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Abs t r ac t  

This paper presents an approach to verifying that a circuit as described by a 
continuous, differential equation model is a correct implementation of a discrete 
specification. The abstraction from continuous trajectories to discrete traces is 
based on topological features of the continuous model rather than quantizing 
the continuous phase space. An practical verification method based on numerical 
integration is presented. The method is demonstrated by the verification that a 
toggle circuit satisfies a discrete specification. 

1 I n t r o d u c t i o n  

Most research in hardware verification has been based on discrete models for 
circuit behavior [Gup92]. In many high performance designs, discrete models 
are inadequate. Details of transition times, slew rates, capacitive coupling, etc. 
can be crucial for the correct operation of such designs. Accurate models for 
these phenomena are typically expressed as systems of non-linear differential 
equations. Thus, it becomes important to verify that a circuit modeled by non- 
linear differential equations is a valid implementation of a discrete specification. 

This paper presents an approach to this problem based on methods from 
dynamical systems theory. Safety properties of the continuous model are verified 
by demonstrating the existence of suitable invariant manifolds in the continuous 
phase space. Interface specifications are expressed as constraints on the relation- 
ship between signals and their time derivatives, and continuous trajectories are 
mapped to discrete traces rather than attempting to discretize the continuous 
phase space to define discrete states. This topological approach to describing 
behavior is described in section 3. 

Section 5 describes the verification method. The continuous system is veri- 
fied by computing a conservative bound on the reachable region of the system 
throughout a continuous integration. The reachable region is represented by its 
projection onto planes defined by pairs of the continuous variables. This approach 
allows standard computational geometry algorithms to be used to maintain the 
data structure for the reachable region, and it avoids the exponential complexity 
of explicitly representing a high-dimensional object. A numerical integrator is 
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used to determine the evolution of the reachable region. This approach is demon- 
strated by verifying that a toggle circuit implements its discrete specification. 
The circuit is described in section 4, and section 6 presents its verification. 

Recently, there has been a large interest in the verification of continuous sys- 
tems. Much of this is based on linear automata models [OSY94] which cannot 
be applied directly to the non-linear models of VLSI circuits. Henzinger and 
Ho [HH95] showed how these methods could be applied to non-linear systems 
by constructing asymptotically equivalent linear descriptions. The approach pre- 
sented here differs from theirs in that the verification is performed directly on 
the system on non-linear differential equations. This facilitates using ideas from 
dynamical systems theory both for the specification and the verification of the 
design. Kurshan and MeMillan [KM91] presented the verification of an arbiter 
circuit using a circuit model similar to the one used this paper. They partitioned 
the phase space into fixed boxes and computed a next-state relation between 
these boxes by integrating the non-linear circuit model for fixed time steps. This 
leads to an interaction of the time step size and the box size that is avoided by 
the methods presented here. 

2 A D i s c r e t e  T o g g l e  

In this paper, discrete behaviors are described using finite state automata. A 
finite state automaton is described by a quadruple (I, O, A Q0), where I is a 
set of binary valued inputs and O is a set of of binary valued outputs. The state 
space, S, is 2 IU~ For s E S, v(s) denotes the value of input or output v in 
state s. The set of initial states is given by Q0, with Q0 c_ S, and A is the state 
transition relation with A_C_ S • S. A t race  is a sequence of states, s0, s l , . . . ,  
such that so E Q0 and Vi. (i > 0) ~ (si, si+l) e z~. The state transition relation 
is partitioned into circuit actions and environment actions. A circuit action only 
changes the values of Outputs and an environment action only changes the values 
of inputs. More formally, 

V(s~, s~) e a .  (V,~ e I .  v(s~) = '~(s2)) V ('r O. v(s~) = v(s~)) 

A simple toggle element has a clock input ~5 and two outputs a and b. the 
singleton initial state set {(F, F, F)}, where F denotes the logical value false and 
state triples are written (4~, a, b). The state transition relation is 

{ ((F, F, F), (T, F, F)), ((T, F, F), (T, T, F)), ((T, T, F), (Y, T, F)), 
((F,T,F), (F,T,T)), ((F,T,T), (T,T,T)), ((T,T,T), (T,F,T)), 
((T, F, T), (F, F, T)), ((F, .F, T), (F, F, F)) } 

Figure 1 depicts the state space and state transition relation of this toggle 
embedded in a binary 3-cube. The salient features of this circuit description 
include: 

Environment assumption: The clock input # only changes in states where no 
circuit actions are enabled. 
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Fig. 1. A Discrete Toggle Element 

Toggling: The period of the cycle of states for the toggle is twice the period of 
the clock input. 

