
Deduct ive Mode l Checking*

Henny B. Sipma, Torns E. Uribe, Zohar Manna

Computer Science Department
Stanford University
Stanford, CA. 94305

s ipma I ur • I manna@CS. Stanford. EDU

Abstract . We present an extension of classical tableau-based model
checking procedures to the case of infirfite-state systems, using deductive
methods in an incremental construction of the behavior graph. Logical
formulas are used to represent infinite sets of states in an abstraction of
this graph, which is repeatedly refined in the search for a counterexample
computation, ruling out large portions of the graph before they are ex-
panded to the state-level. This can lead to large savings, even in the case
of finite-state systems. Only local conditions need to be checked at each
step, and previously proven properties can be used to further constrain
the search. Although the resulting method is not always automatic, it
provides a flexible and general framework that can be used to integrate
a diverse number of other verification tools.

1 Introduction

We present a model checking procedure for verifying temporal logic properties of
general infinite-state systems. It extends the classical tableau-based model check-
ing procedure for verifying linear-time temporal logic specifications of reactive
systems described by fair transition systems, To verify that a system S satisfies a
specification T, the classical procedure checks whether the (S, -~) behavior graph
admits any counterexample computations. This behavior graph is the product of
the state transition graph for S and the temporal tableau for -~9~, which makes
the procedure essentially applicable to finite-state systems only.

Our procedure starts with the temporal tableau for - ~ and repeatedly refines
and transforms this graph until a counterexample computation is found or it is
demonstrated that such a computation cannot exist. Even for finite-state systems,
this can lead to significant savings, since portions of the product graph can be
eliminated long befbre they are fully expanded to the state level. For instance,
in the verification of accessibility f6r the Peterson mutual-exclusion algorithm,
expansion to 12 nodes suffices to demonstrate that no counterexample exists,
whereas the full behavior graph contains 76 nodes.

* This research was supported in part by the National Science Foundation under grant
CCR-92-23226, the Advanced Research Projects Agency under NASA grant NAG2-
892, the United States Air Force Office of Scientific Research under grant F49620-
93-1-0139, the Department of the Army under grant DAAH04-95-1-0317, and a gift
from Intel Corporation.

209

For infinite-state systems, the procedure will terminate in many cases. In Sec-
tion 5 we illustrate the procedure by model checking an accessibility property for
the Bakery algorithm. Expansion to 16 nodes suffices to verify this property over
this infinite-state system. Even when the procedure does not terminate, partial
results can still be valuable, giving a representation of all potential counter-
example computations that can be used for further verification or testing.

We present our procedure in the framework of [14], where deductive methods
are used to verify linear-time temporal logic specifications for reactive systems
described by fair transition systems. However, the main ideas can be easily ad-
apted to other temporal logics and system specification languages as well.

R e l a t e d work

Mode l Checking: Most approaches to temporal logic model checking [10, 16]
have used explicit state enumeration, or specialized data structures to represent
the transition relation and compute fixpoints over it, as in BDD-based "symbolic"
model checking [8, 15]. While automatic, and particularly successful for hardware
systems, these approaches require that the syst.em, or a suitable abstraction of it,
conform to the particular data structure used. Most often, the system must be
finite-state. Furthermore, even in the finite-state case these techniques are limited
by the size of the specialized representation, which is still ultimately limited by
the number of reachable states.

The "on-the-fly model checking" for CTL* presented in [1] constructs only a
portion of the state-space as required by the given formula, but is still restricted
to finite-state systems. Our procedure is similarly "need-driven," but expands
the state-space in a "top-down" manner as well, moving from an abstract rep-
resentation to a more detailed one as necessary.

A method for generating an abstract representation of a possibly infinite
state-space is presented in [4], using partitioning operations similar to the ones
we describe below. However, in [4] this is done independently of any particular
formula to be verified. Finally, the local model checking algorithm for real-time
systems in [18] can be seen as a specialized variant of our procedure; it too refines
a finite representation of an infinite product graph, consecutively splitting nodes
to satisfy constraints arising from the formula and system being checked.

