
Automatic Verification of Parameterized
Synchronous Systems*
(Extended Abstract)

E. Allen Emerson and Kedar S. Namjoshi

Department of Computer Sciences,
The University of Texas at Austin, U.S.A.

A b s t r a c t . Systems with an arbitrary number of homogeneous processes
occur in many applications. The Parameterized Model Checking Problem
(PMCP) is to determine whether a temporal property is true of every size
instance of the system. We consider systems formed by a synchronous
parallel composition of a single control process with an arbitrary number
of homogeneous user processes, and show that the PMCP is decidable for
properties expressed in an indexed propositional temporal logic. While
the problem is in general PSPACE-complete, our initial experimental
results indicate that the method is usable in practice.

1 I n t r o d u c t i o n

Systems with an arbitrary number of homogeneous processes occur in many
contexts, especially in protocols for data communication, cache coherence, and
classical synchronization problems. Current verification work on such systems
has focussed mostly on verifying correctness for instances with a small number of
processes. This does not indicate whether larger size instances are error-free, and
so does not guarantee correctness in general. We are thus interested in methods
that verify correctness for arbitrary size instances. Even though sometimes there
is indeed a specific upper bound on the number of processes in a system, verifying
such large size instances is intractable because of state explosion.

The general problem, then, is the Parameterized Model Checking Problem
(PMCP): to determine whether a temporal property is true of every size instance
of the the system. This is known to be undecidable in general [AK 86, Su 88];
however, it is decidable algorithmically for restricted classes [GS 92, EN 95],
and there are methods with some degree of automation [Lu 84, ShG 89, KM 89,
WL 89, V 93, CGJ 95]. This previous work (with the exception of [KM 89]) was
oriented toward asynchronous systems.

We propose a fully automated approach to the PMCP for synchronous sys-
tems. We consider synchronous systems with a unique control process and an
arbitrary number of homogeneous user processes. Each system is thus parame-
terized by the number of user processes. The processes are specified by labeled
transition graphs, in which guards on each transition check the state of the con-
trol process as well as certain conditions on the global state. The correctness
properties are expressed in an indexed propositionM branching temporal logic,
and are of the following types:

This work was supported in part by NSF grant CCR 9415496 and SRC Contract
95-DP-388. The authors can be reached at emerson, kedar@cs.utexas .edu and at
http-//www, c s . u t e x a s , edu/users/{emerson, kedar}.

88

1. Over the control process : formulae of the form Ah and Eh, where h is a
linear4ime formula with atomic propositions over control process states,

2. Over all user processes: Ai Ah(i) , and Ai Eh(i), where h(i) is a linear-time
formula with atomic propositions over control process states, and over user
process states indexed with i.

3. Over every distinct pair of user processes : Ai#j Ah(i,j), and A ~ j Fh(i,j),
where h(i, j) is a linear-time formula with atomic propositions over control
process states, and over user process states indexed with either i or j.

We show that the PMCP for the first type of formulae is decidable for this
class of systems, and is PSPACE-complete. This decidability result is based on
constructing an abstract graph in which every computation of every size instance
of the system is represented by some path in the graph. However, the abstract
graph may have "bad" paths that do not correspond to computations of any
size instance. The heart of the algorithm is a method for identifying good paths
in the abstract graph. This algorithm can be implemented in space polynomial
in the size of the control and user processes. We show by a generic reduction
that the PMCP is PSPACE-hard. As a result of the symmetry inherent in the
system, the PMCP for the other types of formulae reduces to the PMCP for the
first type. We have implemented this algorithm in SMV [McM92] and used it to
check correctness of a bus arbitration protocol. Our initial experimental results
indicate that the algorithm should be useful in practice.

Section 2 defines the system model and the logic used for expressing cor-
rectness properties. Section 3 describes the abstract graph representation, and
Section 4 the algorithm for the PMCP for formulae of type (1). Section 5 shows
the reduction of the PMCP for formulae of types (2) and (3) to the PMCP for
formulae of type (1). Section 6 describes our implementation of the algorithm,
and the application to the bus protocol. Section 7 concludes the paper with a
discussion of related work.

2 T h e s y s t e m m o d e l a n d l o g i c

We refer to the collection of system instances formed by control process C and
copies of a generic user process U as a (C, U) family. The control and user
processes are specified as finite-state labeled transition graphs. We use the terms
"process" and "labeled transition graph" interchangeably. For a process P, let
Sp denote its set of states, Rp its transition relation, and ~p its initial state 2.

The system instance of size n is a synchronous parallel composition of C with
n copies of process U, and is denoted as C NUn -- C [l U1 [I U2... II U,~. Ui is
the ith copy of U, which is obtained from U by uniformly subscripting the states
of U with i as shown in the example below a.

