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A b s t r a c t  

In this article, we define a semantic data model, where objects' struc- 
tures are richer than those of their classes. This model is intended to be 
used in applications such as content-based information retrieval, whose 
particularity is the fact that  objects do not have a predefined conceptual 
structure that  can be fully abstracted in a class schema. 

For this purpose, we rela~x the classical instantiation link between classes 
and objects, and rebaptize it the "realization" link. 

Some of the problems that  arise because of this relaxation are investi- 
gated, especially when it comes to querying the database. We present a 
query language for the model that respects the realization link. 

The implementation of the model uses a class-based object-oriented 
model as a meta-model. All of our model concepts are classes in the 
meta-model, that  will be instanciated, for each application of the model, 
into objects representing all the application features (classes, objects, at- 
tributes, queries, ...). 

K e y  Words:  
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I n t r o d u c t i o n  

The  present  s tudy  focuses on d a t a  models for handl ing complex  informat ion 
(as commonly  encountered in C A D - C A M  and mul t imedia  da tabase  systems),  
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in comparison with Information Retrieval applications where objects are not 
very structured. The major task is to find a suitable mapping for information 
about real-world entities into machine representations which, from the user's 
conceptual viewpoint, ensures the least loss in expressiveness for the entities 
and enhances user expectations about the retrieval process. 

The Relational Model [COD70] (along with its extensions [RKS88]) was the 
first data model to provide an efficient representation theory and a mechanism 
for query evaluation. It however turns out to be strongly limited when it comes 
to coping with complex information. One reason for this is that such a model 
disseminates semantic information over a large set of relations, the pertinence 
of which is not always obvious to the user. A second reason for this has to do 
with the value-based characteristic of the relational model [HUL89]. 

Semantic Data Models [HK87] arose as an attempt to o v e r c o m e  the inher- 
ent limitations of the relational theory. Their major contribution is to bridge 
the semantic gap between the user's perception of a real-world application and 
his conceptual and, to a lesser extent, physical representation of the application. 
Semantic models played an important role as a transition from relational models 
towards the new generation of object-oriented database environments [CAT94]. 

Unstructured objects such as texts and images handled by Information Re- 
trieval systems cannot be modelled through only simple use of hierarchical struc- 
tures, or abstraction into class structures. Common applications more often re- 
quire object content indexing rather than grouping into well-structured classes. 
Furthermore, unstructured objects may also refer to structured objects and vice 
versa, especially in multimedia environments [WLK87]. 

The proposed model is able to cope with the representation and the manipu- 
lation of both unstructured objects as encountered in content-based models as in 
Information Retrieval, and structured objects as in semantic or object-oriented 
models. 

Systems based on the relational data model and dedicated to cope with 
unstructured objects (such as images) are encountered in the current literature 
[HLMM92]. Our concern is to define a semantic data model, capable of respond- 
ing to a wide range of specific problems related to data modelling in Information 
Retrieval. The model draws its conceptual inspiration from Semantic Data Mod- 
els, and allows objects to have an individual flexible structure, rather than their 
classes'. 

We thus relax the traditional instantiation link between an object and its 
class, and rebaptize it the "realization link". A class is no longer a set of ob- 
jects having the same structure; it is only a minimal structure that have to be 
implemented by each object tied to it. 

This loss of similarity between object and class structures induces some prob- 
lems when it comes to querying the database. We explore such problems and 
show that they can be overcome by embedding our whole model into a higher 
(meta) level (structured) model. 
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Section 1 presents an overview of data models and information retrieval. 
Section 2 then sets out an informal definition of the concepts of our model while 
section 3 gives a formal specification of them. Section 4 presents the query 
specification language while section 5 describes an implementation of our model 
and an image application of it. We then conclude by setting out the future 
development envisaged for study. 

1 D a t a  M o d e l s  and Informat ion  Retr ieval  

In this section, we explore the main approaches for modelling complex informa- 
tion in 1.1; we present the specificities of Information Retrieval applications in 
1.2. This will lead us to give some motivations behind the definition of a new 
model, in 1.3. 

