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A b s t r a c t .  Systems with an arbitrary number of homogeneous processes 
occur in many applications. The Parameterized Model Checking Problem 
(PMCP) is to determine whether a temporal property is true of every size 
instance of the system. We consider systems formed by a synchronous 
parallel composition of a single control process with an arbitrary number 
of homogeneous user processes, and show that the PMCP is decidable for 
properties expressed in an indexed propositional temporal logic. While 
the problem is in general PSPACE-complete, our initial experimental 
results indicate that the method is usable in practice. 

1 I n t r o d u c t i o n  

Systems with an arbitrary number of homogeneous processes occur in many 
contexts, especially in protocols for data  communication, cache coherence, and 
classical synchronization problems. Current verification work on such systems 
has focussed mostly on verifying correctness for instances with a small number  of 
processes. This does not indicate whether larger size instances are error-free, and 
so does not guarantee correctness in general. We are thus interested in methods 
that  verify correctness for arbitrary size instances. Even though sometimes there 
is indeed a specific upper bound on the number of processes in a system, verifying 
such large size instances is intractable because of state explosion. 

The general problem, then, is the Parameterized Model Checking Problem 
(PMCP): to determine whether a temporal  property is true of every size instance 
of the the system. This is known to be undecidable in general [AK 86, Su 88]; 
however, it is decidable algorithmically for restricted classes [GS 92, EN 95], 
and there are methods with some degree of automation [Lu 84, ShG 89, KM 89, 
WL 89, V 93, CGJ 95]. This previous work (with the exception of [KM 89]) was 
oriented toward asynchronous systems. 

We propose a fully automated approach to the PMCP for synchronous sys- 
tems. We consider synchronous systems with a unique control process and an 
arbitrary number of homogeneous user processes. Each system is thus parame- 
terized by the number of user processes. The processes are specified by labeled 
transition graphs, in which guards on each transition check the state of the con- 
trol process as well as certain conditions on the global state. The correctness 
properties are expressed in an indexed propositionM branching temporal  logic, 
and are of the following types: 
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http-//www, c s .  u t e x a s ,  edu/users/{emerson, kedar}. 
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1. Over the control process : formulae of the form Ah and Eh, where h is a 
linear4ime formula with atomic propositions over control process states, 

2. Over all user processes: Ai Ah(i) , and Ai Eh(i), where h(i) is a linear-time 
formula with atomic propositions over control process states, and over user 
process states indexed with i. 

3. Over every distinct pair of user processes : Ai#j Ah(i,j), and A ~ j  Fh(i,j), 
where h(i, j) is a linear-time formula with atomic propositions over control 
process states, and over user process states indexed with either i or j. 

We show that the PMCP for the first type of formulae is decidable for this 
class of systems, and is PSPACE-complete. This decidability result is based on 
constructing an abstract graph in which every computation of every size instance 
of the system is represented by some path in the graph. However, the abstract 
graph may have "bad" paths that do not correspond to computations of any 
size instance. The heart of the algorithm is a method for identifying good paths 
in the abstract graph. This algorithm can be implemented in space polynomial 
in the size of the control and user processes. We show by a generic reduction 
that the PMCP is PSPACE-hard. As a result of the symmetry inherent in the 
system, the PMCP for the other types of formulae reduces to the PMCP for the 
first type. We have implemented this algorithm in SMV [McM92] and used it to 
check correctness of a bus arbitration protocol. Our initial experimental results 
indicate that the algorithm should be useful in practice. 

Section 2 defines the system model and the logic used for expressing cor- 
rectness properties. Section 3 describes the abstract graph representation, and 
Section 4 the algorithm for the PMCP for formulae of type (1). Section 5 shows 
the reduction of the PMCP for formulae of types (2) and (3) to the PMCP for 
formulae of type (1). Section 6 describes our implementation of the algorithm, 
and the application to the bus protocol. Section 7 concludes the paper with a 
discussion of related work. 