Ai

F I G 1~: T h e c o n t r o l p r o c e s s F I G l b : T h e g e n e r i c u s e r p r o c e s s F I G l c : T h e i t h u s e r p r o c e s s

2 The results of this paper carry over for processes with a set of initial States.
3 In this example, C has initial state K, and U has initiM state I. Atomic propositions

are identified with state names.

89

Thus for all i,j, Ui and Uj are isomorphic up to re-indexing. Transitions in
both C and Ui are labeled with guards. Every guard is a boolean combination
of users conditions, which have the form (3i g(i)), where g(i) is a boolean
expression formed from atomic propositions over the states of C, and over the
states of Ui. 4

G~ denotes the global state transition graph of the instance of size n. A state
s of G. is written as an (n + 1)-tuple (c, u l , . . . , v,~), where c is the local state
of C, and the (i + 1) 'th component of the tuple is the local state of U~ (for
i E [1..n]). The (i + 1)'th component of s is denoted by s(i)�9 The initial state of
~n is (tc , (Lu)I,. �9 (tv)n)- A transition (s, t) is in ~,~ iff

1. A transition of C from s(0) to t(0) is enabled in s, and
2. For all i E [1..n], a transition of Ui from s(i) to t(i) is enabled in s.

where a transition in a process is said to be enabled in a global state iff the
corresponding guard is true when. evaluated in that global state. We write s ~ g
iffguard g is true in the global state s. s ~ (3i g(i)) ifffor some k E [1..n], g(k)
is true given the propositions that hold at s(0) (the control state), and s(k) (the
state of process Uk). Boolean operators are handled in the standard manner. 'For
a global state s, and state a E Su, we let ~r = I{i]i E [1..n] A s(i) = ai}l
(i.e., ~a(s) is the number of user processes with local state a of the generic user
process).

PLTL is the standard propositional linear temporal logic built up from atomic
propositions, boolean connectives, and temporal operators G (always), F (some-
time), X (next time), and IJ (until) [Pn 77, MP 92]. CTL* is a branching tempo-
ral logic which extends PLTL by allowing the path quantifiers A (for all fullpaths)
and E (for some fullpath). Many interesting correctness properties of parame-
terized systems can be expressed in one of the following forms:

1. Over the control process : formulae of the form Ah and Eh, where h is a
linear-time formula with atomic propositions over control process states,

2. Over all user processes' A. Ah(i) , and Ai Eh(i), where h(i) is a linear-time
formula with atomic proposJ.tlons over control process states, and over states
of U indexed with i.

3. Over all distinct pairs of user processes : Ai#j Ah(i,j), and AiCj Eh(i, j) ,
where h(i, j) is a linear-time formula with atomic propositions over control
process states, and over states of U indexed with either i or j .

The formal semantics of these logics is defined in the usual way [Em 90, BCG 89,
ES 95], and we write M, s ~ f to mean that formula f is true in structure M
at state s.

3 T h e a b s t r a c t m o d e l

For a given (C, U) family, we construct an abstract process A which includes
all computations of every size instance of the family. Intuitively, a state (c, S)
of.A represents any global state in which the control process is in state c, there
is at least one user process in every user state in S, and no user process is in a

4 There are two interesting special cases : (a) The guards in U~ involve only propositions
over states of C. The control process may then be viewed as controlling the execution
of the user processes. (b) The control process is a copy of the user process, and can be
written as U0. Then C][U '~ is isomorphic to U ~+1 . Our method applies in general,
but often finds interesting application in these special cases�9

90

state in S u \ S . Transitions from a state (c, S) represent transitions enabled from
global states that are represented by (e S). Each such transition has a label
which represents moves of individual processes.

Formally, let A = 2SuxS~\{O} be the set of edge labels. A is defined by a
labeled transition graph, where

1. S.a = Sc • (2sv\{~}) is the set of states,
2. R.a C_ S~t • A • S~t is the set of transitions,
3. ~A = (~c, {~v}) is the initial state.

To make the correspondence between global states and abstract states precise,
we define families of abstraction functions {r {r where r : Sa: -+ Set, and
r : S~, • S~, -+ d. For a state s E S ~ , r = (s(0), {a [(3i E [1..n] s(i) =
ai)}), and for a pair (s , t) , en (s , t) = {(a,b) t 3 i e [1..n] s(i) = ai A t(i) = bi}.
Then (c, S) represents s E Gn iff (c, S) = Ca(s).