1 .1  C o m p l e x  o b j e c t s  m o d e l l i n g  

The relational model with its 1NF constraint provides a less suitable environment 
for handling complex information. As mentioned above, the pertinence of the 
associated sets of relations is not always obvious and natural to the user. 

Attempts have been made to extend, improve and overcome the limitations 
of the relational model through the introduction of surrogates [COD79] and/or 
more complex data constructors than the flat classical relations IRKS88]. Ad- 
vanced relational models (based on NF2 (e.g. nested) relations) provide a way 
of using the power of the relational calculus and algebra to deal with complex 
information. Such complex object models provide some abstractions for object 
modelling (aggregation, grouping, ...) whose effects on algebra and calculus are 
investigated. The inherent value-based approach does however represent a ma- 
jor limitation for complex modeling [HUL89]. 

Semantic Data Models arose as an attempt to bridge the gap between the 
application semantics and the logical machine representation of the data it car- 
ries. Even though every semantic model has its own concepts and characteristics, 
they all share some underlying concepts [HK87] such as: 

- Classes of objects, 
- Standard abstraction of object types (generalization, specialization, associ- 

ation, ...), 
- Structured types of objects (aggregation, grouping), 
- Semantic relationships between objects. 

The Object-Oriented approach [KIM90, CAT94] combines advances in pro- 
gramming languages and knowledge representation in Artificial Intelligence. An 
object has a structure (static characteristics) and a behavior (associated proce- 
dures). These two aspects are encapsulated within the object and one can access 
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the structure only through the associated behavior. Objects are abstracted into 
classes with each object being an instance of one or more classes. A class is thus 
a collection of objects sharing a common structure and behavior. The common 
structure is a collection of instance variables. An instance variable refers to an 
object class and has, as a value, an object of that class. The inheritance mech- 
anism allows the transmission of structure and behavior from a generic class to 
specific ones. With the exception of object behavior, (the static part of) the 
object-oriented approach embraces the major characteristics of semantic data 
models. 

1 .2 I n f o r m a t i o n  R e t r i e v a l  

In some applications, the manipulated objects are not easy to structure and 
group into classes, because of the different levels of description required and 
the possibility of introducing subjective descriptions. Text, image and other 
multimedia databases are examples of such applications. 

In the preceding applications, a distinction is made between three description 
levels [KKLgl]: 

- the primitive data level: the contents of the physical representation of 
objects before any analysis or indexing (strings, pixel matrixes, ...), 

- the contextual data level: this concerns object contexts (length or width of 
images, words count in texts, author name, ...), 

- the semantic data level: this embraces information contained in, referenced 
or connotated by the objects. They are the most difficult to model and re- 
quire several specific treatements. They may be distinguished into objective and 
subjective semantic data. 

Text databases and text captioning of image databases can be indexed us- 
ing key-words [HCK90, HLMM92, RS92], or subsequent to a natural language 
analysis step [SCH90]. 

Image databases contain more information than do simple text captions or 
key-words such as graphical items, subjective contexts (cultural connotations .... ) 
and so on. The authors in [HLMM92] further proposed the distinction between 
pre-iconographic, iconographic and iconological contents of an image. For the 
objective part, images can be seen [RS92] as component objects inter-linked by 
object-to-object relations. 

In such database applications, the data model is more an indexing-retrieval 
model than a structuring model, inasmuch as object categorization (classifi- 
cation) into structures is all but feasible. Some approaches [GPVG89] try to 
overcome this problem by using a formal grammar instead of a structured model 
for the description of their objects. 

1 .3 M o t i v a t i o n s  

The central aim is to design a data-model capable of coping with two opposing 
paradigms involved in multimedia-like applications, where an object can either 
be structured or remain unstructured. 
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An image in an image database is difficult to stucture into a class (category) 
since it is practically impossible for the structure (contents) of an image to be 
totally defined at the conceptual level. All the same, an image may refer to 
other objects (contained therein) that  are structured or need structuring simply 
because such objects, like cars, houses or horses are intrinsically structured. 