D e d u c t i v e Methods : A complete deductive system for temporal verification of
branching-time properties is presented in [11], while [5] presents a proof system
for the modal mu-calculus. Manna and Pnueli [14] present a deductive frame:
work for the verification of fair transition systems based on verification rules,
which reduce temporal properties of systems to first-order premises. Verification
diagrams [13, 6] provide a graphical representation of the verification conditions
needed to establish a particular temporal formula.

All of these methods apply to infinite-state systems and enjoy relative com-
pleteness, but can require substantial user guidance to succeed. These metlzods
yield a direct proof of the system-validity of a property, but do not produce
counterexample computations when the property fails.

210

Like standard model checking, our procedure does not require user-provided
auxiliary formulas, and allows the construction of counterexamples; the process
is guided by the search for such computations. Like deductive methods, it only
needs to check local conditions, and allows the verification of infinite-state sys~
tems through the use of powerful representations to describe sets of states (e.g.
first-order formulas). We also accommodate the use of previously established
invariants and simple temporal properties.

The procedure presented in [3] for automatically establishing temporal safety
properties is based on an assertion graph similar to the S-refined tableau we
use, and can also produce counterexamples. Our approach is a dual one: instead
of checking that all computations satisfy the temporal tableau of the formula
being proved, we Check that no computations satisfy the tableau for - ~ .

2 P r e l i m i n a r i e s

Fa i r T r a n s i t i o n Sys t ems : The computational model, following [14], is a fair
transition system (FTS). An FTS S is a triple (] ; ,O ,T ! , where 1; is a set of
variables, O is the initial condition, and T is a finite set of transitions. A finite
set of system variables V C V determines the possible states of the system. The
state-space, Z, is the set of all possible valuations of the system variables.

We use a first-order 2 assertion language A to describe O and the transitions
in T. O is an assertion over the system variables V. A transition r is described
by a transition relation pr(x,x~), an assertion over the set of system variables
x and a set of primed variables x I indicating their values at the next state. 7-
includes an idling transition, Idle, whose transition relation is x = x ~.

A run is an infinite sequence of states so, s l , . . , such that so satisfies O, and
for each i > 0, there is some transition v E T such that pr(Si, s~+l) evaluates
to true. We then say that r is taken at si, and that state si+l is a r-successor
of s. A transition is enabled if it can be taken at a given state. Such states are
characterized with the formula

enabled(r) aof 3x'.Zr (x, x')

As usual, we define the strongest postcondition post(v, ~) and the weakest pre-
condition pre(v, ~) of a formula. ~ relative to a transition v as follows:

post(r, dd x0. (pT(x0, x) A
vre(,)d~ w' . (p, (x,

We also use the notation {9} r {r de2 (~(X) A pv(X,X')) -'+ r

Fai rness : The transitions in 7- can be optionally marked as just or compas-
sionate. A just (or weakly fair) transition cannot be continually enabled without

Although it can be augmented with features such as interpreted symbols axed con-
straints, or specialized to the finite-state case, e.g. using BDDs.

211

ever being taken; a compassionate (or strongly fair) transition cannot be enabled
infinitely often but taken only finitely many times. A computation is a run that
satisfies these fairness requirements.

L inear - t ime Tempora l Logic: As specification language we use linear-time
temporal logic (LTL) over the assertion language .4, where no temporal operator
is allowed to appear within the scope of a quantifier. We use the usual future and
past temporal operators, such as [[], <~, O, N, W (future) and [3, ~ , (~, B, S
(past). A formula with no temporal operators is called a state-formula or an
assertion. For details on LTL and tableau constructions, we refer the reader
to [14], and define only the basic concepts we need.