For a guard g, and state (e, S) of.A, we define (c, S) [1 - g as (c, u l , . . . , vk)
g, where S = { u . . . v} (for some ordering u . . . v of the elements of S) and [SI = k.
The following proposition relates ~ and []- :

P r o p o s i t i o n l . For any n and any s E 6~, /f (e,S) = en(s)~ then for every
guard expression g, s ~ g if)" (c, S) I - g. []

The set of transitions is defined as follows: A tuple ((c, S), X , (c', S')) E R.a
iff

1. (3p c 2+ c' E R c A (c, S) l I - p) (A transition from c to d is enabled for the
control process)!

2. (Va,b (a,b) G X :~ a E S Ab E S' A (3q a ~ b E n u A (c , S) [] - q)). (For
every pair (a, b) in X, there is an enabled transition from a to b in the user
process).

3. X is total on S, and X -1 is total on S ~, (Every state in S has a successor
in SI, and every state in S t has a predecessor in S).

D e f i n i t i o n 2 . A path in ~ is a sequence of states such that adjacent states are
in the global transition relation of ~ . []

D e f i n i t i o n 3 . A path in A is a sequence starting at a state, with alternating
states and transition labels such that for every s, s p E S~ and X E A, s X s ~
occurs in the sequence only if (s, X, s j) E R.~. []

Define a family of functions {7i} such that % maps from paths in G, to paths
in A by (Tn (~r))2~ = r and (7,~ (~r))2~+t = r ~'~+1) for all i E N,

P r o p o s l t i o n 4 . For every path a" in ~n, 7n(Cr) is a path in ,4. []

it follows from Proposition 4 that if A satisfies a linear temporal formula over
all paths, then so does every size instance of the family. However, if the formula
is false for some path in A, it does not follow that it is false for some instance,
as not every path in .4 arises from a corresponding path in some instance; those
that do are called "good".

D e f i n i t i o n 5 . A path p in ,4 is goodiff 3n 3(r E ~n %(~r) = p. I3

D e f i n i t i o n 6 . A path # in Gi covers a path a in Gj (i >_ j) iff % (#) = 7j(r
and for every k ~ N, a E U, ~a(~r~) >_ ~:a(crk). []

91

L e m m a 7. (Covering Lemma) For n j > n, every path in Gn has a covering path
in 6n,.

P r o o f
Let a be a path in G,. Define ~r' in ~ , , by the following: e~(O) = c~k(O), and

for i G [1..nq, ~ (i) = al, where a is such that if i rood n • O, then cr~(i rood n) =
ai,nodn, and and if i modn = 0, then ak(n) = an.

It follows that r = r and that #a(~r~) _> #a(crk) for all a E U.
To complete the proof, we need to show that Ca' ~ '
Since (r ~rk+l) is a transition of ~n, there exist guards p, q l , . . . qn , such that

~k (0) -~+ ~k+l (0) is the transition of the control process, and Ck (i) -~ ~rk+l (i) is
the transition of process Ui, for i E [1..n]. As r (a~) - r (~rk), from Proposition
1, transition qi is enabled for user processes with indices j = i (rood n) in ~r~.
The resulting state is ~r~+ 1. It follows that r ~ + 1) = r r and so
c~' is a path of ~ , that covers or. []

L e m m a 8. Every finite path of .A is good.

P r o o f
The proof is by induction on the number of states in the path. Suppose the

path is a single state s. Let s = (c,S), and. let n = IS[. Consider the state
r = (C, Ul , . . . v~) in 6,~, where S = { u . . . v } . As r = s, the claim is true of
paths with one state. Suppose that it is true for all paths with at most m states,
for m >_ 1, and let p be a path with m + 1 states. Then, p = p'Xt, where if s
is the last state in p', then (s, X, t) E R.4. By inductive hypothesis, for some n',
there is a path ~' E G~, such that %,(or ~) = pJ. Let r ~ be the last state in ~r'.

For each a E U, let m~ = I{b I (a, b) e X)I . If for some a, m~ > # a (r ') , one
can construct a path covering ~r' such that if u is the final state on that path,
then m~ < r Repeating this construction for each user state a for which it
is necessary, we obtain, for some n, a path cr in 6~ such that c~ covers or', and
for every a, ma < # a (r) , where r is the last state on ~r.

As m~ < # a (r) for each a, one can associate at least one index i ~ [1..n] with
each pair ~ , b) in Z . For every pair (a, b) in X, there is an enabled transition
from a to b in the user process. Thus, there is a state u G ~n generated by
performing the enabled transition from ai to bi in each process Ui where index
i is associated with the pair (a, b), and the enabled transition for the control
process. It is easy to verify that r (u) = t, and hence, cru is a path in ~,~ such
that % (cru) = p. []

4 V e r i f y i n g p r o p e r t i e s o f t h e c o n t r o l p r o c e s s

The properties of the control process are of the form Ah or Eh, where h is
a linear-time temporal formula with atomic propositions over the states of C.
To model-check such a property, we follow the automata-theoret ic approach of
[VW 86] : To determine if M, t M ~ [:h, construct a Biichi automaton Bh for h,
and check that the language of the product Biichi automaton of M and Bh is
non-empty (ef. [LP85]). The check for the property Ah is easily reduced to that
for the earlier case by noting that M, tM ~ Ah iff M, tM ~== [=~h.