Compositional elements: The a output makes exactly one low-to-high and one 
high-to-low transition during each cycle of states. Likewise for the b output.  
This allows, for example, a counter to be constructed by connecting the out- 
put of one toggle element to the input of another as long as the environment 
assumption can be shown to be satisfied. 

Continuous behaviors can be described using ordinary differential equations 
(ODEs). By analogy with a finite state automaton, we describe ODEs with a 
tuple, ( I ,  Pz,  O, 5, Q0). 2: is a set of real-valued inputs, and Pz  is a condition 
that  must be satisfied by the inputs. For example, we assume that  inputs are 
a continuous, bounded functions of time; additional conditions for inputs are 
described in section 3. O is a set or real-valued outputs. If the model has di 
inputs and do outputs, then the state space is R d where d = di + do. The 
derivative function, 5 : R ~ --+ R d~ gives the time derivative of each output  as a 
function of the current state. The initial point is any point in Q0 where Q0 c R d. 
We assume that  5 is Lipschitz, and that  the inputs are continuous functions of 
time. These conditions guarantee that  the outputs are uniquely defined for any 
inputs and initial state. We call a tuple, (E, Pz,  O, 5, Q0) a c o n t i n u o u s  m o d e l .  

A continuous model defines a set of trajectories. A trajectory, ~ is a differ- 
entiable function from time to R d where 

?(o) e e0 
A 

d 
A = 0( ,7 ) )  

Given a continuous model ~2 and a finite state automaton F,  an abstraction 
function maps trajectories o f /2  to traces of F.  We say that  12 is an implemen- 
tat ion of F with abstraction function A iff for every trajectory ~ of I2, A(~) is a 
valid trace of F .  Note that  abstractions map continuous trajectories to discrete 
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traces rather than states to states. In this approach, discrete behaviors can be 
understood as topological properties of families of trajectories which allows con- 
cepts from dynamical systems theory to be applied to the problem of verifying 
that  a continuous model of a circuit satisfies a discrete specification. 

3 C o n t i n u o u s  R e a l i z a t i o n s  o f  D i s c r e t e  B e h a v i o r s  

v0, 5 ,  " ~ "  v~, v~, 

T h e  Annulus 

~ i ', 2 ', 3 : 4 ', 
. . . . . . . . .  r . . . . . . . . .  r . . . . . . . . .  r . . . . . . . . .  ~ - ' %  ......... �9 . . . . . . . . . . . . . . . . . .  ,,...% 

A " t y p i c a l "  t r a j e c t o r y  

I 

A " r i c o c h e t "  t r a j e c t o r y  

Fig. 2. Brockett's Annulus 

Figure 2 depicts an annulus proposed by Brockett [Bro89] that  provides a 
topological basis for mapping continuous trajectories to discrete behaviors. When 
a variable is in region 1, its value is constrained but its derivative may be either 
positive or negative. When the variable leaves region 1, it must enter region 
2. Because the derivative of  the variable is positive in this region, it makes a 
monotonic transition leading to region 3. Regions 3 and 4 are analogous to re- 
gions 1 and 2 corresponding to logically high and monotonically falling signals 
respectively. Because transitions through regions 2 and 4 are monotonic, traver- 
sals of these regions are distinct events. This provides a topological basis for 
discrete behaviors. Furthermore, the horizontal radii of the annulus define the 
maximum and minimum high and low levels of the signal (i.e. Vow, Voh, Vu, and 
Vlh in figure 2). The maximum and minimum rise time for the signal correspond 
to trajectories along the upper-inner and upper-outer boundaries of the annulus 
respectively. Likewise, the lower-inner and lower-outer boundaries of the annulus 
specify the maximum and minimum fall times. 

