
Automated Verification by Induction with
Associative-Commutative Operators

Narjes Berregebw Adel Bouhoulaw Michafil Rusinowitchw

INRIA Lorraine ~4 CRIN
Campus Scientifique, 615, rue du Jardin Botanique - B.P. 101

54602 Villers-l~s-Naney Cedex, France
E-maih{berregeb, bouhoula, rusi}@loria.fr

t Computer Science Laboratory, SRI International
333 Ravenswood Avenue, Menlo Park, California 94025, USA

E-mail: bouhoula@esl.sri.com

A b s t r a c t . Theories with associative and commutative (AC) operators,
such as arithmetic, process algebras, boolean algebras, sets are ubiq-
nitous in software and hardware verification. These AC operators are
difficult to handle by automatic deduction since they generate complex
proofs. In this paper, we present new techniques for combining induction
and AC reasoning, in a rewrite-based theorem prover. The resulting sys-
tem has proved to be quite successful for verification tasks. Thanks to
its careful rewriting strategy, it needs less interaction on typical verifica-
tion problems than well known tools like NQTHM, LP or PVS. We also
believe that our approach can easily be integrated as an efficient tactic
in other proof systems.

1 Introduction

Powerful tools based on model checking have been developed for the verification
of finite-state systems [6]. Their extensions to some classes of infinite-state sys-
tems has only produced moderate success. Therefore deductive methods offer a
promising complementary approach especially for verifying parameterized com-
ponents or systems involving infinite data-types. Besides, when a program or a
circuit is not correct, more high-level information about how to correct it can
be derived with deductive methods.

Effective verification with deductive techniques requires efficient primitive
inference procedures in order to free the user from tedious low-level proof con-
struction details. Rewriting is now widely recognized as an important technique
for efficiency and is part of many systems. In this framework, the induction
prover SPIKE 1 [3, 2], has been developed. It relies on implicit induction whose
principle is to simulate induction by term rewriting. Given a theory presented
by conditional equations, the prover instanciates some particular variables of
a conjecture to be proved, called induction variables, by terms from a test set

1 Spike is available by ftp from ftp.loria.fr in/pub/loria/protheo/softwares/Spike

221

which is a finite description of the model, then simplifies them by axioms, other
conjectures or induction hypotheses. Every iteration generates new subgoals that
are processed in the same way as the initial conjectures.

However, many theories of interest include AC operators, which are hard to
handle since they cause divergence or generate complex proofs. To overcome this
problem, we propose to have the AC axioms built in the inference mechanism of
SPIKE. The advantage of our approach over other implicit induction techniques
[5, 9], is that it does not use AC unification (which is doubly exponential) during
the proof process, but only AC matching.

In this paper, we propose methods for automatically selecting the induction
variables of a conjecture to be proved, and for constructing test sets in the case
of an AC conditional theory. We present our proof procedure as an inference
system based on new simplification techniques. This inference system is correct,
refutationally complete (when the procedure stops with failure we can ensure
that the given conjecture is wrong) under some reasonable restrictions on the
initial AC conditional theory. These results have been implemented in the system
SPIKE-AC, and computer experiments have shown the gain we obtain when
handling AC operators by these techniques. In particular, the procedure has
allowed us to prove directly theorems (for example, the correctness of a ripple
carry adder) that require more interaction with other systems.

Overview on an example

To illustrate our approach, let us describe the correctness proof of a simple
digital circuit. We consider a ripple carry adder (see figure 1), whose inputs
are two bit-vectors A = (A0, A1, . . . , A,~-I) and B = (B0, B1, . . . , Bn-1), and
a carry Co. This circuit performs addition of A and B and the result is a bit
vector S = (So, $1 , . . . , Sn-1), and a carry C~. This problem is easily specified
with conditional rules, and the specification obtained reflects clearly the circuit
description. The circuit function computing the sum of two bit-vectors A and B
given a carry Co, is add(A, B, Co). We define a mapping function bvtonat which
transforms a bit vector into an integer. The constructor bitv(x,y) builds a new
bit-vector by concatening x as the least significant bit of the vector y, and the
constant Btm is the empty vector. The correctness theorem states that when
given two bit-vectors of the same size as inputs, the resulting output is, up to
conversion, the arithmetic sum of the inputs. The conjecture to be proved is:

size(xl) = size(x2) ~ bvtonat(add(xl, x2, False)) = bvtonat(xl) + bvtonat(x2)