We say that formula Ah is universal iff it is true for every size instance of the
family. To determine ifAh is universal, we model check it over the abstract graph,
by construct ing a Biichi automaton B for -~h, and forming the product Biichi
automaton M of.A and B. B accepts a computat ion c~ labeled with propositions

92

over states of C iff there is a run of B on c~ such that a "green" state of B is
entered infinitely often. An accepting path in .hd is one which starts in an initial
state, and along which a green state occurs infinitely often. For a path 5 in A4,
let 5~ be its projection on ,4. A path in A.~ is good iff its projection on A is a
good path in .4.

T h e o r e m 9. Formula Ah is not universal iff there is an accepting good path in
A4.

P r o o f
Suppose 5 is an accepting good path in ~4. As ~A is good, for some n, there

is a path in G~ that matches 5~ on the sequence of states of C, and is hence
accepted by B. Therefore, Ah is false in G~, and hence is not universal.

In the other direction, if Ah is not universal, then for some n, there is a path
c~ in G~ from the initial state that is accepted by B. From Lemma 4, 7n (cr) is a
path in A, which is good by construction. The sequence of states of C in 7~(cr)
is the same a s in ~, hence there is a run of B on 7,~(c ~) that forms an accepting
good path in .M. []

4.1 Finding accepting good paths in A4

From Theorem 9, to determine if Ah is not universal, we have to check if there
is an accepting good path in .~d. The following lemmas provide the basis for a
PSPACE algorithm to check universality.

For a cycle 5 in A/f, we say that 5 is good iff the infinite path 5 ~ is good.

L e m m a 10. There is an accepting good path in A/f iff there are finite paths
and ~ in J~, such that

1. ~ is a path from the initial state to a green state s, and
2. j3 is a good cycle starting at s. []

Intuitively, a cycle in A/[is good if, starting at some global state which maps to
a state in the cycle, there is no transition in that cycle that causes the count of
processes in a specific local state to be "drained" (i.e. decreased monotonically)
as the sequence of transitions along the cycle is executed repeatedly. For example,
a self-loop with the transition label {(a, b)} will decrease the count of processes
in state a with every execution of the transition, while one with transition label

(a, b), (b, a)} may not. Notice that in the latter case, there is a cycle a --+ b -+ a
n the transition label considered as a graph. This presence of cycles in the

transition labels is the intuition behind the characterization of good cycles of
A4.

x~ = { (A ,C) , (A,D) , (B , D) }

(K, { I }) 0 ((/ A) (I B) (K, {C, D})

F I G 2 : A p o r t i o n of t h e a b s t r a c t graph for t h e e x a m p l e in F I G I.

To determine if such cycles are present, we resolve a cycle in 2~4 into a
"threaded graph" (cf. [ES 95]) which shows explicitly which local user state in
an abstract state is driven into which other local user state in the next abstract
state. This information is obtained from the transition label. The threaded graph
is defined below:

93

D e f i n i t i o n l l . T h r e a d e d G r a p h

Let 5 be a finite path in A4 with m states. Let the ith state of 5 be called
si, and the ith transition be called Xi. For a state s = ((c, S), u) of ~4, let
Ustates(s) = S. Define H5 to be the following graph :

V(H~) = {(x,i) l i e [1..mlA x e Ustates(si))
E(H~) : {((z, i), (y, i + 1)) I i e [1..m - 1] A (x, y) 6 X{} .
I f5 is a cycle, define G~ to be the graph where V (~) : V(H~), and E(g~) :

E(H~) U {((x, m), (x, 1)) I x ~ Ustates(s~)]. Note that for a cycle 5, sl : sin.
A graph is isolated iff its edge set is empty. For any directed graph G, let

maxscc(G) be the graph representing, the decomposition of G into its maximal
strongly connected components (sccs).

V (maxscc(G)) = { C I C is a maximal strongly connected component of G}
 (maxsce(V)) = {(C, D) I C, t (s, t! E(a)}
We refer to vertices of maxscc(G) as max-scc s. It is a fact that maxscc(G)

is acyclic for any graph G. For any max-scc D in maxscc(G), define max-scc C
to be above D if there is a path in maxscc(G) from C to D.