2 T h e  s y s t e m  m o d e l  a n d  l o g i c  

We refer to the collection of system instances formed by control process C and 
copies of a generic user process U as a (C, U) family. The control and user 
processes are specified as finite-state labeled transition graphs. We use the terms 
"process" and "labeled transition graph" interchangeably. For a process P, let 
Sp denote its set of states, Rp its transition relation, and ~p its initial state 2. 

The system instance of size n is a synchronous parallel composition of C with 
n copies of process U, and is denoted as C NUn -- C [l U1 [I U2...  II U,~. Ui is 
the ith copy of U, which is obtained from U by uniformly subscripting the states 
of U with i as shown in the example below a. 

Ai 

F I G  1~: T h e  c o n t r o l  p r o c e s s  F I G  l b :  T h e  g e n e r i c  u s e r  p r o c e s s  F I G  l c :  T h e  i t h  u s e r  p r o c e s s  

2 The results of this paper carry over for processes with a set of initial States. 
3 In this example, C has initial state K, and U has initiM state I. Atomic propositions 

are identified with state names. 
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Thus for all i,j, Ui and Uj are isomorphic up to re-indexing. Transitions in 
both C and Ui are labeled with guards. Every guard is a boolean combination 
of users conditions, which have the form (3i g(i)),  where g(i)  is a boolean 
expression formed from atomic propositions over the states of C, and over the 
states of Ui. 4 

G~ denotes the global state transition graph of the instance of size n. A state 
s of G. is written as an (n + 1)-tuple (c, u l , . . . ,  v,~), where c is the local state 
of C, and the (i + 1) 'th component of the tuple is the local state of U~ (for 
i E [1..n]). The (i + 1)'th component of s is denoted by s(i)�9 The initial state of 
~n is ( tc ,  (Lu)I,.  �9 (tv)n)- A transition (s, t) is in ~,~ iff 

1. A transition of C from s(0) to t(0) is enabled in s, and 
2. For all i E [1..n], a transition of Ui from s(i) to t(i) is enabled in s. 

where a transition in a process is said to be enabled in a global state iff the 
corresponding guard is true when. evaluated in that  global state. We write s ~ g 
iffguard g is true in the global state s. s ~ (3i g(i))  ifffor some k E [1..n], g(k) 
is true given the propositions that  hold at s(0) (the control state), and s(k) (the 
state of process Uk). Boolean operators are handled in the standard manner.  'For 
a global state s, and state a E Su, we let ~r = I{i]i E [1..n] A s(i) = ai}l 
(i.e., ~a(s) is the number of user processes with local state a of the generic user 
process). 

PLTL is the standard propositional linear temporal  logic built up from atomic 
propositions, boolean connectives, and temporal  operators G (always), F (some- 
time), X (next time), and IJ (until) [Pn 77, MP 92]. CTL* is a branching tempo- 
ral logic which extends PLTL by allowing the path quantifiers A (for all fullpaths) 
and E (for some fullpath). Many interesting correctness properties of parame- 
terized systems can be expressed in one of the following forms: 

1. Over the control process : formulae of the form Ah and Eh, where h is a 
linear-time formula with atomic propositions over control process states, 

2. Over all user processes' A. Ah(i) , and Ai Eh(i), where h(i) is a linear-time 
formula with atomic proposJ.tlons over control process states, and over states 
of U indexed with i. 

3. Over all distinct pairs of user processes : Ai#j  Ah(i,j), and AiCj Eh(i, j ) ,  
where h(i, j) is a linear-time formula with atomic propositions over control 
process states, and over states of U indexed with either i or j .  

The formal semantics of these logics is defined in the usual way [Em 90, BCG 89, 
ES 95], and we write M, s ~ f to mean that  formula f is true in structure M 
at state s. 

3 T h e  a b s t r a c t  m o d e l  

For a given (C, U) family, we construct an abstract process A which includes 
all computations of every size instance of the family. Intuitively, a state (c, S) 
of.A represents any global state in which the control process is in state c, there 
is at least one user process in every user state in S, and no user process is in a 

4 There are two interesting special cases : (a) The guards in U~ involve only propositions 
over states of C. The control process may then be viewed as controlling the execution 
of the user processes. (b) The control process is a copy of the user process, and can be 
written as U0. Then C ][ U '~ is isomorphic to U ~+1 . Our method applies in general, 
but often finds interesting application in these special cases�9 
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state in S u \ S .  Transitions from a state (c, S) represent transitions enabled from 
global states that are represented by (e S). Each such transition has a label 
which represents moves of individual processes. 