If the annulus is given by two ellipses, then the trajectories corresponding to 
the inner and outer boundaries of the annulus are sine waves, and it is tempting 
to think of these as giving upper and lower bounds for the period of the signal. 
This is not the case. First, note that  a signal may remain in regions 1 or 3 
arbitrarily long. This is essential when verifying the toggle where we must show 
that  the output satisfies the constraints assumed of the input, even though the 
period of the output is twice that of the input. Furthermore, the signal is not 
required to spend any time in regions 1 and 3. The minimum period signal 
corresponds to a "ricochet" trajectory as depicted by the solid curve in the right 
most plot of figure 2. The period of this signal can be much less than that  of the 
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sine wave corresponding to the outer boundary of the annulus (the dashed curve). 
It is desirable to independently specify constraints on signal levels, transition 
times, and period. We achieve this by imposing minimum times that a signal 
must remain in regions 1 and 3. This construction allows a large class of input 
signals to be described in a simple and natural manner. 

To verify safety properties of a continuous model, we establish the existence 
of an invariant manifold in R d. ~u then show that all trajectories starting from 
points in the initial region are contained in this manifold, and that all trajectories 
in this manifold satisfy the specification. This technique is the continuous analog 
of using discrete invariants to verify properties of state transition systems [LS84]. 

For the toggle element, all trajectories in the invariant manifold should have 
a period twice that of the clock signal. This notion can be formalized using a 
Poincard section [PC89]. Let r be the continuous signal corresponding to ~5 and 
let c be some constant with Voh < C < Yll. Consider the intersection of the 
manifold with the r = c hyperplane. These intersections form a Poincard map. 
This intersection must consist of four disjoint regions (two for rising r crossing 
c, and two falling crossings) and all trajectories must visit these four regions in 
the same order. Continuous trajectories can be mapped to discrete sequences of 
the discrete toggle described in section 2 by mapping regions of the manifold to 
states of the discrete toggle. The toggle element is compositional if it there is 
an output variable such that for all trajectories in the manifold, the value and 
derivative of this variable satisfy the constraints of the input ring. It must also 
be shown that this output satisfies the minimum high and low time constraints. 

4 A toggle circuit 

Schematic 

I j ".. i " of ~,go~ o,~,,,,, 

r of ~gglr elcme~l 

Q 

x 

State Transition Diagram 

Fig. 3. Yuan and Svensson's Toggle 

Figure 3 shows a toggle circuit that was originally published by Yuan and 
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Svensson [YS89]. The operation of this circuit can be understood by using a 
simple switch model starting from a state where the r input is low. In this case, 
y will eventually become high, z is floating, and x is the logical negation of z. 
If We assume that the value stored on node z is a well-defined logical value, 
then the circuit has two possible states when r is low: (x,y, z) = (L, H, H), 
and (x,y,z) = (H, H, L). Starting from these two states, we can derive the 
corresponding stable successor states for when r is high. If the circuit is allowed 
to reach a stable state before each transition of the r input, then it implements 
a toggle as illustrated by the state transition diagram shown on the right half of 
figure 3. 

The analysis presented in this paper is based on a simple circuit model using 
a standard, first-order transistor model [GD85] with three regions of operation: 
cut-off, saturation, and "linear." Capacitors are of fixed value, and all capaci- 
tances are to ground. Using basic circuit analysis techniques, we obtain a system 
of non-linear differential equations that is our continuous model for the circuit. 
A more detailed description of this model is given in [GC94]. 

5 V e r i f i c a t i o n  

Let s be a continuous model. Properties of s can be verified by finding a man- 
ifold that contains all trajectories of s This can be done by starting with the 
initial region of the model and integrating the system of differential equations 
to compute a bounding region at each step. In the present work, variations in 
the input signal and initial state are considered, but the model parameters are 
fixed. Because the non-linear equations that arise from circuit models cannot be 
integrated analytically, this integration is performed numerically. Thus, this ver- 
ification requires an assumption of the validity of the numerical integrator. The 
verification described in this paper uses a fourth-order Runge-Kutta integrator 
adapted from [PF+88]. 