The Formula Tableau: Given an LTL formula ~, we can construct its tableau
r a finite graph that describes all of its models [14]. Briefly, each node in the
tableau is identified with an atom, which is a set of state- and temporal formulas
expected to hold whenever a model resides at this node. Two nodes Az and A2
are connected with a directed edge (A1, A2) if the formulas in A2 can hold at a
state following one that satisfies the formulas in At.

An atom is called initial if its formulas can hold at the initial state of a model.
is satisfiable only if there is a strongly connected subgraph (SCS) in r that

is reachable from an initial atom. Furthermore, if a given model satisfies, e.g.,
~>p at some point, it must in fact satisfy p at this or another point later on. A
fulfilling SCS is one where all such eventualities are satisfied.

P ropos i t ion 1. ~ is satisfiable iff there is a fulfilling, reachable 2CS in r

3 D e d u c t i v e M o d e l C h e c k i n g

The classical approach to model checking [10, 16] verifies a property ~ by con-
structing the product graph between the system's reachable-state graph and the
temporal tableau for --~. Any infinite path through the product graph that sat-
isfies the fairness constraints on the transitions and is fulfilling with respect to
its tableau atoms is a counterexample to ~.

The explicit construction of the state-graph restricts the method to finite-state
systems. The procedure we present works in a top-down fashion, starting with
a general skeleton of the product graph and refining it until a counterexample is
found, or the impossibility of such a counterexample is demonstrated.

Def in i t ion2 (S-refined tableau). Given an FTS S and a temporal property
9, an S-refined tableau is a directed graph G whose nodes are labeled with pairs
(A, f), where A is an atom for the temporal tableau for - ~ and f is a state-
formula, and whose edges are labeled with subsets of T. For nodes M, N, we
write r 6 (M, N) if transition v is in the label of the edge from M to N, or
simply say that r labels (M, N). A subset of the nodes in ~ is marked as initial.

The S-refined tableau can be viewed as a finite abstraction of the product grapla.
The state-formula f in a node (A, f) describes a superset of the states reachable

212

at that node; similarly, the transitions labeling an edge ((A1, f l) , (A2, f2)> are a
superset'of those that can be taken from an fl-state to reach an f2-state. We will
see that any path through an S-refined tableau corresponds to a path through
the'corresponding temporal tableau. That is, for any path (A0, f0), (A1, f~) , . . .
through G, the underlying path A0, A1,. . . will be a path in ~-~.

3.1 The D M C P r o c e d u r e

We begin with the tableau graph ~ , from which we construct an initial S-
refined tableau G0 as follows:

1. Replace each node label A by (A, fA), where fA is the conjunction of the
state-formulas in A.

2. For each node N = (A, f) such that A is initial in the tableau ~ .~ , add a
new node No = (A, f A ~), which has no incoming edges, and whose outgoing
edges go to exactly the same nodes as those of N. A self-loop {N, N) becomes
an edge (No, N / in the new graph. These new nodes are the initial nodes in
the S-refined tableau.

3. Label each edge in Go with the entire set of transitions 7-.

Figure 2 in Section 5 presents an example of an initiM S-refined tableau.
The main data structure maintained by the procedure is an S-refined tableau

graph Gi and a list of strongly connected subgraphs of this graph. We present the
deductive model checking (DMC) procedure as a set of transformations on this
pair. Initially, the SCS list contains all the maximal strongly connected subgraphs
(MSCS's) of C0. Deductive model checking proceeds by repeatedly applying one
of transformations 1-11 described below. The process stops if we find a reachable,
fulfilling and adequate SCS (see Section 3.3) or obtain an empty SCS list.

B a s i c T r a n s f o r m a t i o n s :

- 1 (remove label) . If an edge ((A1, f l) , (A2, f2)> is labeled with a transition
v and fl (x) A f2 (x') APr (x, x') is unsatisfiable, remove r from the edge label.

