E Jr. | 

From the justifications of the rules, we have the following theorem. 

T h e o r e m  14 ( s o u n d n e s s ) .  If the conditions of each of the rules 11, 12 or 13 
are satisfied, the constraint ( J, C, G) is compatible with the diagram under con- 
sideration. 

Example 15. Consider diagram A2 of Example 7. Using Rule 13, it is possible 
to add to it the compatible constraint 

C# 2) = ({Vl,V2,V3},{Vl,V3},{(Vl,Vl),(Vl,V4),(v3,v3),(v3,?24)}) 
resulting from the union of C} 2) and C~ 2) . By Rule 12, with C# 2) for ( J  o, Co, Go) 

C~ 2) for (J1,C1,G1), and ranking function ~:(Vl) : 5(v2) : 5"(v3) : 1 0 -  x, 
5(v4) = 0, it is possible to add the constraint 

C~ 2) _~ ({Vl,V2,V3} , {vl ,v2,v3},  { (v l ,v4) , (v3,v4)}) .  
Let A~ be the diagram obtained by adding C (2) and C~ 2) to A2. Intuitively, C~ 2) 
represent the temporal progress property O(x >_ 10), satisfied by A~. | 

3.3 Completeness and Complexity Results 

The transformations introduced in the previous sections are complete for proving 
the compatibility of fairness constraints, as the following theorem states. 

T h e o r e m  16 ( c o m p l e t e n e s s  for  c o n s t r a i n t s ) .  Given a diagram A and a con- 
straint ( J, C, G), if ( J, C, G) is compatible there is a sequence of transformations 
A ~ B, where the diagram B is obtained from A by adding (J, C, G) to jr. 

The proof of this theorem is rather lengthy, and follows the general line of 
the completeness proof for reactivity and response rules presented in [7]. The 
complete proof is given in [2]. To state the completeness theorem for transition 
systems we need an additional definition. 

De f in i t i on  17. A diagram A = (]2, Z,  V, p, % (9, 5 ~) is state-deterministic if for 
all u, v, w E Y with v ~ w it is (9(v) N ~9(w) = l0 and z(u, v) A "r(u, w) = O. | 

T h e o r e m  18 ( c o m p l e t e n e s s  for transition systems). Let A = fd(S) for an 
FTS S, and B be a state-deterministic diagram. If s C_ s there is a chain 
of transformations A ~ B. 

The proof of this theorem relies on Theorem 16 for the fairness part, and 
follows otherwise from the existence of chains of simulation relations between 
diagrams derived from FTSs and deterministic diagrams. 
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Complexity of transformations. To establish a simulation transformation A1 
A2 using Rule 4, the number of logical formulas to be considered is O(]V112. IV2 I), 
where V1, V2 are the set of vertices of A1, A2 respectively. 

To a d d  a constraint to a diagram A, the number of logical formulas to be 
considered is O(IVI 2) using Rules 11, 12, and O(nlVI 2) using Rule 13, where n 
is the number of constraints whose union is taken. These bounds, however, refer 
to the worst-case complexity. If these transformations are used to do a local 
analysis of a diagram that  involves only few vertices, the number of non-trivial 
logical formulas to be proved does not necessarily ~ncrease when the size of the 
diagram increases. 

4 P r o v i n g  L i n e a r  T e m p o r a l  L o g i c  P r o p e r t i e s  

Let TL~ be the class of temporal formulas obtained by combining first-order 
logic formulas using propositional connectives, the future temporal operators O 
(next), [] (always), O (eventually), L/ (until), and of the corresponding past 
ones @, [3, ~ and S [8]. Note that  in a formula r E TL~, no temporal operator 
occurs in the scope of a quantifier. 

Given an FTS S and r E TLs, in this section we present two methods 
for proving that  all computations of S satisfy r written S ~ r According to 
the first method, we construct from r a deterministic Streett automaton Me, we 

translate it into a diagram fd(Mr and we show that  fd(S) :~ fd(Mr According 
to the second method, we construct a nondeterministic Streett automaton N~r 

representing -~r and we show that  fd(S) =~ B, where B is a diagram s.t. s  ,'l 
s162 = 0 can be shown using algorithmic methods. The Streett automata 
used in the above methods are a first-order version of the classical ones [11]. 