Using our techniques described in section 5, the test set computed for the spec-
ification is: {Btm; bitv(True, xl); bitv(False, xl); 0; s(xl); True; False}, where:
Btm, bitv(True, xl) and bitv(False, xl) are of type vect, 0 and s(xl) are of type
nat, True and False are of type bool. The next step consists in applying an
induction on the induction variables (see section 4). Here, the variables Xl and
x2 are replaced by elements of the test set (whose variables are renamed), and
the instances obtained are simplified. We thus obtain 9 subgoals to be proved.

222

C 1
A1 B1 An-1 Bn. 1

Fig. 1. Ripple carry adder

The simplification strategy may use axioms, other conjectures (even when they
are not proved) and inductive hypotheses~ provided they are smaller (w.r.t a well
founded ordering on clauses). For example, the subgoal:

s(bvtonat(add(xl, z2, False)) + bvtonat(add(zl, x~, False))) =
bvtonat(bitv(True, Xl)) + bvtonat(bitv(False, x~))

is simplified using the axioms to:

bvtonat(add(xl, x2, False)) + bvtonat(add(xl, z2, False)) =
bvtonat(zl) + bvtonat(xl) + bvtonat(z2) + bvtonat(z2).

This simplification is not possible, if we simply use the commutativity and asso-
ciativity of + as lemmas, since then it would not be possible to derive a clause
which is smaller than the starting one.
After simplifying and deleting the tautologies, only one subgoal remains to be
proved:

bvtonat(add(xl, x2~ True)) + bvtonat(add(xt, ~2, True)) =
s(s(bvtonat(zl) + bvtonat(xl) § bvtonat(x2) + bvtonat(x2))).

This is the case for the addition of 2 bit-vectors when the carry is set to True.
An induction on xl and x~ must be applied. We obtain 9 subgoals to prove, and
after simplification, 2 conjectures remain. The first one is:

8ize(~l) = 8ize(~2)
bvtonat(add(~l, z2, False)) + bvtonat(add(xl, x2, False)) +
bvtonat(add(zl, x2, False)) + bvtonat(add(zl, x2, False)) =

bvtonat(xl) + bvtonat(xl) + bvtonat(xl) + bvtonat(xl) + bvtonat(m2) +
bvtonat(x2) § bvtonat(x~) + bvtonat(z2)

223

It is reduced to a trivial identity using inductive contextual rewriting (see section
6) with the induction hypothesis:

size(xl) = size(x2) ~ bvtonat(add(xl, x2, False)) = bvtonat(xl) + bvtonat(x2)

The other remaining conjecture is simplified in the same way. Hence, all the
subgoals are proved, and the initial goal is valid. The proof is completely auto-
matic. Besides, it is easy to understand and very close to a mathematical proof.
Note also that it does not use any specialized tactic nor any heuristic. The same
conjecture has been proved with the NQTHM system [14], but then requires a
non trivial generalisation of the input theorem. A proof was also done with PVS
[7], but it uses a high-level user-defined proof strategy.