- 2 (e m p t y edge) . If an edge is labeled with the empty set, remove the edge.
- 3 (unsat lsf iable node) . If f is unsatisfiable for a node (A, f) , or if a node

has no successors, remove the node.
- 4 (unreachable node) . Remove a node unreachable from an initial node.
- 5 (unfulfilling SCS). If an SCS is not fulfilling, remove it from the SCS

list. (An SCS is fulfilling if its underlying tableau SCS is fulfilling.)
- 6 (SCS split) . If an SCS becomes disconnected (because a node or an edge

is removed from the graph), replace it by its constituent MSCS's.

These basic transformations should be applied whenever possible.

N o d e Splitting: In the following, we will have the opportunity to replace a node
N by new nodes N1 and N2. Any incoming edge (M, N> is replaced by edges
(M, N1} and (M, N2) with the same label, for M r N. Similarly, any outgoing
edge (N, M) is replaced by edges (Yl, M> and (N2, M} with the same label as the
original edge. If a self-loop (N, N} was present, we add edges (g l , N1), (N2, N2},

213

(N1, N2) and (N2, N1), all with the same label as (N, N). If an initial node is
split, the two new nodes are also labeled as initial. If the split node was part of
an SCS in the SCS list, this SCS is updated accordingly.

B a s i c R e f i n e m e n t T r a n s f o r m a t i o n s :

- 7 (p o s t c o n d i t l o n spl i t) . Consider an edge from node N1 to N2, (N1, N2) =
((A1, f l) , (A2, f2)) , whose label includes transition r. I f / 2 A -,post(r, f l) is
satisfiable (that is, f2 does not imply post(r, fl)), then replace (A2,]'2) by
the two nodes

N2,1 = (A2, f2 A post(r, f l))
N2,2 = (A2, f2 A -~post(r, fl))

Note that we can immediately apply the r e m o v e l abe l transformation to the
edge between N1 and N2,2, removing transition r from its label.
Nodes N1 and N2 need not be distinct. If N1 = N2 then we split the node
into two new nodes as above, only now the self-loop for N2,2 as well as the
edge from N2,1 to N2,2 do not contain the transition r.

- 8 (p r e c o n d i t i o n spl i t) . Consider an edge (N1, N2) = ((A1, f l) , (A2, f2)),
labeled with transition r. If f l A -,(enabled(r) ^ pre(r, f2)) is satisfiable, then
replace (A1, f l) by the two nodes

N~,~ = (A~, f l A enabled(r) A p,'e(r,/~))
N1,2 ~-- (A1, f l A m(enabled(r) A prg(r, f2))) �9

Here, transition r can be removed from the (N1,2, N2) edge.

The conditions for applying these transformations can be weakened if the re-
quired satisfiability checks are too expensive (see Section 4). Variants of these
transformations, such as n-ary splits according to possible control locations, are
convenient in practice. In general, .arbitrary conditions can be used to split nodes.
However, our refinement transformations account for the structure of the system
and property being checked, and can be automated as well.

3 . 2 F a i r n e s s T r a n s f o r m a t i o n s

Together, transformations 1-8 are sufficient for the analysis of transition systems
with no fairness requirements. If an adequate SCS is found (see Section 3.3),
a counterexample is produced. If the set of SCS's (all of which are actually
MSCS's, in this case) becomes empty, then we know there is no counterexample
computation. However, to account for just and compassionate transitions we need
the following extra transformations:

- 9 (e n a b l e d sp l i t) . Consider a just or compassionate transition r and an
SCS containing a node N = (A, f) such that f A -,enabled(r) is satisfiable.
Then replace N by the two nodes

N1 = (A, f A enabled(v))
N2 = (A, f A -~enabled(r)) .

214

D e f i n i t i o n 3 . A transition 7- is fully enabled at a node (A, f) if f -+ enabled(7.)
is valid; 7. is fully disabled at a node (A, f) if f --+ (-,enabled(7.)) is valid. A
transition is taken on an SCS S if it is included in an edge-label in S. An SCS
S is just (resp. compassionate) if every just (resp. compassionate) transition is
either taken in S or not fully enabled at some node (resp. all nodes) in S.