To reach our main goal, we propose a data  model which adapts to the two 
information retrieval contexts with facilities for representing classical paradigms 
of (structured) semantic data  models (generalization, aggregation, ...) for the 
objects in the base, without necessarily imposing on the latter a predefined 
structure within their classes. 

An object in our approach is a weak instantiation or a realization of a class, 
and has a specific individual structure. An image for instance, has some usual 
features (e.g size, photographer, date, ...) and additional individual components 
(e.g persons, flowers, ... whatever). Usual features are abstracted into an image 
class, that  describes them (e.g. the size of an image is a real value). Individual 
features are defined within a particular image object. 

2 Informal definit ion of the  concepts  

In this section, we informally present the main concepts of our model starting 
with object types, moving on through classes to objects. Particularly, we define 
our intent in relaxing the instantiation link between objects and classes. 

2.1 T y p e s  a n d  c l a s s e s  

According to the definitions given in [HUL89], we make a distinction between 
the two different paradigms of type and class. 

An object type is the static definition of a structure. A structure is a dis- 
tribution of data  in a specific way. Each part of the distribution is in turn 
distributed in a certain way. A type is thus an intentional definition of objects. 
This definition is similar to classical definitions of object types [HUL89, AB88]. 

Types are organised into a lattice corresponding to a partial order; that  is, 
a "sub-type" holds the complete definition of a "super-type" and augments it 
with additional features. Since types are nothing more than structure defini- 
tions, wherever a super-type can be used (in the definition of other types), it 
represents itself along with all its sub-types. 

On the other hand, a class is usually a set of objects (instances) of the same 
type, that  is the type of the class itself [HUL89]. In our model a class is not 
a set of objects. A class is the association of a class name and an object type. 
The definition of a class is the assignment of a name to an object type and some 
attr ibute names to each part of the static structure of the type. 

Classes are organized into a lattice of generalization / specialization links. 
They can therefore be refined and incrementally defined using more specific 
constraints and new attributes. 
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2 . 2  Objects 
An object is the machine representation of a real universe (of discourse) entity. It 
has a unique and exclusive identifier and a structure tha t  involves other objects. 
This incremental definition of objects referencing each other assumes that  there 
exists a collection of primitive objects, having no references to others and called 
values or terminal objects. 

Realization is a mechanism that  links an object to a class. In other words, 
an object can never exist without a class to which it is tied: in this sense the 
object is said to be a realization of the associated class. 

The mechanism of realization can be seen as the operation of giving a value 
to the attributes of the class by assigning an object to each of them. 

The possibility is then left for objects to have in turn other additional objects 
in their structure, in addition to those fixed by the class. This enables objects to 
have an individual composition rather than their abstraction into classes. From 
this comes the improved flexibility and extensiveness of the model. 

Thus, the link between an object and its class is different from the tradi- 
tional "instantiation" link, where an instance of a class has exactly the structure 
abstracted in that  class. 

According to the definition of super-types and sub-types, we can characterize 
the realization mechanism by the fact that  the type of the realization (the object) 
is a sub-type of the class type, since it holds information and structure, additional 
to that  of the class type. 

As we stated in paragraph 1.3, an image object holds more information than 
does the image class, to which it is tied: flowers, hourses, ... (or whatever 
appears in the image), are added to the common image features e.g. size, pho- 
tographer, ... etc. 

2 . 3  O v e r v i e w  

It follows from the preceding presentation that  our model has two related levels 
of abstraction, a concrete level (objects) and a conceptual level (classes, types). 

For the purpose of taking the realization mechanism into account, we use a 
third level of abstraction called the meta-level. In this level, all the concepts 
of the model (classes, objects, ...) are described in terms of meta-classes, as is 
summarized in figure 1. This figure points out the strategy of implementation 
of the model within a class-based object-oriented model, such as that  presented 
in [CAT94]. 