The Brockett annulus provides a convenient way to perform this integration. 
When the input signal r is in the first or third region of figure 2, either the 
N-channel or the P-channel transistors controlled by ~ are in cut-off. For typical 
CMOS circuits including the toggle this ensures that each node is either floating 
in which case the time derivative of its voltage is zero~ or that it there is a 
conducting path to either Vdd or ground, but not both. tn this case the voltage 
of the node asymptotically approaches the corresponding power supply value. 
Given a bounding region for trajectories upon entry to the first or third region 
of the annulus, 'we integrate for the minimum low or high time respectively and 
then determine the bounding box for the reachable region. For nodes that are 
asymPtotically approaching a power supply value, the box is expanded to include 
that value. The expanded box is nsed as the starting region for the next phase 
of integration. When r is in the second or fourth region, its value is changing 
monotonically. This allows the integration to be performed with respect to r 
which reduces the dimension of the phase space by one and reflects the natural 
dependence of the circuit on its input. 
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At each integration step, the reachable region is implicitly represented by a 
set of two types of constraints: simple and polygonal. Simple constraints give 
upper and lower bounds for the value of a single variable. Polygonal constraints 
give bounds on the values of pairs of variables: the polygon is a projection of the 
reachable region onto the plane corresponding to the two variables. In the cur- 
rent implementation, polygonal constraints are represented by simple, rectilinear 
polygons without convexity restrictions. Each polygon corresponds to a prism in 
the complete phase space, and the reachable region is represented by the intersec- 
tion of these prisms clipped by the simple constraints. This approach avoids the 
exponential growth in complexity that would occur if the reachable region were 
explicitly constructed and it allows efficient algorithms from two-dimensional 
computational geometry to be utilized. The representation is conservative; ac. 
cordingly, our verification method is sound but not complete. 

At each integration step, a conservative estimate of the bounding region is 
computed. For each face of the reachable region, a maximum outward translation 
is determined. This translation is an upper bound on the outward normal com- 
ponent of any trajectory starting from some point on the face. Since the entire 
face is translated outward by this amount, this bounds all trajectories starting 
from that face. By performing ibis computation for each face, a conservative 
estimate is obtained for the bounding region at the end of the integration step. 

Focusing on the non-degenerate cases 1, each face of the reachable region 
corresponds to a bound of a simple constraint or an edge from a polygonal 
constraint. If the constraint corresponds to a polygon edge, it gives an exact 
value for one variable and a bounding interval for the other. If the constraint is 
an upper or lower bound of a simple constraint, it gives a value for that variable. 
Given these explicit constraints~ bounds on other variables can be derived from 
the polygonal constraints, tn this way, we compute bounding intervals for each 
variable for each face. From this, maximum and minimum values are computed 
for the outward component of the derivative vector for points on the face. For 
models arising from CMOS circuit models, this requires calculating upper and 
lower bounds for the drain current of each transistor, and the monotonicity of the 
transistor model simplifies this calculation. Because a fourth-order integration 
algorithm is used, four of these derivative calculations are performed at each 
step, and an error estimate is calculated to adjust the step size. 

There are several details that must be considered. First, as the integration 
is performed, some polygon edges will grow. To avoid excessively conservative 
estimates of the reachable region~ edges are split into smaller edges when they 
exceed a pre-specified length. Conversely, when adjacent edges become suffi- 
ciently short, they are conservatively merged into a single edge for efficiency. If 
two polygonal constraints involve the same variable, then they each have edges 
corresponding to the maximum and minimum values of this variable. When one 
of these extremal edges is split, then it may be possible to compute a tighter 
bound for its outward derivative than for the corresponding edge of the other 

1 Zero_length polygon edges and coincident constraints can occur as a consequence of 
constraint splitting described shortly. 
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polygon. In this case, the unsplit edge may acquire an infeasible value at the 
end of an integration step. When this occurs, the algorithm solves the system 
of constrains and moves the infeasible edge to its maximally outward feasible 
position. 

In addition to the change of variables to integrate with respect to r it is 
sometimes convenient to perform additional changes of the variable of integra- 
tion. Once it is shown that some variable, u, changes monotonically with respect 
to r then u can be used as the variable of integration. This can provide tighter 
estimates of the reachable region, but it requires a relation to bound r given u. 
This relation can be represented by another polygon, and the polygon manipu- 
lation routines for the integrator can be used to perform this change of variables 
as well. 

6 V e r i f y i n g  t h e  T o g g l e  C i r c u i t  

The toggle element of section 4 can be verified by chosing an initial region and 
integrating that region through two periods of the clock input as described in 
section 5. An invariant manifold is identified by showing that the reachable re- 
gion at the end of this integration is contained in the initial region. By computing 
the intersection of this manifold with the r = 2.hvolts hyperplane, it is shown 
that the manifold has a period that is twice that of r as required. We use z 
as the output of the toggle, and by computing bounds on z and d z / d t  at each 
integration step, we show that z satisfies the same ring constraints as the input. 
Details of this process are described in the remainder of this section. 