2 Basic concepts and notations

We assume that the reader is familiar with the basic concepts of term algebra,
term rewriting, equational reasoning and mathematical logic. A many sorted
signature ~r is a pair ($,~v) where S is a set of sorts and ~" = F U FAC, where
F and FAC denote sets of function symbols. For short, a many sorted signature
cr will simply be denoted by •. The variadic term algebra is a generalisation of
the term algebra, where AC functions symbols have a non fixed arity [12]. It
allows us to express associative and commutative axioms by means of flattening.
The variadic term algebra TV(F, FAG, X) over the signature :T and the set of
variables X is defined as the smallest set TV containing X such that:

- if f E F, arity(f) = n >_ O, and t l , . . . , t n E TV then f(t l , . . . , t ,~) e TV.
- i f f E FAC, n > 2, and t l , . . o,t~ E TV then f (t l , . . . , t~) E TV

In the following, + will denote an AC symbol. Flattening a term consists of
rewriting it to normal form w.r.t, the set of flattening rules: f (x l , . . . , f (y l , . . . , Yr)
,Zl , . . . ,zn) "-+ f (X l , . . . , y l , . . . , y r , . . . , Z l , . . . , Zn) for all f E FAC. We denote
by flat(t), the term obtained by flattening t. A term s is flattened if s = flat(s).
We assume that we have a partit ion of :T in two subsets, the first one, C, con-
tains the constructor symbols and the second, D, is the set of defined symbols. We
denote by Vat(t), the set of all variables appearing in t. A term is linear if all its
variables occur only once in it. If Var(t) is empty then t is a groun d term. The
set of all ground terms is T(5C). A substitution assigns terms of appropriate sorts
to variables. Let t b e a term, and ~ be a substitution, t~ is the flattened term ob-
tained by applying ~ to t. The domain of~ is defined by: Dom(~) = {x I x~ r z}.
If y applies every variable to a ground term, then r/is a ground substitution. We
denote by ~_ the syntactic equivalence between objects. The smallest congruence
generated by the equations f(f(.% y), z) = f(z , f(y, z)) and f(x, y) = f(y, x) for
all f E FAC is denoted by =AC. Positions in a term are defined in the same
way than in [12]. The replacement of a term s by t at a position p is denoted
by s[p +- t]. We assume that the term obtained is flattened. The term t /p is the
subterm of t at position p. The notation t[s]p means that the term t contains a

224

subterm s at position p. We also denote by t(p) the symbol of t at position p. For
example, i f t = a+b+c, then t /{2, 3} = b+c, t({2, 3}) = +, t /3 = c. A position u
in a te rm t such tha t t(u) = x and x E X, is a linear variable position i f x occurs
only once in t, otherwise, u is a non linear variable position. A position u is a
strict position of a term t if t(u) ~ X, and u = E or u = u ' . i (i E N). The depth
of a te rm t is defined as follows: depth(t) = 0 if t is a constant or a variable,
otherwise, depth(f (t l , . . . , t~)) = 1 + maz(depth(ti)) . The strict depth of a te rm
t, denoted by sdepth(t), is the m ax i m um of length Of function positions in t.

A te rm s matches a te rm t if there exists a substitution ~r such tha t t =AC scr;
the te rm t is called an A C instance of s. A te rm t is AC unifiable with a te rm s,
if there exists a substi tution ~r such that t~r =AC sa.

An ordering ~- is AC compatible if # =AC s, s ~- t and t =AC t ~ implies
~- t ~. In the following, we suppose tha t ~- is a transitive irreflexive relation on
the set of terms, tha t is noetherian, monotonic (s ~ t implies w[s]~ ~ w[t],~),
stable (s ~ t implies scr ~- ta) , AC compatible and satisfy the subterm property
(f (. . . , t , . . .) ~ t). The multiset extension of ~- will be denoted by >>.

A conditional equation a formula of the following form: at = bl A .- . A an =
bn ==~ I = r. I t will be written al = bl A . . . A an = bn :~ l -4 r and called
a conditional rule if {lo'} >> {r~r, al~r, blur, ..o , a,~o', b,~a} for each substi tution
and every variable of the conditional equation occurs in l. The te rm I is the
left-hand side of the rule. A rewrite rule e ~ 1 -4 r is left-linear if 1 is linear. A
set of conditional rules is called a rewrite system. A constructor is free if it is not
the root of a left-hand side of a rule. We denote by lhss(R), the set of subterms
of all left-hand sides of R. The number of elements of a set T is card(T). A
rewrite system R is left-linear if every rule in R is left-linear. We say tha t R
is flattened if all its left-hand sides are flattened. Let f be an AC symbol, we
denote by b / t h e maxima] arity of f in the left-hand sides of R. The depth (resp.
strict depth) of a rewrite system R, denoted by depth(R) (resp. sdepth(R)), is
the m a x i m u m of the depths (reslh. strict depth) of its flattened left-hand sides.
We define D(R) as depth(R) - 1 if sdepth(R) < depth(R) and R is left-linear,
otherwise depth(R).