Formally, let A = 2SuxS~\{O} be the set of edge labels. A is defined by a 
labeled transition graph, where 

1. S.a = Sc  • (2sv\{~}) is the set of states, 
2. R.a C_ S~t • A • S~t is the set of transitions, 
3. ~A = (~c, {~v}) is the initial state. 

To make the correspondence between global states and abstract states precise, 
we define families of abstraction functions {r {r where r : Sa:  -+ Set, and 
r : S~, • S~, -+ d. For a state s E S ~ ,  r  = (s(0), {a [ (3i E [1..n] s(i) = 
ai)}), and for a pair (s , t) ,  en ( s , t )  = {(a,b) t 3 i  e [1..n] s(i) = ai A t(i) = bi}. 
Then (c, S) represents s E Gn iff (c, S) = Ca(s). 

For a guard g, and state (e, S) of.A, we define (c, S ) [ 1 -  g as (c, u l , . . . ,  vk) 
g, where S = { u . . .  v} (for some ordering u . . . v  of the elements of S) and [SI = k. 
The following proposition relates ~ and []-  : 

P r o p o s i t i o n l .  For any n and any s E 6~, /f (e,S) = en(s)~ then for every 
guard expression g, s ~ g if)" (c, S) I - g. [] 

The set of transitions is defined as follows: A tuple ((c, S), X ,  (c', S')) E R.a 
iff 

1. (3p c 2+ c' E R c  A (c, S) l I - p) (A transition from c to d is enabled for the 
control process)! 

2. (Va,b (a,b) G X :~ a E S Ab E S' A (3q a ~ b  E n u  A ( c , S ) [ ] -  q)). (For 
every pair (a, b) in X, there is an enabled transition from a to b in the user 
process). 

3. X is total on S, and X -1 is total on S ~, (Every state in S has a successor 
in SI, and every state in S t has a predecessor in S). 

D e f i n i t i o n 2 .  A path in ~ is a sequence of states such that adjacent states are 
in the global transition relation of ~ .  [] 

D e f i n i t i o n 3 .  A path in A is a sequence starting at a state, with alternating 
states and transition labels such that for every s, s p E S~ and X E A, s X s  ~ 
occurs in the sequence only if (s, X, s j) E R.~. [] 

Define a family of functions {7i} such that % maps from paths in G, to paths 
in A by (Tn (~r))2~ = r and (7,~ (~r))2~+t = r  ~'~+1) for all i E N, 

P r o p o s l t i o n 4 .  For every path a" in ~n, 7n(Cr) is a path in ,4. [] 

it  follows from Proposition 4 that if A satisfies a linear temporal formula over 
all paths, then so does every size instance of the family. However, if the formula 
is false for some path in A, it does not follow that it is false for some instance, 
as not every path in .4 arises from a corresponding path in some instance; those 
that do are called "good". 

D e f i n i t i o n 5 .  A path p in ,4 is goodiff 3n 3(r E ~n %(~r) = p. I3 

D e f i n i t i o n 6 .  A path # in Gi covers a path a in Gj (i >_ j)  iff % ( # )  = 7j(r  
and for every k ~ N, a E U, ~a(~r~) >_ ~:a(crk). [] 
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L e m m a  7. (Covering Lemma) For n j > n, every path in Gn has a covering path 
in 6n,. 

P r o o f  
Let a be a path in G,. Define ~r' in ~ , ,  by the following: e~(O) = c~k(O), and 

for i G [1..nq, ~ ( i )  = al, where a is such that  if i rood n • O, then cr~(i rood n) = 
ai,nodn, and and if i modn = 0, then ak(n) = an. 