That is, an SCS S is unjust (resp. uncompassionate) if some just (resp. com-
passionate) transition is never taken in S and fully enabled at all nodes (resp.
some node) in S.

We now present the last two transformations, which, like the basic ones,
should be applied whenever possible:

- 10 (u n c o m p a s s i o n a t e SCS). If an SCS S is not compassionate, then let
7.1,..., 7.,~ be all the compassionate transitions that are not taken in S. Re-
place S by all the MSCS's of the subgraph resulting by removing all the nodes
in S where one of these transitions is fully enabled.

- 11 (u n j u s t SCS) . If an SCS is not just, remove it from the SCS list.

Note that these transformations do not change the underlying graph G, but
only the SCS's under consideration. (However,. unjust or unfulfilling SCS can be
fully removed from the graph if they have no outgoing edges.)

3.3 R e a c h a b i l i t y a n d T e r m i n a t i o n

The process of transforming the S-refined tableau can continue until there are no
SCS's under consideration, in which case the original property ~ is guaranteed
to hold for the system S.

Finding a counterexample computation in the case that ~ fails, however, re-
quires some additional work. Whereas the above transformations remove SCS's
from consideration that are known to be unreachable because they are discon-
nected from an initial node, no provisions ensure that a node is indeed reachable
in an actual computation, or that a computation can in fact reside indefinitely
within an SCS.

To identify portions of the product graph known to be reachable, We do some
additional book-keeping:

- (e x e c u t a b l e t r a n s i t i o n) . Given an edge ((A1, f l) , (A2, f2)) labeled with
transition 7., mark 7- as executable if the following formula is valid:

(fl ~ enabled(7.)) A ({A} 7. {f2})

That is, 7- is labeled as executable if it can be taken at all states satisfying f l and
always reaches a state that satisfies f2. For example, the idling transition can be
marked as executable on all self-loops.

D e f i n i t i o n 4 (fu l ly j u s t a n d c o m p a s s i o n a t e) . A transition is fully taken at
an SCS if it is marked as executable for an edge in the SCS. An SCS S is fully
just (resp. fully compassionate) if every just (resp. compassionate) transition is
either fully taken in S or fully disabled at some node (resp. all nodes) in S.

215

Defin i t ion5 (adequate SCS). An SCS S is adequate if after removing all
edges not marked with executable transitions we obtain a subgraph S t where:

1..S ~ is still strongly connected;
2. S I is fully just and fully compassionate;
3. there is a path of executable transitions from a satisfiable initial node to a

node in S~;
4. the state-formulas in S I and the path that leads to S ~ are satisfiable.

An adequate SCS guarantees the existence of a computation of S that satisfies
~ (but the reverse does not hold).

Using Prev ious ly P roven Proper t ies : Known invariants can be used to
strengthen all (or only some) of the assertions in the S-refined tableau; if [:]p is
a known invariant for a state-formula p, then we can replace any node (A, f) by
the node (A, f A p).

Similarly, simple temporal properties of the system can be used to rule out
paths in the tableau. For example, if we know that E](p "-+ ~ q) is S-valid, then
we can require that any candidate SCS featuring a state-formula which implies
p also contain a state-formula compatible with q.3

4 Analysis

The soundness of the procedure is based on the fact that each transformation
preserves the set of computations through the S-refined tableau. Since this is
equal to the - ~ computations of S for the initial graph C0, the procedure reports
success only if there are no such computations. On the other hand, a computation
that is obtained by reaching and then residing in an adequate SCS must indeed
be a model of - ~ and a computation of S, and thus a counterexample.