Let t be a flattened term, we write t -4R t ~ if there exists a conditional rule
A n 1 ai = bi ~ I --+ r in R, a position p and a substi tution ~r such that:

- t / p = a c l~, t' = a c t[p ~ r~].
* * ~' a n d - for all i E [1 . - .n] there exists c{,c~ such that aio" --+n ci, b ~ -'+n ci

ei ~-AC C~.

where the reflexive-transitive closure of -4 is denoted by -4*. In this case we say
that the te rm t is reducible, otherwise, it is irreducible. From now on, we assume
that there exists at least one irreducible ground te rm of each sort. We say tha t
two terms s and t are joinable, if s -+~ v, t --+~ v ~ and v =AC v'. A te rm t is
inductively reducible iff all its ground instances are reducible. A symbol f E 3 v
is completely defined if all ground terms with root f are reducible. We say that
R is sufficiently complete if all symbols in D are completely defined.

A clause C is an expression of the form: -~(sl = i t) V -1(82 : t2) V "~ V -1(8 n
= tn) V (s~ = t~) V "'" V (#m = t~m) �9 We natural ly extend the notion of flat-

225

tening, substitution, positions to clauses. Let H be a set of conditional equations
and FAc a set of AC symbols. The clause C is a logical consequence of H if
C is valid in any model of H U { f (f (z , y), z) = f (x ,](y, z)),](x, y) = f (y , x)
for "all f E F A t } . This will be denoted by H ~ C. We say that C is induc-
tively valid in H and denote it by H ~ i , d C, if for any ground substitution ~,
(for all i H ~ s icr= ti~) implies (there exists j such that H ~ s'jcr = t~r).
The rewrite system R is ground convergent if the terms u and v are joinable
whenever u, v E T(F) and R ~ u = v. In this paper, we suppose that all clauses
and terms are flattened, and we denote by R a flattened rewrite system.

3 I n d u c t i o n s c h e m e s

To prove a conjecture by induction, the prover computes automatically an in-
duction scheme, which consists of a set of variables on which induction is applied
and a set of terms covering the possibly infinite set of irreducible ground terms.

D e f i n i t i o n 3.1 Given a term t, a set V C Vat(t) and a set of terms T, a
(V, T)-substitution is a substitution of domain V, such that for all x E V, xcr is
an element o f T whose variables have been given new names.

D e f i n i t i o n 3.2 An induction scheme Z for a term t is a couple (V,T), with
V C Vat(t) and T C T(F, FAc, X) , such that: for every ground irreducible term
s, there exists a term t in T and a ground substitution tr such that tg =AC s.

These induction schemes allow us to prove theorems by induction, by reasoning
on the domain of irreducible terms rather than on the whole set of terms. How-
ever, they cannot be used to refute false conjectures. In the following, we refine
induction schemes so that to be able, not only to prove conjectures, but also to
refute the false ones.

D e f i n i t i o n 3.3 A term t is strongly irreducible if none of its subterms is an
instance of a left-hand side of a rule in R.

Definit ion 3.4 A strong induction scheme I for a term t is an induction scheme
(V, T), where V is called the set of induction variables, and T is called the test
set, such that: for each term t and I-substitution or, i f tot is strongly irreducible,
then there exists a ground substitution r such that t r is irreducible.
An I-substitution is called test substitution.