Def in i t i on  19 ( S t r e e t t  a u t o m a t o n ) .  A (first-order) Streett automaton A con- 
sists of the components (12, S,  (V, .E), p, Q, A), where Y, Z,  p are as in a diagram; 
(V, E) is a directed graph with set of vertices V and set of edges E _C V 2 ; Q c_ V 
is the set of initial vertices, and A, called the acceptance list, is a set of pairs 
(P ,R)  : P, R C v .  

A run a of A is an infinite sequence of locations (Vo, so), (Vl, sl), (v2, s2),. .  �9 
such that  Vo E Q and s~ E p(v~), (v~,v~+l) E E for all i >_ 0. Run a is an 
accepting run of A if the following condition holds: 

For each pair (P, R) E A, either vi E R for infinitely many i E IN, or 
t, here is k E IN such that v~ E P for all i > k. 

The set of accepting runs (resp. computations) of a Streett automaton A is 
denoted by Runs(A) (resp. s | 

Given a Streett automaton M, we can construct a fairness diagram fd(M) 
such that  t:(fd(M)) = E(/P!). 

C o n s t r u c t i o n  20 ( f rom S t r e e t t  A u t o m a t o n  to  d i a g r a m ) .  Given a Streett 
automaton M = (12, E', (V, E), p, Q, .A) we can construct a fairness diagram 
fd(M) = (!,', S,  V, p, r, 69, Y0 as follows. 
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1. For all u, v �9 V, T(U, V) = p(u) X p(v) if (U, V) �9 E, and T(U, V) = 0 otherwise. 
2. o = I �9 q ^ s  �9 
3. 5 r consists of all constraints (J, C, G) such that there is (P,R) �9 A for 

"which i f =  C = {(u,s) ! u �9 Y -  P A s  �9 p(u)}, and for all u,v �9 V, 
G(u, v) -= T(U, V) if V �9 R, and G(u, v) = r otherwise. | 

4.1 The  Trans fo rma t ion  M e t h o d  

For a temporal logic formula r �9 TLs, let /:(r be the set of computations 
that satisfy r Let Me be a deterministic Streett automaton such that / : (Me) = 
/:(r This automaton can be constructed from r with the methods explained 
in [6, 11, 12]. We can thus formulate the first proof strategy. 

Proof Strategy 1. To prove S ~ r for FTS S and a formula r �9 TL~, construct 
a chain of transformations fd(S) ~ fd(Mr | 

T h e o r e m  21. Proof Strategy 1 is sound and complete for proving S ~ r for an 
FTS S and r E TLs.  

Proof. The soundness result follows from s = E(fd( S) ) C s Mr ) ) = ~1(r 
Since Me is deterministic, fd(Mr is state-deterministic, and the completeness 
result follows from Theorem 18. | 

The drawback of Strategy 1 is that, in the worst case, the number of vertices 
of Me is doubly exponential in the size [r of the specification r 

4.2 The  P r o d u c t  M e t h o d  

Given a temporal formula r E TLs, it is possible to construct a nondeterministic 
Streett automaton N~r s.t. s162 = s162 The automaton N~r has number 
of vertices that is singly exponential in Ir To prove Z:(S) _C_ ~1(r for an FTS 

S, it suffices to construct a chain of transformations fd(S) ~ B ending with a 
diagram B s.t. Z:(B) A f~(fd(N~r = 0 can be shown with algorithmic methods. 
The emptiness problem of ~:(A)N/:(B) for diagrams A, B is undecidable: in the 
following, we give a computable sufficient condition for s N Z:(B) = 9. 

Let F L  be the first-order logic language with interpreted function and pred- 
icate symbols in which the assertions labeling the diagrams and the first-order 
part of the temporal specifications are written. Assume that we have a proof pro- 
cedure F for F L  that always terminates, and that is able to prove a subset of the 
valid sentences that includes all substitution instances of propositional tautolo- 
gies. Given r E FL, if F terminates with a proof of r we write F r otherwise we 
write ~/r To obtain a sufficient condition for the emptiness of the intersection 
of diagram languages, we construct the graph product of the diagrams. 