It follows that  r = r and that  #a(~r~) _> #a(crk) for all a E U. 
To complete the proof, we need to show that  Ca' ~ ' 
Since (r ~rk+l) is a transition of ~n, there exist guards p, q l , . . . qn ,  such that  

~k (0) -~+ ~k+l (0) is the transition of the control process, and Ck (i) -~ ~rk+l (i) is 
the transition of process Ui, for i E [1..n]. As r (a~) - r (~rk), from Proposition 
1, transition qi is enabled for user processes with indices j = i (rood n) in ~r~. 
The resulting state is ~r~+ 1. It follows that  r ~ + 1 )  = r r and so 
c~' is a path of ~ ,  that  covers or. [] 

L e m m a  8. Every finite path of .A is good. 

P r o o f  
The proof is by induction on the number of states in the path. Suppose the 

path is a single state s. Let s = (c,S), and. let n = IS[. Consider the state 
r = (C, Ul , . . . v~)  in 6,~, where S = { u . . . v } .  As r = s, the claim is true of 
paths with one state. Suppose that  it is true for all paths with at most m states, 
for m >_ 1, and let p be a path with m + 1 states. Then, p = p'Xt, where if s 
is the last state in p', then (s, X, t) E R.4. By inductive hypothesis, for some n',  
there is a path ~' E G~, such that  %,(or ~) = pJ. Let r ~ be the last state in ~r'. 

For each a E U, let m~ = I{b I (a, b) e X)I .  If for some a, m~ > # a ( r ' ) ,  one 
can construct a path covering ~r' such that  if u is the final state on that  path, 
then m~ < r Repeating this construction for each user state a for which it 
is necessary, we obtain, for some n, a path cr in 6~ such that  c~ covers or', and 
for every a, ma < # a ( r ) ,  where r is the last state on ~r. 

As m~ < # a ( r )  for each a, one can associate at least one index i ~ [1..n] with 
each pair ~ ,  b) in Z .  For  every pair (a, b) in X,  there is an enabled transition 
from a to b in the user process. Thus, there is a state u G ~n generated by 
performing the enabled transition from ai to bi in each process Ui where index 
i is associated with the pair (a, b), and the enabled transition for the control 
process. It is easy to verify that  r (u) = t, and hence, cru is a path in ~,~ such 
that  % (cru) = p. [] 

4 V e r i f y i n g  p r o p e r t i e s  o f  t h e  c o n t r o l  p r o c e s s  

The properties of the control process are of the form Ah or Eh, where h is 
a linear-time temporal  formula with atomic propositions over the states of C. 
To model-check such a property, we follow the automata-theoret ic  approach of 
[VW 86] : To determine if M, t M ~ [:h, construct a Biichi automaton Bh for h, 
and check that  the language of the product Biichi automaton of M and Bh is 
non-empty (ef. [LP85]). The check for the property Ah is easily reduced to that  
for the earlier case by noting that  M, tM ~ Ah iff M, tM ~== [=~h. 

We say that  formula Ah is universal iff it is true for every size instance of the 
family. To determine ifAh is universal, we model check it over the abstract graph, 
by construct ing a Biichi automaton B for -~h, and forming the product  Biichi 
automaton M of.A and B. B accepts a computat ion c~ labeled with propositions 
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over states of C iff there is a run of B on c~ such that  a "green" state of B is 
entered infinitely often. An accepting path in .hd is one which starts in an initial 
state, and along which a green state occurs infinitely often. For a path  5 in A4, 
let 5~ be its projection on ,4. A path in A.~ is good iff its projection on A is a 
good path in .4. 

T h e o r e m  9. Formula Ah is not universal iff there is an accepting good path in 
A4. 

P r o o f  
Suppose 5 is an accepting good path in ~4. As ~A is good, for some n, there 

is a path in G~ that matches 5~ on the sequence of states of C, and is hence 
accepted by B. Therefore, Ah is false in G~, and hence is not universal. 

In the other direction, if Ah is not universal, then for some n, there is a path 
c~ in G~ from the initial state that  is accepted by B. From Lemma 4, 7n (cr) is a 
path in A, which is good by construction. The sequence of states of C in 7~(cr) 
is the same a s in  ~, hence there is a run of B on 7,~(c ~) that  forms an accepting 
good path in .M. [] 

4.1 Finding accepting good paths in  A4 

From Theorem 9, to determine if Ah is not universal, we have to check if there 
is an accepting good path in .~d. The following lemmas provide the basis for a 
PSPACE algorithm to check universality. 