The next definition provides us with a criteria to reject false conjectures. Then,
we show that strong induction schemes are fundamental for this purpose (see
theorem 3.1)

Definit ion 3.5 A clause "~(sl = Q) V . . "V-~(Sm = tin) V (gl = dl) V - . . V (gn =
d.) is provably inconsistent with respect to R if there exists a test substitution
such that:

I. Vi E [1 . . .m] : sin = ti~ is an inductive theorem w.r.t. R.

226

2. Vj E [1 . - : n] : gja # A c dja, and the maximal elements of {gjcr, dja} w.r.t.~-
are strongly irreducible.

The next result shows that a provably inconsistent clause cannot be inductively
valid w . r . t .R . This is proved by building a well-chosen ground instance of the
clause which gives us a counterexample.

T h e o r e m 3.1 Suppose R is a ground convergent rewriting system. I f a clause
C is provably inconsistent, then C is not inductively valid w.r.t it.

In the following sections, we propose methods for automatically computing each
component of a strong induction scheme, that are, the induction variables and
the test set.

4 S e l e c t i n g i n d u c t i o n v a r i a b l e s

To prove a conjecture by induction, the prover selects automatically the induc-
tion variables of the conjecture where induction must be applied, then, instanci-
ates them with terms of the test Set. It is clear that the less induction variables
we have, the more efficient the induction procedure will be.

To determine induction variables, the prover computes first the induction
positions of the functions. These positions enable to decide whether a variable
position of a term t is an induction variable or not. The induction positions
computation is done only once and before the proof process. It is independent
from the conjectures to be proved since it is based only on the given conditional
theory.

D e f i n i t i o n 4.1 Let t be a term such that t(e) = f and f E Jr. A position i E L~
is an inductive position of f in t if i is either a strict position in t, or a non
linear variable position. We define pos_ind(f, t) as the set of inductive positions
of f in t and pos_ind(f) = (Jt~th~s(n)pos_ind(f, t).

The idea is that a variable in a term t will be selected as an induction vari-
able if it occurs below an inductive position. Hence, instantiating these vari-
ables may trigger a rewriting step. A problem happens with an AC symbol
f , since the inductive positions of f can be permuted. For example, let R =
{ x + 0 + 0 - + 0 , x + l + l - + 0 } , w i t h FAC = {+} and F = {0,1}. We have
pos_ind(+) = {2, 3}. Considering only y and z as induction variables, the proof
of the conjecture x + y + z = 0 fails. However, it is an inductive theorem since
all its ground instances are logical consequences of R.

This leads us to take all variables occuring under an AC symbol, as induction
variables, so that to ensure the refutational completeness of our procedure, that
is, whenever the proof of a clause finitely fails, we can ensure that it is not
an inductive consequence of R. However, in order to make the proof process
efficient, we have identified some cases where the number of induction variables
to consider can be reduced while preserving refntational completeness.

227

For this purpose, for each f E FAC, we define the number nb_pos_ind(f) =
maxtelh,8(R)card(pos-ind(f,t)). We denote by var_ind(t) the set of induct ion
variables of t. The procedure compu t ing induct ion variables is given in figure 2.
W e ' a s s u m e tha t the three predicates P1, P~, P3 are defined as follows:

P1 (f , R) r162 f is complete ly defined and nb_pos_ind(f) = 1
P~ (f , R) r f is complete ly defined and nb_pos_ind(f) > 1
P3(f, R) r R is left-linear and for each f (t l , . . . , t ,) E lhss(R) there does not

exist two non variable terms ti, tj which are AC unifiable

i n p u t : t o u t p u t : var_ind(t) init: Vind := O
if t is a variable
t h e n Vind := {t}
else for each position u in t such that t(u) = f and f E F do:

Vind := Vind U {x I x appears at position u.i, and i E pos_ind(f)}
e n d f o r
for each f E FAC in t do:

case 1: Pl(f, R) and there is a variable x which is an argument of each
occurrence of f in t: Vind := Vind U {x}

endcase 1
case 2: P2(f, R):

for each position u in t such that t(u) = f do:
let Xu = {x E ,t'] x appears at a position u.i(i E N)}
ir (x~ n vind = {x}) ana (3~ ~ x~)
t h e n Vind := Vind U {y}
else if (X~ N Yind = 0) and (X~ = {x})

t h e n Vind := Vind O {x}
else i f (X~ M Vind = 0) and ({x, y} C X~)

t h e n Vind := Vind U {x, y}
e n d | f

e n d i f
e n d i f

endcase 2
case 3: P3(f, R) and there is a variable x which is an argument of each

occurrence of f in ~: Vind := Vind U {x}
endcase 3
case 4: otherwise:

fo r each position u such that t(u) = f do:
let X~ = {x E X I x appears at a position u.i(i E l~I)}
Vind := Vind U X~

e n d f o r
endcase 4

e n d f o r
e n d i f
return(V ind)

Fig . 2. Induc t ion variables c ompu ta t i on

228

E x a m p l e 4.1 Consider the following rewriting system R, with FAC = {+, *}.

R =
x + 0 - + x
x * 0 - + 0
exp(z, 0) -~ s(0)

x + s(y) - , s(x + y)
x * s (y) -+ x + x * y
exp(z, s(n)) -~ z , exp(z, n)

We have: nb_pos_ind(+) = 1, nb_pos_ind(*) = 1, pos_ind(exp) -= 2. A test set
forR is {0, s(x)}. The conjecture toprove is (x + y + z) , w = x , w + y , ~ + z , ~ .
If we take x, y, z, w as induction variables, we would obtain 16 lemmas to prove.
Now, since + and * are completely defined A C operators, nb_pos_ind(+) = 1
and nb_pos_ind(,) = 1, we can choose {x, w} or {y, w} or {z, w} as induction
variables. Thus, we obtain only ~ lemmas to prove.

5 C o m p u t i n g t e s t s e t s

The computation of test sets according to definition 3.4 relies on the induc-
tive reducibility property [9], which is unfortunately undecidable in AC theories
[10]. However we can use a semi-decision procedure that has proved to be quite
useful for practical applications [11]. For the more restricted case where the
rewrite system is left-linear and sufficiently complete, and the relations between
constructors are equational we propose algorithms basically extending the equa-
tional case [9, 5] (see theorem 5.1). For the case where the rewrite system is not
left linear but it is sufficiently complete over free constructors there is an easy
algorithm to produce test-sets (see theorem 5.2).

We denote by extension(t) the term obtained by replacing each subterm of
t of the form f (t l , . . . , t b f + l) by f (t l , . . . , t b , + l , x) , where f E FAc and x is a
new variable. Given a set of terms T, extension(T) -= UteT extension(t).

T h e o r e m 5.1 Let R be a left-linear conditional rewriting system. Let T -= {t ! t
is a term of depth ~ D(R) such that all variables occur at depth D(R), and each
A C operator has a number of arguments ~_ b! + 1}. Let T j =- {t E T I t is not
inductively reducible }. Then extension(T') is a test set for R.

E x a m p l e 5.1 Let F = {0, 1, s}, FAG ---- {+} and

O + x - + x ,
R = 1 + s(x) -+ s(s(x)),

s(1) --+ s(s(O))

We have: D(R) -= 1. By applying theorem 5.1, we obtain: T' = {0, 1, s(x), x +
y, x + y + z}, extension(T') -= {0, 1, s(x), x + y, x + y + z, x + y + z + t},
which can be simplified by deleting the subsumed terms and give the test set:
{0, 1, s(x), x + y}.

A sort s E S is said infinitary if there exists an infinite set of ground irre-
ducible terms of sort S. The next theorem provides a method for constructing
test sets for non left-linear rewriting system with free constructors.

229

T h e o r e m 5.2 Let R be a conditional rewriting system. Suppose that R is suffi-
ciently complete over free constructors. Then, the set T of all constructors terms
of depth <_ D(R) such that all variables are infinitary and occur at a depth D(R),
is a test set for R.