2 . 4  Queries 
Queries are intentional expressions on the structures of objects satisfying them. 
For this purpose, the query specifier is aware, at query specification time, of the 
structures of the classes (s)he will use in his (her) query, knowing that  instances 
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Figure 1: The realization mechanism 

of those classes would have the same structure. The query only specifies some 
values for the structures. 

In our model, little about object structures is known at the conceptual level 
(that of classes). Only the minimal structure of objects tied to a class (by the 
realization mechanism), i.e., the class structure, is known. Thus, queries have 
to deal with the additional structure of objects in order to fully make use of the 
expressiveness of the model. The query language must provide the user with 
features allowing her (him) to query both the class structure and the individual 
structure of objects. 

3 Formal definition of the concepts  

The main features of our model are types (cf. 3.1), classes (cf. 3.2) and objects 
(cf. 3.3). We give a formal definition for each of them and describe in 3.4 what a 
database is, according to our model. Finally, we exhibit some problems related 
to the flexible nature of the model. 

3 .1 T y p e s  

3.1.1 Definit ion 

We assume the existence of some terminal types, corresponding, for example, to 
basic data types: integer (I), real (R), string(S), ... and a special type, called 
the "empty type" and noted T. 
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We refer to  T as the set of all object  types,  which are recursively defined as 
follows: 

�9 terminal  types  and the  empty  type  are types,  

�9 if t is a type,  then t* is also a type,  called a se t  type,  

�9 if t l ,  ..., tn are types,  then tl  • ... • tn  is also a type,  called a tuple  type.  

Examples:  
Let  R, S and I be terminal  types.  
R • S* • I and (R • I)* are types. 

3 .1 .2  P a r t i a l  o r d e r  o n  t y p e s  

Assuming tha t  its restr ict ion to terminal  types  is known, we recursively define 
a part ial  order  _<~ on 7- by: 

�9 Vt E T ,  t <_~ T; in other  words, T is the greatest  element of (7", _<~) 

�9 i f 3 i  E [1,n],t~ <~ t then tl x ... x t,~ _<~ t 

�9 t*_<~t I * i f f t _ < ~ t  I 

�9 i f t = t l  x . . . •  I = t ~  • 2 1 5  lift :  

- -  nl~_n 
- t ~ < ~ t ~ f o r l < i < n  ~ 

Example:  
R •  <_.~ R •  
Indeed,  R x S *  • 2 1 5  •  
and we have: R_<~ R and S* • I <_~ I .  

3 . 2  C l a s s e s  

3 .2 .1  D e f i n i t i o n  

Objec t  classes, are members  of the  set C; they  are defined as follows: 

�9 a t e r m i n a l  class is defined by the ass ignment  of a class name c to  a terminal  
type,  

�9 a s imp le  class is defined by a name  c and a list (al : O ,  ..., a~ : c,~), possibly 
empty  and called the s t ruc ture  of c ; we note  c = (al : cl ,  . . . , a s  : c~) ; a~ 
are a t t r ibu te  names while c~ are classes ; if the  s t ruc ture  of  a simple class 
c is empty,  then c is said to  be an "empty  class", 

�9 a se t  class c* is defined for each simple class c. 
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We assume for the purpose of this s tudy tha t  the recursive definition of classes 
is cycle free. In other words, a class c can not refer to a class d tha t  is a specific 
class of c (in the sense of the inheritance graph defined in 3.2.3). 

Examples: 
Integer ,  S t r ing ,  Real,  ..., terminal  classes 
Date  = (day : Integer ,  mon th  : Integer ,  year : In teger)  
Person  = (name : S t r ing ,  f i r s t_name  : S t r ing ,  age : In teger)  
Image  = (photograph : Person ,  date : Date,  location : S t r ing ,  characteris t ics  : 

S tr ing*)  

3.2.2 A s s o c i a t e d  t y p e  f o r  a c lass  

To each class c, we associate an object type [c], recursively defined as follows: 

�9 terminal classes: 
The associated type of a terminal  class is the terminal  type upon which 
the class is defined, 

�9 simple classes: 
If c = (al : Cl , . . . , as  : c~), then [c] = [Cl] X . . .  X [Cn] ; if n = 0 then 
[c] = T ,  

�9 set classes: 
[c*] = [c]*.  