The tableau ~ can be exponential in the size of 9; however, properties to be
model checked are usually simple, so the tableau is small when compared with
the system's state-space (even for finite-state systems). Incremental and particle
tableau constructions [14] reduce the expense of building ~ . 4

Propos i t ion6 . For a finite-state system S, the exhaustive application of trans-
formations 1-11 terminates, deciding the S-validity of ~o.

If the system S is finite-state, we can use a finite-state assertion language .A.
Note that the satisfiability tests required at the splitting steps are now decidable,
and there will only be a finite number of distinct nodes. Since every transform-
ation reduces the size of the graphs under consideration or replaces a node with
more specific ones (that is, nodes covering strictly fewer states), the process must
terminate. If the SCS list is empLy, the original property ~o is S-valid; otherwise,
any remaining SCS must be adequate, and thus provide a counterexample.

3 . ~ could always be conjoined with all other known temporal properties of S, but at
the risk of further increasing the size of the temporal tableau.

4 If necessary, this construction can be interleaved with the state-space,refinement.

216

The node formulas may well be encoded using binary decision diagrams
(BDDs) [7] or, in general, any finite-domain constraint language. The efficient
tests for implication between BDDs can be used to maintain encapsulation con-
ventions. Hybrid representations (including first-order constructs) can be used if
the BDD size becomes problematic.

In the general case of infinite-state systems, the model checking problem is
undecidable. However, we point to several features of our approach:
�9 The test for satisfiability used in the splitting rules need not be complete; we
can change the condition "if X is satisfiable then..." to be "if X is not known
to be unsatisfiable then..." without compromising soundness. Thus, the available
theorem-proving and simplification techniques are not required to give a definite
answer at any given time. When the validity of a formula is hard to decide,
additional splits can make subsequent satisfiability questions easier.

This lazy evaluation of satisfiability makes specialized constraint languages
such as those used in Constraint Logic Programming [12] well-suited to the task.
Reactive programs based on such constraint languages, such as concurrent con-
straint programs [17], may be specially amenable to such a verification frame-
work. We expect constraint-solving and propagation techniques, as in [3], to play
a central role in the deductive model checking "of large systems.
| Even when the model checking effort is not completed, the resulting S-refined
tableau can be used to restrict the search for a counterexample, since all such
computations must follow the S-refined tableau. Backward propagation (possibly
approximated) [3] can be used to find sets of initial states that can generate a
counterexample computation. A similar approach is used in [9] to generate test
cases for processor designs.
�9 The DMC procedure can benefit from user guidance in two forms: first, the
choice of refinement transformation to perform next determines how the state-
space is explored. Second, the process can be speeded up considerably by refine-
ment steps based on auxiliary formulas provided by the user.

Inductive and well-foundedness arguments can also be used: for example, if a
transition decreases a well-founded relation that is known to hold across an SCS,
then we can remove it from all the edges in the SCS (but still account for it for
reachability). Adding support for well-founded relations and ranking functions
similar to those used in Verification Diagrams [13, 6] could make the method
relatively complete and further the combination of theorem-proving and model
checking we propose.

5 E x a m p l e

We illustrate deductive model checking by proving accessibility for the BAKERY

program, an infinite-state program implementing a mutual exclusion protocol,
shown in Figure 1. Each of the statements in the program corresponds to a trans-
ition, denoted by its label; thus, T = {Idle,~o..Q, m0..m4}. All transitionsare
just, except for m0 and t0, which have no fairness requirements. Accessibility can
be expressed in LTL by the formula ~ : [[](el -4 <~ s i.e., always if control is

217

at ~1 it will eventually reach ~3. The following describes the output of our DMC
implementation based on the STeP system [2]. The splits are chosen by the user,
but the underlying simplification and pruning are performed automatically.

local

I
loop forever do

[C0: noncri t ical 1
[C1: y l : = y 2 + l
|i2: await (y 2 = 0 V y l <y~)
|C3: critical
LC4: m := 0