6 I n f e r e n c e s y s t e m

Our inference system rules (see figure 3) is based on a set of transition rules
applied to (E, H), where E is the set of conjectures to prove and H is the set
of induction hypotheses. The initial set of conditional rules R is oriented with a
well founded and AC compatible ordering.

The inference system is constituted of two rules: generation and simplifica-
tion. An I-derivation is a sequence of states: (E0, 0) }-I (El, H1) t-I . . . (En, Hn)
t-I We say that an I-derivation is fair if the set of persistent clauses (Ui nj>_i
Ej) is empty. An I-derivation fails when it is not possible to extend it by one
more step and there remains conjectures to prove. We denote by -4e a noethe-
rian ordering on clauses, stable modulo AC, that extends -~. In the following,
W denotes a set of conditional equations which can be induction hypotheses or
conjectures not yet proved. Let us now present briefly the rewriting techniques
used by the prover. Inductive contextual rewriting is a generalization of both
inductive rewriting [3] and contextual rewriting [15].

Def in i t ion 6.1 (Induc t ive con t ex tua l rewr i t ing) Given a clause C, we wri-
te:

C - - A ~ A ~ - + R < w > C' = A ~ A[u e- t~]

if there exists 5 = F ~ s = t E R U W and a position u in A such that:

- A / u =AC S Z

- C I -~c C

- if S E W t h e n S ~ - ~ c C
- R O W "~c ~ i n a A ~ F ~

where W "~ = {4] q~ E W and ~ -~c C) .

Ex ample 6.1 Let FAC = {+} and C =_ (odd(1 + 1) = True V equal(l, 1) =
FalseVeven(l + l) = True). Suppose that we have aninduction hypothesis: H -
(equal(x, y) = False V even(x + y) = True). The inductive contextual rewriting
of C by H gives: C' - (odd(l + l) = True V equal (1, 1) = F alse V True = True).

Inductive case rewriting provides us with a possibility to perform a case-based
reasoning; it simplifies a conjecture with an axiom, a conjecture or an inductive
hypothesis, provided it is smaller than the initial conjecture and the disjunction
of all conditions is inductively valid.

Def in i t ion 6.2 (Induc t ive case rewr i t ing) Let G be the set {< C[u +-- d~],
P~ >I there exists T~ - P ~ g -+ d in R U W, and a position u in C such that
C / u =AC g~r, and if7r E W, then Ti "~c C }. I f R ~ina (V<c,,p>EG P), then
Inductive_case_rewriting(C,W) = {P ::~ C' I< C', P >E G}.

230

Genera t ion : (E U {C}, H) t-~ (E U E', H U {C})

if E' = Ua simplify(Ca, H u E U {C}), q ranging over test substitutions of C

Simplification: (E U {C}, H) t-, (E U E', H)

if E' = simplify(C, H U E)

Fig. 3. Inference system I

Def ini t ion 6.3 (s implify) The procedure simplify is defined in the following
way:

s i m p l i f y (C , w) =
if C is a tautology or subsumed by a clause of R U W
t h e n 0
else if C ~-+n<w> C s

t hen {C'}
else Inductive_ease_rewriting (C,W)

The correctness of the inference system I is expressed by the following the-
orem:

T h e o r e m 6.1 (Cor rec tness) Let (Eo, 0) ~-I (El, gl) ~-I .. . be a fair I-derivat-
ion. If it does not fail then R ~i~d Eo.

Now, consider boolean specifications. To be more specific, we assume there
exists a sort bool with two free constructors {true, false}. Every rule in R is
of type: A~= 1 pi = p~ ~ s --+ t where for all i in [1. . .hi , p~ E {true, false}.
Conjectures will be boolean clauses, i.e. clauses whose negative literals are of type
~(p = p') where p ' C { t r u e , f a l s e } . If for all rules of form p~ ~ f (t l , . . . , t ,) --+ ri

whose left hand sides are identical up to a renaming #i, we have R ~ind ViPittl,
then f is weakly complete w.r.t R. We say that R is weakly complete if any
function in Jr is weakly complete [1]. We can show that refutational completeness
is also preserved in the AC case.