Example: 
[Image] = [Person] x [Date] x [String] x [String*] 

= ([String] x [String] x [ In teger] )x  
([Integer] x [Integer] x [Integer]) x [String] x [String]* 

:(SxSxl) x(Ixlxl)xSxS* 

3.2.3  I n h e r i t a n c e  l ink  b e t w e e n  c l a s s e s  

The inheritance link between classes is a partial  order, noted <~, such that:  

�9 its restriction to terminal classes is deduced from the partial  order on the 
associated terminal types: Cl _<~ c2 iff [cl] ~ r  [c2], 

�9 it is user defined for simple classes, in such a way that :  
if cl = (an  :cn, . . . ,aD~l  : c1~1) _<~ c2 = (a21 : c21,...,a2,~2 : c2n2), then: 

--  n 2  ~ n l ,  

- there exists an injection a from [1,n2] to [1,nil,  called "attr ibutes 
renaming",  such tha t  Vi E [1,n2],cla(0 _<~ c2~, 
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�9 C~ ~ ,  C~ i• Cl ~ ,  C2. 

If C I ___~-y e2, we will say tha t  cl inherits from c2. 

o :  [1,3] 
1 
2 
3 

because: 

Example: 
If  we have: 
Employee = (ssn : String,  name : String,  f irs t_name : String,  age : Integer 

s a l a r y : R e a l ,  addresses:Address*) ,  
with: 
Address = (number : Integer, street : String, zip_code : Integer, town : String),  
then: 
Employee <~ Person, given the renaming function: 

[1,6] 
) 2 

) 3 

) 4 

Cla(1) : c12 : Str ing <_.~ Str ing = c21 , 
a l e ( 2  ) = C13 = Str ing <-7 Str ing = c22, 
c1~(3) = c14 -- Integer <~ Integer = c23. 

The role of the a function is to take into account the possible renamings 
and reorganisations of at tr ibutes across the inheritance link, particularily in the 
case of multiple inheritance. For the sake of simplicity, we assume from now on, 
without loss of generality, tha t  this function equals the identity function. 

3 . 3  O b j e c t s  

3.3.1 D e f i n i t i o n  

An object o = (i, s), is an element of O (the set of all objects),  and is defined 
by a unique and exclusive identifier i(o) E E (where 2: is the set of all object  
identifiers) and a structure s(o). 

We distinguish three kinds of objets according to the nature  of their structure: 

�9 terminal objects, where the structure is a value associated to a given ter- 
minal type; 

�9 simple objects, where the structure is a list (al : Ol, ...,a,~ : o,~/, possibly 
empty, where a~ are a t t r ibute  names and o~ are component  objects; a 
special a t t r ibute  name is "X", it will be used whenever no semantics can 
be at tached to the role that  the component  plays in the composit ion of the 
main object; if s(o) is the empty  list, o is called an "empty object" ; 

�9 set objects, where the structure is a set {Ol, ..., op}, o~ being objects. 

Examples: We give some examples of objects '  structures. 
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s(ox)= 

s(o2) = 
s(o2) = 
s(o4) = 
s(os) = 
s(o8) = 
s(o7) = 

(photograph : o2, date : 03, location : o4, character is t ics  : 05, 
X : o~,  X : 07) 

( n a m e  : os, f i r s t _ n a m e  : o9, age : Olo) 
(day : o i l , m o n t h  : Ol2,year : o13) 
" P a r i s "  

{O14, O15} 
( n a m e  :016, f i r s t _ n a m e  : ol7, age : 01s, sa lary  :019, addresses  : o20) 
( n a m e  :o21, f i r s t _ n a m e  :o22, age : 023) 

s(o1~) 
s(o17) 
S(OlS) 
s(o10) 
s(o2o) 