Cons t ruc t ion  22 (graph p roduc t  of  d iagrams) .  Given two diagrams A1 = 
(Y, Z,  VI, pl, TI , O1,.~I), A2 = (Y, Z ,  V2, p2, T2, 02, ~2) their graph product A1 | 
A2 -- ((V, E), V~,~, G) consists of a graph ( V, E), of a subset Vi,~ _C V of initial 
vertices, and of a set G of triples of the form (P, Q, R) : P, Q c V, R c_ V 2. These 
components are defined in terms of the components of A1 and A2 as follows. 
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i .  17 = { (V l ,V2)  e I/1 x V~I F/'-~(~(Vl) A ~(V2))}.  

2. v~, = { (v~ ,~)  e v l u  A ~ (v~ ) ) } .  
~. E = {((~l,~2),(vl,v2)) e v~ [ v~(~l(~l ,v l )A~2(~2,~))} .  
4. For i = 1, 2, to each constraint (J, C, G) E jr~ corresponds the triple 

(~(J, i), ~(C, i), ?r(G, i)), where ~ and 7r are defined by: 

~(~,i) = { ( ~ , ~ )  c v I ~ (~(~)  ~ ~(~))} 

~(~,~) = {((~,~2), (~,,~)) c E] V ~ ( ~ , ~ ) } ,  
for all regions ~ and modes A of A~. The set G is then 

6={(a(J,i),a(C,i),z~(G,i)) ] I < i < 2 A ( J , C , G )  eF~} .  | 

Th eo rem 23. Given two diagrams A, B, let A | B = ((17, E), V~, G). A suffi- 
cient condition for s163 = O is that for each strongly connected component 
U C V of(V,E) reachablefromV~ there is (p,Q, n) ~ g s.t. u c_ p ,  u n Q  r 0, 
and (u, v) r R for all u, v E U. 

Proof Strategy 2. To prove S ~ r for an FTS S and a formula r E TL~, construct 
a chain of transformations fd(S) ~ B to a diagram B s.t. E(B) ns162 = 0 
can be proved using the condition of Theorem 23. | 

Example  24. If r : �9 _> 10), the Streett automaton N-~r will consist of only 
one vertex, labeled with x < 10. Using Theorem 23, it is easy to check that the 
graph product of N~e and diagram A~ of Example 15 has empty language. I 

T h e o r e m  25. Proof Strategy 2 is sound and complete for proving S ~ r for an 
FTS S and r E TL~. 

Proof. The soundness part is a consequence of the previous definitions. Let 
fd(Mr be the deterministic diagram corresponding to r as in the previous strat- 

egy. If S ~ r there is a chain of transformations fd(S) ~ fd(Mr and from the 
construction of fd(Mr it can be seen that the graph product fd(Mr | fd(N~r 
satisfies the condition for emptiness of Theorem 23. I 

Note that we still need a complete deductive system for the interpreted first- 
order language FL to perform the diagram transformations, in order to retain 
the completeness results expressed by Theorems 16~ 18 and 25. 

From the above proof, we see that there is a final diagram B for strategy 2 
with number of vertices at most doubly exponential in [r In fact, if the state 
Space Z of the FTS if finite, it is possible to show that there is a diagram B with 
number of vertices bound by ]ZI, so that the number of vertices of B | fd(N~r 
is at most singly exponential in ]r similarly to the case of finite-state model 
checking. 

For systems with an infinite number of reachable states, the worst-case com- 
plexity of strategy 2 is not better than the one of Proof Strategy 1. However, in 
most cases an FTS S will satisfy a specification r by exhibiting a set of com- 
putations s significantly smaller than E(r Thus, the diagram B of Proof 
Strategy 2 in general is smaller than fd(Mr so that Proof Strategy 2 is often 
more convenient than Proof Strategy 1. 
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5 Conclusions  

Fairness diagrams provide a methodology for the proof of temporal  specifications 
of systems. They can also be used as a graphical specification language. Since 
both vertices and edges .are labeled with first-order assertions, fairness diagrams 
have the advantage over traditional temporal  logic (and similarly to TLA [5]) of 
providing a simpler representation for specifications that  involve coflditions on 
both system states and actions. 

While we have given completeness results on the existence of chains of trans- 
formations, we have not discussed how to obtain guidance for their construction. 
When the specification has a simple temporal  form, the graphical representation 
of the diagrams often captures enough intuition about the system to guide the 
construction of the chain of transformations. We intend to address the question 
of guidance and heuristics for chain constructions in future work. 
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