The following figure shows the threaded graphs for the cycles N~ ~ N2 ~ N~

and N~ ~ N~ ~ N~ in figure 2:

F I G 3a : Threaded graph G5 for the firs'~ cycle F I G 3b : Threaded graph G5 for ~he second cycle

L e m m a 1 2 . 5 is a good cycle in AJ iff maxsce(G~) is isolated.

P r o o f S ke t c h
(LHS ~ RHS): Suppose that maxscc(G~) is not isolated but 5 is good. Hence,

there are max-scc's C and D such that some pair of vertices (x, i) in C and (y, j)
in D is connected in G~. For any n, consider an infinite path g in ~ . such that
%(e~) = 5~. We say that a process with index l E [1..n] and local state al is in
component F at the kth state in cr iff (a, k) E F.

Let m be the number of states in 5. Starting with the ith transition in
c~, at every mth successive transition, at least one of the processes m C, say
one with index l, must change its local state from xl to yz. Thus, the count
of processes in components above D decreases at each such step. As the max-
scc decomposition is acyclic, this number cannot increase. Thus, eventually, the
number of processes in components above D must become negative, which is
impossible as cr is infinite. Hence, 5 is not good.

(RHS ~ LHS): Suppose that maxscc(G~) is isolated. For each max-scc of
G$, construct a cycle in G~ that includes each edge in that component at least
once. For each a E U, let m~ be the number of occurrences of the vertex (a, 1)
in the set of cycles. Let n = Z~eum a. We will construct a path ~ in ~ such
that 7n (c~) = 5"~. The idea behind the construction is to allot a set of processes
for each constructed cycle, and to ensure that each transition of every process is
along the cycle that it is alloted to.

The inductive assumption is that at the ith step (i < m), a path ~ has been
constructed such that ~(~r ~) is the prefix of 5.~ up to the ith state, and if s is

94

the last state of ~r', then #a(s) is the number of occurrences of (a, i) in the set of
constructed cycles. Hence, after m steps, the last state sm is a permutation of the
first state sl. Repeating the construction at most n times produces a path or with
last.state identical to sl, and such that 7~(ct) = cir. Thus, 7,~ (~r ~) = ($.~)~ = ~f.~,
and so ~ is a good cycle. []

For a finite path a with m states in .A define ~ to be the relation over
Su • Sv where (a, b) E ~ iff there is a path from (a, 1) to (b, m) in g~ . We say
that relation R is cyclic iff for every edge in the graph of R, there is there is a
cycle in the graph that includes that edge.

L e m m a 13. For a cycle ~ in Jv~ maxscc(G~) is isolated iff ~ is cyclic. []

T h e o r e m 14. Formula Ah is not universal iff there is a .finite path in Pet from
an initial state to a green state and a cycle ~ from that state such that ~ is cyclic.

P r o o f Follows from Theorem 9 and Lemmas 12, 13. []
Let L be the maximum length of a guard in C and U processes. Note that

L < ICl + IuI

T h e o r e m 1 5 . There is a nondeterministic algorithm to decide if a temporal
property over computations of C is not universal which uses space O([Su[2 -b
Iog(IScllS•[) + n). The algorithm uses space logarithmic in the size of A~.
P r o o f

By Theorem 14, a property Ah is not universal iff there is a finite path in .M
to a green state and a following cycle ~ from that state such that ~ is cyclic. The
algorithm "guesses" a path to a green state, and a cycle ~ from it, recording only
the current state of M , and ~ for the prefix ~ of ~ that has been examined. As
(a; X; s) = ~ o X, ~ can be computed incrementally.

Recording a state of.A~ takes space (log(Sc |Sn D + t Su1) �9 Computing a suc-
cessor state can be done in space proportional to (log[S~[§ log]Sol + log[Sv[q- L)
(as this requires checking if (c, S) [[.- p for guards p). Storing 5 --7 takes space |Su 12,
and checking if ~ is cyclic can be done within the same space bound. Thus, the
overall space usage is O(ISuI 2 q- tpg([ScllSB[) -~- L). []

R e m a r k . There are two special cases where the algorithm can be optimized.
If the user processes are deterministic, every cycle ~ in ~4 is good (as G~ must
be isolated). If the correctness property is a safety property, the algorithm need
check only finite accepting paths, which are good by Lemma 8. In both cases,
the check for good cycles can be eliminated, which is a substantial saving. []

A reduction from a generic PSPACE T~ring Machine shows that checking if
AG-,accept is not universal is PSPACE-hard.

T h e o r e m 16. Deciding if a property over computations of C is not universal is
PSPA CE- complete.

C o r o l l a r y 17. Deciding if a property over computations of C is universal is
PSPA CE-complete.