The specification for the r input is an annulus whose inner-boundary corre- 
sponds to a I00 MHz., 4.5 volt peak-to-peak sine wave centered at 2.5 volts. The 
outer boundary corresponds to a 700 MHz. 5.5 volt peak-to-peak sine wave also 
centered at 2.5 volts. The large difference between these frequencies demonstrates 
the robustness of the toggle to variations in the input signal. The minimum high 
and low times for r are each 1 nano-second. This yields a minimum period of r 
of ,~ 2.87 nano-seconds which corresponds to a maximum frequency of 348 MHz. 

The circuit model is simplified by assuming that the capacitances at nodes 
xx ,  yy, and zz  are negligible, and a four-terminal device model is used for pairs 
of transistors of the same type in series. A 160 femtofarad load is added to the 
z node to simulate the effect of driving the r input of another toggle element. 
"Typical" values for the MOSIS 2# n-well CMOS process were used for the 
analysis. All transistors have a 2# gate length and shape factors are shown in 
figure 3. Diffusion and gate capacitances are included in the model; for simplicity, 
interconnect capacitance is ignored. 

The initial region is given by the constraints: r = 0.25; -0.1 ~ x _< 0.1; 
4.9 < y ___ 5.1; and 4.8 < z < 5.1. The integration starts with r entering the 
second region of Brockett's annulus. The integration is performed in four phases: 
(1) r rising and high, (2) r falling and low, (3) r rising and high, (4) r falling 
and low. Each phase is started with a new bounding box, and at the end of each 
phase, we verify that the reachable region is contained in the initial bounding box 
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Fig. 4. Reachable region for z and dz/dt 

for the next phase. This allows the four phases to be verified separately. After 
integration for two periods of r the reachable region satisfies the constraints: 
r = 0.25; - 1 . 5 7 . 1 0  -13 < x < 1.61.10-13; 4.99 < y_< 5.00; and 4.83 < z < 5.05. 
This demonstrates the existence of an invariant manifold as required. 

In most of the phases, only a single variable has any large change in its 
value, and it is sufficient to approximate the reachable region by a bounding 
box. However, in the phase where r and z make low-to-high transitions, x and 
y also make high-to-low transitions (see figure 3). The correct operation of the 
toggle requires that  y complete its transition before x goes too far low. In this 
phase, coupling of each pair of variables with polygonal constraints was required 
along with an additional change of variable of integration from r to y. 

At each step of the integration, bounds on z and dz/dt are computed. These 
are shown in figure 4 with the annulus used to specify the input. It can be seen 
that  z satisfies the specification for an input to the toggle. Furthermore, the 
integration shows that  the minimum low-time for z is at least 2.74 nanoseconds 
and the minimum high time is at least 2.16 nanoseconds. Thus, z satisfies the 
requirements for an input signal to the toggle. 
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The current implementation of the verification algorithm is only for proof of 
concept and no effort has been for optimization. The run-time is dominatedby 
the time for integration when z makes its low-to-high transition. When regions 
are'estimated using polygons with a 0.25 volt nominal edge length, this step 
takes about forty mint~tes on a 50 MHz SPARC 10. When the nominal edge 
length is increased to 0.5 volts, the verification can be performed in just over 
five minutes. Further work will be required to optimize the implementation and 
characterize its performance on a larger set of examples. 

7 Conclusions 

This paper has presented a method for verifying that a circuit modeled by a 
system of non-linear differential equations satisfies a discrete specification. The 
approach is based on topological properties of the continuous model. Verification 
of the continuous model is performed by numerical integration to determine a 
manifold containing all feasible trajectories. Properties of the trajectories can 
be derived from the manifold by using methods from dynamical systems theory 
such as Poinca% sections. 

The method has been applied to a toggle element. It was shown that the 
toggle operates correctly for a large class of input signals, and that its output 
satisfies the constraints required of its input. This means that these toggle ele- 
ments can be connected in a chain to form a verified ripple counter. Although 
the toggle is a relatively simple circuit, its complexity is comparable to that of 
many cells in a typical standard-cell library. A potential application of these 
methods would be to verify that such a library ,has been properly designed and 
characterized. 
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