T h e o r e m 6.2 (Re fu t a t i ona l comple teness) Let Tl be a weakly complete and
ground convergent rewrite system. Let Eo be a set of boolean clauses. Then
R ~:ina Eo iff all fair derivations issued from (Eo, 0) fail.

7 Conclusion

We have presented a new induction procedure for the associative and commuta-
tive theories. An advantage of this approach is that inference steps are performed
in a homogeneous well-defined framework. Another important point is that our

231

procedure does not need AC unification like completion methods, but only AC
matching. Our inference system is based on two rules: the generation rule which
performs induction, and the simplification rule which simplifies conjectures by
elaborated rewriting techniques. This system is correct and refutationally com-
plete for boolean ground convergent rewrite systems under reasonable restric-
tions. In experiments, refutational completeness is particularly useful for debug-
ging specifications. These results have been integrated in the prover SPIKE-AC,
and interesting examples such as circuits verification have demonstrated the ad-
vantages of the approach.

References

1. A. Bouhonia. Using induction and rewriting to verify and complete parameterized
specifications. Theoretical Computer Science, 170, December 1996.

2. A. Bouhoula, E. Kounalis, M. Rusinowitch. Automated mathematical induction.
Journal of Logic and Computation, 5(5):631-668, 1995.

3. A. Bouhoula, M. Rusinowitch. Impficit induction in conditional theories. Journal
of Automated Reasoning, 14(2):189-235, 1995.

4. R. S. Boyer, J. S. Moore. A Computational Logic Handbook. 1988.
5. R. B/indgen, W. Kiichlin. Computing ground reducibility and inductively com-

plete positions. In N. Dershowitz, editor, Rewriting Techniques and Applications,
LNCS 355, pages 59-75, 1989.

6. J.R. Butch, E. M. Clarke, K.L. McMillan, D.L. Dill. Symbolic Model Checking:
1020 states and beyond. 5th Annual IEEE Symposium on Logic in Computer
Science, pages 428-439, 1990.

7. D. Cyrluk, S. Rajan, N. Shankar, M. K. Srivas. Effective Theorem Proving for
Hardware Verification. In K. Ramayya and K. Thomas, editors, Theorem Provers
in Circuit Design LNCS 901, pages 203-222, 1994.

8. S. J. Garland, John V. Guttag. An overview of LP, the Larch Prover. In
N. Dershowitz, editor, Rewriting Techniques and Applications, LNCS 355, pages
137-151, 1989.

9. J.-P. Jouannaud, E. Kounalis. Automatic proofs by induction in theories without
constructors. Information and Computation, 82:1-33, 1989.

10. D. Kapur, P. Narendran, D. J. Rosenkrantz, H. Zhang. Sufficient completeness,
ground-reducibility and their complexity. Acta Informatica, 28:31!-350, 1991.

11. E. Kounalis M. Rusinowitch. Reasoning with conditional axioms. Annals of Math-
ematics and Artificial Intelligence, (15):125-149, 1995.

12. C. March& Rddcriture modulo une thgorie prgsentde par un syst~me convergent et
ddcidabilitd du probl~me du mot dans certaines classes de thdories gquationnelles.
Th. univ., Universit~ de Paris-Sud (France), 1993.

13. S. Owre, J.M. Rushby, N. Shankar. A prototype verification system. In D. Kaput,
editor, International Conference on Automated Deduction, LNAI 607, pages 748-
752, 1992.

14. L. Pierre. An automatic generalisation method for the inductive proof of repfi-
cated and parallel arehitetures. In K. Ramayya and K. Thomas, editors, Theorem
Provers in Circuit Design, LNCS 901, pages 72-91, 1994.

15. H Zhang. Contextual rewriting in automated reasoning. Fundamenta Informati-
cae, (24):107-123, 1995.