For a cycle 5 in A/f, we say that  5 is good iff the infinite path 5 ~ is good. 

L e m m a  10. There is an accepting good path in A/f iff there are finite paths 
and ~ in J~, such that 

1. ~ is a path from the initial state to a green state s, and 
2. j3 is a good cycle starting at s. [] 

Intuitively, a cycle in A/[ is good if, starting at some global state which maps to 
a state in the cycle, there is no transition in that  cycle that  causes the count of 
processes in a specific local state to be "drained" (i.e. decreased monotonically) 
as the sequence of transitions along the cycle is executed repeatedly. For example, 
a self-loop with the transition label {(a, b)} will decrease the count of processes 
in state a with every execution of the transition, while one with transition label 

(a, b), (b, a)} may not. Notice that  in the latter case, there is a cycle a --+ b -+ a 
n the transition label considered as a graph. This presence of cycles in the 

transition labels is the intuition behind the characterization of good cycles of 
A4. 

x~ = { (A ,C) ,  (A,D) ,  ( B , D ) }  

(K, { I } )  0 ( ( /  A) (I  B) (K, {C, D}) 

F I G  2 : A p o r t i o n  of t h e  a b s t r a c t  graph for t h e  e x a m p l e  in F I G  I. 

To determine if such cycles are present, we resolve a cycle in 2~4 into a 
"threaded graph" (cf. [ES 95]) which shows explicitly which local user state in 
an abstract state is driven into which other local user state in the next abstract 
state. This information is obtained from the transition label. The  threaded graph 
is defined below: 
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D e f i n i t i o n l l .  T h r e a d e d  G r a p h  

Let 5 be a finite path in A4 with m states. Let the ith state of 5 be called 
si, and the ith transition be called Xi. For a state s = ((c, S), u) of ~4, let 
Ustates(s) = S. Define H5 to be the following graph : 

V(H~) = {(x,i) l i e [1..mlA x e Ustates(si)) 
E(H~) : {((z, i), (y, i + 1)) I i e [1..m - 1] A (x, y) 6 X{} . 
I f5 is a cycle, define G~ to be the graph where V ( ~ )  : V(H~), and E(g~) : 

E(H~) U {((x, m), (x, 1)) I x ~ Ustates(s~ )]. Note that  for a cycle 5, sl : sin. 
A graph is isolated iff its edge set is empty. For any directed graph G, let 

maxscc(G) be the graph representing, the decomposition of G into its maximal 
strongly connected components (sccs). 

V ( maxscc( G) ) = { C I C is a maximal strongly connected component of G} 
 (maxsce(V)) = {(C, D) I C, t (s, t! E(a)}  
We refer to vertices of maxscc(G) as max-scc s. It is a fact that  maxscc(G) 

is acyclic for any graph G. For any max-scc D in maxscc(G), define max-scc C 
to be above D if there is a path in maxscc(G) from C to D. 

The following figure shows the threaded graphs for the cycles N~ ~ N2 ~ N~ 

and N~ ~ N~ ~ N~ in figure 2: 

F I G  3a : Threaded  graph G5 for the  firs'~ cycle F I G  3b : Threaded  graph G5 for ~he second cycle 

L e m m a 1 2 .  5 is a good cycle in AJ iff maxsce(G~) is isolated. 

P r o o f  S ke t c h  
(LHS ~ RHS): Suppose that  maxscc(G~) is not isolated but 5 is good. Hence, 

there are max-scc's C and D such that  some pair of vertices (x, i) in C and (y, j )  
in D is connected in G~. For any n, consider an infinite path g in ~ .  such that  
%(e~) = 5~. We say that  a process with index l E [1..n] and local state al is in 
component F at the kth state in cr iff (a, k) E F.  