The algorithm given above for determining if a property is not universal is non-
deterministic and uses polynomial space. So, using Savitch's construction, there
is a deterministic algorithm with time complexity 0 (2 k(lsvl2+z~
for some k. We present a "natural" deterministic algorithm with the same worst
case time complexity in [Su[. Let K = IS~t x 2 lsu]~ . The algorithm follows from
this observation:

95

P r o p o s i t i o n l8 . I f p is a finite path in Je[from s to t of length greater than
K, then there is a path ~ from s to t in Ad of length at most K such that -~ = 5.

P r o o f
Define an equivalence relation on states s of p by si -- sj iff sl = sj and

Xo o X1. . .X i -1 = Xo o XI . . . X j -1 . Clearly there are at most K equivalence
classes. So if the length of p is greater than K, there must be distinct indices
i and j such that si =- sj. Assume that i < j . Then the path p~ formed by
appending the suffix from sj to the prefix up to si is a path in 34 that is shorter
than the path p, and is such that p~ = ~. Repeating this construction a finite
number of times produces a path 5 with the desired properties. []

T h e o r e m 19. There is a deterministic algorithm to determine if a property is
not universal with exponential worst case time complexity in [Su].

P r o o f Ske t ch
From Proposition 18, it suffices to look for cycles (in Theorem 14) of length

at most K. This can be done using an iterative squaring of the transition relation
of 34, with overall time complexity exponential in IScr]. []

5 Symmetry reduction

Let zr be a permutation over the set { 0 . . . n } that fixes 0. For a state s =
(c, u l , . . . , vn) in ~n, the permuted state 7r(s) is defined by (7r(s))(i) = ai iff
s(zr-l(i)) = ar-l(i) , for i E [0..n]. For example, the state (c, ul,v2, wa) under
the permutation r -- {.(1 --~ 2).(, 2 --4 3)(, 3 --4 1)} becomes (c, wl, u2, v3). As
r = r from Propos~tlon 1, the truth value of any guard is the same
in both s and ~r(s). Hence there is complete symmetry among the user processes
in any size instance of a (C, U) family, and the PMCP for formulae of type
(2) and (3) reduces that for formulae of type (1). The following lemmas are
based on those in [ES 93, CFJ 93] (cf. [ID 93]) Let f (i) be a CTL* formula with
propositions over the states of C and over the states of U indexed with i, and
let f (i , j) be a CTL* formula with propositions over the states of C and over
the states of U indexed with either i or j .

Lemma20. Forn >_ 1, G~,~v~ ~ Ai f(i) iffG~,~ ~ f(1).

L e m m a 2 1 . For n >_ 2, G~,LU~ ~ Ai#j f (i , j) iff 6,~,to~ ~ f(1,2) .

Let CIU be the process where Sciu = Sc x Su, and (c, u)P~q' (c', u') E Rc lu

iff c 4 c' E R c and u 4 u' E Ru, and p' (similarly q') is p (q) with every global
condition (3i $(i)) replaced with g(O) V (3i g(i)), where propositions labeled by
0 refer to the state of U in CIU.

T h e o r e m 22. A property of the form Ai Ah(i) is universal for a (C, U) family
iff Ah(0) is universal for the control process in the family (CIU, U).

T h e o r e m 23. A property of the form Ai#j Ah(i, j) is universal for a (C, U)
family iff Ah(O, 0') is universal for the control process in the family ((CIUIU), U)

96

6 A p p l i c a t i o n s

We have implemented this algorithm to verify a bus arbitration protocol based
on the SAE J1850 draft standard [SAE 92] .for automobile applications. This
is a protocol where many microcontrollers can transmit symbols along a shared
single-wire bus in a car. As a consequence of this restriction, symbols are encoded
by the width of a pulse. Nodes on the bus may begin transmitting different
messages simultaneously; only the node with the highest priority message should
complete transmission after the arbitration process. Symbol 0 has priority over
symbol 1, and priority between messages over the alphabet {0, 1} is determined
lexicographically. The microcontrollers are modeled as user processes, and the
bus as the control process. The property which we have verified, using the result
in Theorem 23, is that whenever two users begin simultaneous transmission of
symbols 0 and 1 respectively, the user transmitting 1 continues transmission
unless it loses arbitration. Hence, messages with lower priority cannot prevail
over higher priority messages.

We implemented the algorithm by generating SMV [McM92] code to describe
the abstract process transitions, given a description of the next-state relation of
the user and control processes. Since the correctness property is a safety property,
we were able to simplify the implementation as described following Theorem 15.
Each user process has about 50 states, while the control process together with
the automaton for the property has about 400 states. Verification took less than
a minute on a SPARC 5. We emphasize that this establishes correctness of the
bus protocol for an arbitrary number of attached microcontrollers.