Yl, Y2 : integer where yl = y2 -- 0

~loop forever do
[Ira0: noncri t ical 1
| |m1: Y 2 : = y l + I

II / Ira:: await (Yl -= 0 V Y2 < y,)
| |m3: critical
L Lm4: Y2 := 0

Fig. 1. Program BAKERY

The initial S-refined tableau for -~o : ~ (~1 A [] -~3) , based on its p a r t i c l e

t a b l e a u , is shown in the left of Figure 2. Nodes 3 and 4 correspond to the initial
nodes in the ~o tableau. Node 1 results from adding the initial condition to
node 4; the initial node from node 3 is pruned since ~1 A O is unsatisfiable. The
SCS {4} is not fulfilling, but {2} is. We now perform a precondition split on edge
(2, 2> and transition t0, replacing node 2 by nodes 6 and 5. An g4-precondition
split on (6, 5) yields nodes 8 and 7. At this point, nodes 5 and 7 are unreachable
from the initial state and can be removed. The only candidate SCS is {8}.

1(O :)C0 A m0 A t/1 = 0A Y2 = 0 -~

, t_ T_ 2 ~ . ~ _ Prec. C0
.: 2=-c
[--J

- ~ : O (c , ^ []-~c3)

P 7
Id" l ~ Idle, m o . . m 4 , g l , Le__..._~ mlo,. m4 ~ ~1 ~

C ~ I) i I 3 : 1 ~ - ~ 8 : C I V ~ 2 , ~

'~ 3 ." l l [• Idle, m o . . m 4
~ Prec. C4

"7
~ Idle, mo. .rn4 , C1

6 : ~C0 A ~C3 L~-~Idle,imo..m4,C,

Fig. 2. Initial S-refined tableau and first 2 refinement steps

218

An s split for (8, 8) yields nodes 9 and 10 in Figure 3. The only
fulfilling SCS is {10}, since {9} is unjust for ~1. An enabled split for node 10 and
transition s produces nodes 11 and 12. The SCS {11} is unjust for ~2. Node 12
is flow strengthened with the invariant (Y2 r 0) -+ (m2 V rn3 V m4). (Such
invariants are generated automatically by STeP based on the program text.) An
mz-precondition split on (12, 12) produces nodes 13 and 14. SCS {13} is unjust
for m3. Finally, an m2-preeondition split on (14, 13 / results in 15 and 16. Now,
SCS {16} is unjust for m4, while {15} is unjust for m2. Since there are no
candidate SCS left, we have established that ~ is S-valid.

[- - ~ - - ~ I d l e , m o . . m 4 I d l e , m o . . m 4 r - - - - - - r - - - - -

L __ ~ Prec. ms
r - . -]

I d l e I 13 [) , . ~ l l l l l l ' 14:s ra, A--ra3A--(yl <_ y ; V y 2 = 0) 1

I d l e , m o . . r n , ~ ~ - ~ I d l e

Fig. 3. Final 3 refinement steps to model check BAKEP~Y

Note that when model checking progress properties it may be profitable to
concentrate on splitting and eliminating candidate SCS's, as done in this example.
However, in general it may be necessary to show that certain parts of the state-
space are unreachable through forward propagation from the initial nodes or
backward propagation from the unreachable ones. We model checked mutual
exclusion for BAKERY ([[] ~(~3 A m3)) using 3 splits (including a user-provided
one) and automatically generated invariants.

We also model checked accessibility for the infinite-state 3-process version
of BAKERY, expanding to 27 nodes. This included one user-provided case split
according to the priority between processes (4 cases), together with 5 trivial
location splits and one enabled split.

219

Acknowledgements: We thank Nikolaj Bjerner, Anca Browne and Arjun Kapur
for their comments.

R e f e r e n c e s

1. BHAT, G., CLEAVELAND, R., AND GRUMBERG, O. Efficient on-the-fly model check-
ing for CTL*. In Proc. lOth IEEE Syrup. Logic in Comp. Sei. (1995), pp. 388-397.