Let m be the number of states in 5. Starting with the ith transition in 
c~, at every mth successive transition, at least one of the processes m C, say 
one with index l, must change its local state from xl to yz. Thus, the count 
of processes in components above D decreases at each such step. As the max- 
scc decomposition is acyclic, this number cannot increase. Thus, eventually, the 
number of processes in components above D must become negative, which is 
impossible as cr is infinite. Hence, 5 is not good. 

(RHS ~ LHS): Suppose that  maxscc(G~) is isolated. For each max-scc of 
G$, construct a cycle in G~ that  includes each edge in that  component at least 
once. For each a E U, let m~ be the number of occurrences of the vertex (a, 1) 
in the set of cycles. Let n = Z~eum a. We will construct a path ~ in ~ such 
that 7n (c~) = 5"~. The idea behind the construction is to allot a set of processes 
for each constructed cycle, and to ensure that  each transition of every process is 
along the cycle that  it is alloted to. 

The inductive assumption is that  at the ith step (i < m), a path ~ has been 
constructed such that  ~(~r ~) is the prefix of 5.~ up to the ith state, and if s is 



94 

the last state of ~r', then #a( s )  is the number of occurrences of (a, i) in the set of 
constructed cycles. Hence, after m steps, the last state sm is a permutation of the 
first state sl. Repeating the construction at most n times produces a path or with 
last.state identical to sl, and such that  7~(ct) = cir. Thus, 7,~ (~r ~) = ($.~)~ = ~f.~, 
and so ~ is a good cycle. [] 

For a finite path a with m states in .A define ~ to be the relation over 
Su • Sv  where (a, b) E ~ iff there is a path from (a, 1) to (b, m) in g~ .  We say 
that  relation R is cyclic iff for every edge in the graph of R, there is there is a 
cycle in the graph that  includes that  edge. 

L e m m a  13. For a cycle ~ in Jv~ maxscc( G~ ) is isolated iff ~ is cyclic. [] 

T h e o r e m  14. Formula Ah is not universal iff there is a .finite path in Pet from 
an initial state to a green state and a cycle ~ from that state such that ~ is cyclic. 

P r o o f  Follows from Theorem 9 and Lemmas 12, 13. [] 
Let L be the maximum length of a guard in C and U processes. Note that  

L < ICl + IuI  

T h e o r e m 1 5 .  There is a nondeterministic algorithm to decide if a temporal 
property over computations of C is not universal which uses space O([Su[ 2 -b 
Iog(IScllS•[) + n). The algorithm uses space logarithmic in the size of A~. 
P r o o f  

By Theorem 14, a property Ah is not universal iff there is a finite path in .M 
to a green state and a following cycle ~ from that  state such that  ~ is cyclic. The 
algorithm "guesses" a path to a green state, and a cycle ~ from it, recording only 
the current state of M ,  and ~ for the prefix ~ of ~ that  has been examined. As 
(a; X; s) = ~ o X, ~ can be computed incrementally. 

Recording a state of.A~ takes space (log( Sc  |Sn D + t Su1) �9 Computing a suc- 
cessor state can be done in space proportional to (log[S~[ § log]Sol + log[Sv[ q- L) 
(as this requires checking if (c, S) [[ .- p for guards p). Storing 5 --7 takes space |Su 12, 
and checking if ~ is cyclic can be done within the same space bound. Thus, the 
overall space usage is O(ISuI 2 q- tpg([ScllSB[) -~- L). [] 

R e m a r k .  There are two special cases where the algorithm can be optimized. 
If the user processes are deterministic, every cycle ~ in ~4 is good (as G~ must 
be isolated). If the correctness property is a safety property, the algorithm need 
check only finite accepting paths, which are good by Lemma 8. In both cases, 
the check for good cycles can be eliminated, which is a substantial saving. [] 

A reduction from a generic PSPACE T~ring Machine shows that  checking if 
AG-,accept is not universal is PSPACE-hard. 

T h e o r e m  16. Deciding if a property over computations of C is not universal is 
PSPA CE- complete. 

C o r o l l a r y  17. Deciding if a property over computations of C is universal is 
PSPA CE-complete. 