7 C o n c l u s i o n s a n d R e l a t e d W o r k

A variety of positive results on the PMCP have been obtained previously. All of
them, however, possess certain limitations, which is perhaps not surprising since
the PMCP is undecidable in general (cf. IAK 86],[Su 88]). Many of the methods
are only partially automated, requiring human ingenuity to construct, e.g., a
process invariant or closure process (cf. [CG 87], [BCG 89], [KM 89], [WL 89]).
Some could be fully automated "but do not appear to have a clearly defined
class of protocols on which they are guaranteed to succeed (cf. [ShG 89], [V 93],
[CGJ 95]).

Abstract graphs (for asynchronous systems) were considered in [ESr 90] for
synthesis, [V 93] for automatic but incomplete verification, and in [CG 87], where
they are called process closures. Interestingly, [CG 87] show (in our notation)

k k-~l that if, for some k, C II U II ,4 is appropriately bisimilar to C II U II .4, then
it suffices to model check instances of size at most k to solve the PMCP. How-
ever, they do not show that such a cutoff k always exists, and their method is not
guaranteed to be complete. Pong and Dubois [PD 95] propose a similar abstract
graph construction for verification of safety properties of cache coherence proto-
cols. They consider a synchronous model with broadcast actions. Although sound
for verification, their method appears to be incomplete. Lubachevsky [Lu 84]
makes an interesting early report of the use of an abstract graph similar to a
"region graph" for parameterized asynchronous programs using Fetch-and-Add
primitives; however, while it caters for (partial) automation, the completeness
of the method is not established and it is not clear that it can be made fully
automatic.

Our approach, in contrast, is a fully automated, sound and complete one (i.e.~
always generates a correct "yes" or "no" answer to the PMCP). Another such
approach appears in [GS 92]. They also consider systems with a single control

97

process and an arbitrary number of user processes, but with asynchronous CCS-
type interactions. Unfortunately, their algorithm has exponential space (double
exponential time) worst case complexity.

Our framework thus differs from [GS 92] in these significant respects: (a)
the parallel composition operator is synchronous; (b) we permit guards test-
ing "everywhere" conditions (i.e., of the form V/g(/)); (c) it is more tractable
(PSPACE vs. EXPSPACE) 5 . Partial synchrony can also be handled in our frame-
work. These factors permit us to represent a wider range of concurrent systems.
For example, the bus protocol described in Section 6 relies on the ability to test
everywhere conditions, which are not permitted in [GS 92]. There is a notewor-
thy limitation in the modeling power of our present framework. Because of the
covering lemma (Lemma 7), an algorithm for mutual exclusion cannot be im-
plemented in our model (cf. [GS 92]'s control process-free model), even with the
control process. We suspect it is possible to overcome this restriction, and are
working on it.

Finally, it is interesting to note that we can show that for fully asynchronous
computation (interleaving semantics), the PMCP for our model becomes un-
decidable. This is shown by a simple simulation of a two counter machine by
a (C, U) family. Essentially, the zero-test of a two counter machine can be ex-
pressed as an everywhere condition, and increments can be encoded because
precisely one process fires at each step in the computation.

A c k n o w l e d g e m e n t s . We would like to thank Carl Pixley of Motorola for sug-
gesting the bus protocol example, and the referees for bringing [PD 95] to our
attention.

R e f e r e n c e s

[AK 86]

[BCG 89]

ICE 81]

[CES 86]

[CFJ 93]

[cG 87]

[CGJ 95]

[Em 90]

Apt, K., Kozen, D. Limits for automatic verification of finite-state concur-
rent systems. IPL 15, pp. 307-309.
Browne, M. C., Clarke, E. M., Grumberg, O. Reasoning about Networks
with Many Identical Finite State Processes, Information and Computation,
vol. 81, no. 1, pp. 13-31,' April 1989.
Clarke, E.M., Emerson, E.A. Design and Synthesis of Synchronization
Skeletons using Branching Time Temporal Logic. Workshop on Logics of
Programs, Springer-Verlag LNCS 131.
Clarke, E.M., Emerson, E.A., and Sistla, A.P., Automatic Verification of
Finite-State Concurrent Systems using Temporal Logic, A CM Trans. Prog.
Lang. and Sys., vol. 8, no. 2, pp. 244-263, April 1986.
Clarke, E.M., Filkorn, T., Jha, S. Exploiting Symmetry in Temporal Logic
Model Checking, 5th CAV, Springer-Verlag LNCS 697.
Clarke, E.M., Grumberg, O. Avoiding the State Explosion Problem in Tem-
poral Logic Model Checking Algorithms, PODC 1987.
Clarke, E.M., Grumberg, O., Jha, S. Verifying Parameterized Networks
using Abstraction and Regular Languages. CONCUR 95.
Emerson, E.A., Temporal and Modal Logic, in Handbook of Theoretical
Computer Science, vol. B, (J. van Leeuwen, ed.), Elsevier/North-Holland,
1991.