2. BJORNER, N., BROWNE, A., CHANG, E., COLON, M., KAPUR, A., MANNA, Z.,
SIPMA, H., AND URIBE, T. STEP: Deductive-algorithmic verification of reactive
and real-time systems. In Proc. 8 ~h Intl. Conference on Computer Aided Verifica-
tion (July 1996), Springer-Verlag.

3. BJORNER, N., BROWNE, A., AND MANNA, Z. Automatic generation of invariants
and intermediate assertions. In I s~ Intl. Conf. on Principles and Practice of Con-
straint Programming (Sept. 1995), vol. 976 of LNCS, Springer-Verlag, pp. 589-623.

4. BOUAJJANI, A., FERNANDEZ, J.-C., AND HALBWACHS, N. Minimal model gen-
eration. In Proc. 2 na Intl. Conference on Computer Aided Verification (1990),
vol. 531 of LNCS, pp. 197-203.

5. BRADFIELD, J. C. Verifying Temporal Properties of Systems. Birkhs 1992.
6. BROWNE, A., MANNA, Z.~ AND SIPMA, H. Generalized verification diagrams.

In 15th Conference on the Foundations of Software Technology and Theoretical
Computer Science (Dec. 1995), vol. 1026 of LNCS, pp. 484-498.

7. BRYANT, R. Graph-based algorithms for Boolean function manipulation. IEEE
Transactions on Computers C-35, 8 (Aug. 1986), 677-691.

8. BURCH, J., CLARKE, E.~ MCMILLAN, K., DILL, D., AND HWANG, L. Symbolic
model checking: 1020 states and beyond. In Proc. 5th IEEE Syrup. Logic in Comp.
Sci. (1990), IEEE Computer Society Press, pp. 428-439.

9. CHANDRA, A., IYENGAR, V., JAWALEKAR, R., MULLEN, M., NAIR, I., AND
ROSEN, B. Architectural verification of processors using symbolic instruction
graphs. In International Conference on Computer Design: VLSI in Computers
and Processors (1994), IEEE Press, pp. 454-459.

1O. CLARKE, E., AND EMERSON, E. Design and synthesis of synchronization skelet-
ons using branching time temporal logic. In Proc. IBM Workshop on Logics of
Programs (1981), vol. 131 of LNCS, Springer-Verlag, pp. 52-71.

11. FIX, L., AND GRUMBERG, O. Verification of temporal properties. J. Logic and
Computation 6, 3 (1996), 343-362.

12. JAFFAR, J., AND LASSEZ, J.-L. Constraint logic programming. In Proc. 14th ACM
Symp. Prine. of Prog. Lang. (Jan. 1987), pp. 111-119.

13. MANNA, Z., AND PNUELI, A. Temporal verification diagrams. In Proc. Int. Syrup.
on Theoretical Aspects of Computer Software (1994), vol. 789 of LNCS, Springer-
Verlag, pp. 726-765.

14. MANNA, Z., AND PNUELI, A. Temporal Verification of Reactive Systems: Safety.
Springer-Verlag, New York, 1995.

15. MCMILLAN, K. L. Symbolic Model Checking. Kluwer Academic Pub., 1993.
16. QUEILLE, J., AND SIFAKIS, J. Specification and verification of concurrent systems

in CESAR. In Intl. Symposium on Programming (1982), M. Dezani-Ciancaglini
and U. Montanari, Eds., vol. 137 of LNCS, Springer-Verlag, pp. 337-351.

17. SARASWAT, V. i . Concurren~ ~, Constraint Programming. MIT Press, 1993.
i8. SOKOLSKY, O. V., AND SMOLKA, S.A. Local model checking for real-time Sys-

tems. In Proc. 7 th Intl. Conference on Computer Aided Verification (1995),
vol. 939 of LNCS, pp. 211-224.