The algorithm given above for determining if a property is not universal is non- 
deterministic and uses polynomial space. So, using Savitch's construction, there 
is a deterministic algorithm with time complexity 0 (2  k(lsvl2+z~ 
for some k. We present a "natural" deterministic algorithm with the same worst 
case time complexity in [Su[. Let K = IS~t  x 2 lsu]~ . The algorithm follows from 
this observation: 
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P r o p o s i t i o n  l8 .  I f  p is a finite path in Je[ from s to t of length greater than 
K,  then there is a path ~ from s to t in Ad of length at most K such that -~ = 5. 

P r o o f  
Define an equivalence relation on states s of p by si -- sj iff sl = sj and 

Xo o X1.  . .X i -1  = Xo o XI  . . . X j -1 .  Clearly there are at most K equivalence 
classes. So if the length of p is greater than K,  there must be distinct indices 
i and j such that  si =- sj. Assume that  i < j .  Then the path p~ formed by 
appending the suffix from sj to the prefix up to si is a path in 34 that  is shorter 
than the path p, and is such that  p~ = ~. Repeating this construction a finite 
number of times produces a path 5 with the desired properties. [] 

T h e o r e m  19. There is a deterministic algorithm to determine if a property is 
not universal with exponential worst case time complexity in [Su]. 

P r o o f  Ske t ch  
From Proposition 18, it suffices to look for cycles (in Theorem 14) of length 

at most K. This can be done using an iterative squaring of the transition relation 
of 34, with overall time complexity exponential in IScr]. [] 

5 Symmetry  reduction 

Let zr be a permutation over the set { 0 . . . n }  that  fixes 0. For a state s = 
(c, u l , . . . ,  vn) in ~n, the permuted state 7r(s) is defined by (7r(s))(i) = ai iff 
s(zr-l(i)) = ar-l(i) ,  for i E [0..n]. For example, the state (c, ul,v2, wa) under 
the permutation r -- {.(1 --~ 2).(, 2 --4 3)(, 3 --4 1)} becomes (c, wl, u2, v3). As 
r = r from Propos~tlon 1, the truth value of any guard is the same 
in both s and ~r(s). Hence there is complete symmetry among the user processes 
in any size instance of a (C, U) family, and the PMCP for formulae of type 
(2) and (3) reduces that  for formulae of type (1). The following lemmas are 
based on those in [ES 93, CFJ 93] (cf. [ID 93]) Let f ( i)  be a CTL* formula with 
propositions over the states of C and over the states of U indexed with i, and 
let f ( i ,  j) be a CTL* formula  with propositions over the states of C and over 
the states of U indexed with either i or j .  

Lemma20. Forn >_ 1, G~,~v~ ~ Ai f(i) iffG~,~ ~ f(1). 

L e m m a 2 1 .  For n >_ 2, G~,LU~ ~ Ai#j  f ( i , j )  iff 6,~,to~ ~ f(1,2) .  

Let CIU be the process where Sciu = Sc x Su, and (c, u)P~q' (c', u') E Rc lu  

iff c 4 c' E R c  and u 4 u' E Ru,  and p' (similarly q') is p (q) with every global 
condition (3i $(i)) replaced with g(O) V (3i g(i)), where propositions labeled by 
0 refer to the state of U in CIU. 

T h e o r e m  22. A property of the form Ai Ah(i) is universal for a (C, U) family 
iff Ah(0) is universal for the control process in the family (CIU, U). 

T h e o r e m  23. A property of the form Ai#j  Ah(i, j) is universal for a (C, U) 
family iff Ah(O, 0') is universal for the control process in the family ((CIUIU), U) 
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6 A p p l i c a t i o n s  

We have implemented this algorithm to verify a bus arbitration protocol based 
on the SAE J1850 draft standard [SAE 92] .for automobile applications. This 
is a protocol where many microcontrollers can transmit symbols along a shared 
single-wire bus in a car. As a consequence of this restriction, symbols are encoded 
by the width of a pulse. Nodes on the bus may begin transmitting different 
messages simultaneously; only the node with the highest priority message should 
complete transmission after the arbitration process. Symbol 0 has priority over 
symbol 1, and priority between messages over the alphabet {0, 1} is determined 
lexicographically. The microcontrollers are modeled as user processes, and the 
bus as the control process. The property which we have verified, using the result 
in Theorem 23, is that whenever two users begin simultaneous transmission of 
symbols 0 and 1 respectively, the user transmitting 1 continues transmission 
unless it loses arbitration. Hence, messages with lower priority cannot prevail 
over higher priority messages. 