5 On the other hand, for their model of computation with all user processes but no
control process, there is a polynomial time algorithm [GS 92]. We believe that our
PSPACE-completeness result is not an insurmountable barrier to practical utility,
given BDD-based implementations, as suggested in section 6.

98

[EN 95]

[ES 93]

[ES 95]

[ESr 903

[GS 92]

[HB 9.5]

lID 93]

[KM 89]

[LSY 94]

[LP85]

[Lo 931

[Lu 84]

[MP 921

[McM92]

[Pn 77]
[PD 95]

[RS 85]

[RS 93]

[SAE 92]

[ShG 89]

[Su 88]

[Va9?]

[vw 861

[v 93t

[WL 89]

Emerson, E.A., Namjoshi, K.S. Reasoning about Rings. Proc. ACM Sym-
posium on Principles of Programming Languages, 1995.
Emerson, E.A., Sistla, A.P. Symmetry and Model Checking, 5th CAV,
Springer-Verlag LNCS 697.
Emerson, E.A., Sistla, A.P. Utilizing Symmetry when Model Checking un-
der Fairness Assumptions: An Automata-theoretic approach. CAV 1995.
Emerson, E.A., Srinivasan, J. A decidable temporal logic to reason about
many processes. PODC 1990.
German, S.M., Sistla, A.P. Reasoning about Systems with Many Processes.
J.ACM, Vol. 39, Number 3, July 1992.
Hojati, R., Brayton, R. Automatic Datapath Abstraction in Hardware Sys-
tems, CAV 1995.
Ip, C., Dill, D. Better verification through symmetry. Proc. l l t h Intl. Symp.
on Computer Hardware Description Languages and their Applications.
Kurshan, R.P., McMillan, K. A Structural Induction Theorem for Pro-
cesses, PODC 1989.
Li, J., Suzuki, I., Yamashita, M. Fair Petri Nets and structural induction
for rings of processes. Theoretical Computer Science, vol. 135(2), 1994. pp.
337-404.
Litchtenstein, O., and Pnueli, A., Checking That Finite State Concurrent
Programs Satisfy Their Linear Specifications, POPL 85, pp. 97-107.
Long, D. Model Checking, Abstractign , and Compositional "verification.
Ph.D. Thesis, Carnegie-Mellon University, 1993.
Lubachevsky, B. An Approach to Automating the "Verification of Compact
Parallel Coordination Programs I. Acta In]ormatica 21, 1984.
Manna, Z., Pnueli, A. Temporal Logic of Reactive and Concurrent Systems:
Specification, Springer-Verlag, 1992.
McMillan, K., Symbolic Model Checking: An Approach to the State Ex-
plosion Problem, Ph.D. Thesis, Carnegie-Mellon University, 1992.
Pnueli, A. The Temporal Logic of Programs. FOCS 1977.
Pong, F., Dubois, M. A New Approach for the Verification of Cache Co-
herence Protocols. IEEE Transactions on Parallel and Distributed Systems,
August 1995.
Reif, J., Sistla, A. P. A multiprocess network logic with temporal and spatial
modalities. JCSS 30(1), 1985.
Rho, J. K., Somenzi, F. Automatic Generation of Network Invariants for
the Verification of Iterative Seqnential Systems. CAV 1993, LNCS 697.
SAE J1850 Class B data communication network interface. Society of Au-
tomotive Engineers, Inc., 1992.
Shtadler, Z., Grumberg, O. Network Grammars, Communication Be-
haviours and Automatic Verification. Springer-Verlag, LNCS 407,
Suzuki, I. Proving properties of a ring of finite state machines. IPL 28, pp.
213-214.
Vardi, M. An Automata-theoretic Approach to Linear Temporal Logic,
Proceedings of Banff Higher Order Workshop on Logics for Concurrency,
F. Moiler, ed., Springer-Verlag LNCS, to appear.
Vardi, M., Wolper, P. An Automata-theoretic Approach to Automatic Pro-
gram Verification, Proc. IEEE LICS, pp. 332-344, 1986.
�9 Verifier, I. Specification and Verification of Parameterized ParMlel Pro-
grams. Proc. 8th Intl. Syrup. on Computer and Information Sciences, Is-
tanbul, Turkey, pp. 622-625.
Wolper, P., Lovinfosse, V.. Verifying Properties of Large Sets of Processes
with Network Invariants. Springer-Verlag, LNCS 407.