We implemented the algorithm by generating SMV [McM92] code to describe 
the abstract process transitions, given a description of the next-state relation of 
the user and control processes. Since the correctness property is a safety property, 
we were able to simplify the implementation as described following Theorem 15. 
Each user process has about 50 states, while the control process together with 
the automaton for the property has about 400 states. Verification took less than 
a minute on a SPARC 5. We emphasize that this establishes correctness of the 
bus protocol for an arbitrary number of attached microcontrollers. 

7 C o n c l u s i o n s  a n d  R e l a t e d  W o r k  

A variety of positive results on the PMCP have been obtained previously. All of 
them, however, possess certain limitations, which is perhaps not surprising since 
the PMCP is undecidable in general (cf. IAK 86],[Su 88]). Many of the methods 
are only partially automated, requiring human ingenuity to construct, e.g., a 
process invariant or closure process (cf. [CG 87], [BCG 89], [KM 89], [WL 89]). 
Some could be fully automated "but do not appear to have a clearly defined 
class of protocols on which they are guaranteed to succeed (cf. [ShG 89], [V 93], 
[CGJ 95]). 

Abstract graphs (for asynchronous systems) were considered in [ESr 90] for 
synthesis, [V 93] for automatic but incomplete verification, and in [CG 87], where 
they are called process closures. Interestingly, [CG 87] show (in our notation) 

k k-~l that if, for some k, C II U II ,4 is appropriately bisimilar to C II U II .4, then 
it suffices to model check instances of size at most k to solve the PMCP. How- 
ever, they do not show that such a cutoff k always exists, and their method is not 
guaranteed to be complete. Pong and Dubois [PD 95] propose a similar abstract 
graph construction for verification of safety properties of cache coherence proto- 
cols. They consider a synchronous model with broadcast actions. Although sound 
for verification, their method appears to be incomplete. Lubachevsky [Lu 84] 
makes an interesting early report of the use of an abstract graph similar to a 
"region graph" for parameterized asynchronous programs using Fetch-and-Add 
primitives; however, while it caters for (partial) automation, the completeness 
of the method is not established and it is not clear that it can be made fully 
automatic. 

Our approach, in contrast, is a fully automated, sound and complete one (i.e.~ 
always generates a correct "yes" or "no" answer to the PMCP). Another such 
approach appears in [GS 92]. They also consider systems with a single control 
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process and an arbitrary number of user processes, but with asynchronous CCS- 
type interactions. Unfortunately, their algorithm has exponential space (double 
exponential time) worst case complexity. 

Our framework thus differs from [GS 92] in these significant respects: (a) 
the parallel composition operator is synchronous; (b) we permit guards test- 
ing "everywhere" conditions (i.e., of the form V/g(/)); (c) it is more tractable 
(PSPACE vs. EXPSPACE) 5 . Partial synchrony can also be handled in our frame- 
work. These factors permit us to represent a wider range of concurrent systems. 
For example, the bus protocol described in Section 6 relies on the ability to test 
everywhere conditions, which are not permitted in [GS 92]. There is a notewor- 
thy limitation in the modeling power of our present framework. Because of the 
covering lemma (Lemma 7), an algorithm for mutual  exclusion cannot be im- 
plemented in our model (cf. [GS 92]'s control process-free model), even with the 
control process. We suspect it is possible to overcome this restriction, and are 
working on it. 

Finally, it is interesting to note that  we can show that  for fully asynchronous 
computation (interleaving semantics), the PMCP for our model becomes un- 
decidable. This is shown by a simple simulation of a two counter machine by 
a (C, U) family. Essentially, the zero-test of a two counter machine can be ex- 
pressed as an everywhere condition, and increments can be encoded because 
precisely one process fires at each step in the computation. 
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