= 1968 8(O21) 
= "portrai t"  s(o22) 
= " b l a c k & w h i t e "  s(o23) 

= ( n u m b e r : o 2 6 ,  s t r ee t :027 ,  z ip_code:o2s ,  t own  :o29) 
= (number  :O3o, s t ree t  : o31, zip_code : 028, t o w n  :o29) 
= 17 
= " R u e  des li las" 
= 54000 
= " N a n c y "  
= 19 
= " R u e  des roses"  

s(os) = " M a r t i n "  
s(o9) = " Geor  ges" 
s(o10) = 65 
s ( o 1 1 ) = 1 4  
s(o12)=5 
s(o13) 
s(o14) 
s(o15) 

s(o24) 
s(o25) 
s(o26) 
s(o27) 
s(o2s) 
s(o29) 
s(o30) 
s(o31) 

= " M e u n i e r "  
= " J e a n "  
= 50 
= 7645, 34 

= {024,025} 
= " D u c h e m i n "  
= " E m i l e "  
= 23 

3 .3 .2  A s s o c i a t e d  t y p e  fo r  a n  o b j e c t  

To each object  o, we associate an object  type  [o], recursively defined as follows: 

* Terminal  objects:  
The  type  associated to  a terminal  object  o is the  terminal  type  to  which 
is t ied the  value s(o). 

�9 Simple objects:  
If  s(o) = (al : o l , . . . , a~  : o,~), then  [o] = [Ol] • ... • [oN]. If  n = 0 then  
[o] = T.  

�9 Set objects:  
If  s(o) -- {Ol, ..., op}, then: 

P , [o] = (sup[od) 
i----1 

where sup means  the upper  bound  in the  sens of  the part ial  order  on object  
types  (_<~). 

Remark:  
The  la t ter  definition is consistent,  since (T,  <~) admi ts  a greatest  element: T.  
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3:3 .3  R e a l i z a t i o n  l ink  

The realization link is a binary relation, noted +-, defined on the set (9 • C, in 
such a way that:  

�9 if o is a terminal object and c is a terminal class of the same type,  then 
O~--C, 

�9 its restriction to the cartesian product  of the set of simple objects by the 
set of simple classes, is user defined, in such a way tha t  if o +-- c and 
c = (al : c l , . . . , a~  :c~),  then: 

-- S(O) = (al : 01, ...,a,~, : o,~,), with n '  > n, 

- Vi E [1 ,n] ,oi  +-- ci, 

�9 if o is a set object such tha t  s(o) = {ol, . . . ,op}, then o +-- c* iff Vi E 
[1,p],o~ ~- c, 

�9 if o +-- c and c g~ c ~, then o +-- c ~. 

If o +-- c, we will say tha t  o realizes c. 

Assuming this definition, we can exhibit the fundamental  following rule: 

[If  o +- c, then [o] _<r [c]] 

Proof: 

See appendix A. 

Examples: 
From the previous object and class examples, we have: 
ol +- I m a g e ,  o3 +-- Date  
o2 +-- P e r s o n ,  o6 +-- Employee ,  o6 +-- P e r s o n  

o4 +-- S t r i n g ,  o5 +'- S t r ing* ,  olo +-- In teger ,  o19 +-- Real  
o20 +-- Address*,  o24 +-- Address ,  o25 +-- Address  

Remark: 
In order to provide objects with richer structures than  their classes', we sepa- 
rately defined the type and class paradigms. In contrast  to the definition given 
in [HUL89], a class is not a set of objects in our model. It  references a type tha t  
is more generic (in the sens of the partial  order on types) than  tha t  of all its 
realizations (objects). 

3 . 4  D a t a b a s e s  

A database according to our model, is a triple ((C, ~ ) ,  O, +--), where (C, <~) is 
a set of classes, latticed by a partial  order, representing the inheritance link; O is 
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a set of objects and +- is a binary relation on O x C representing the realization 
link. 

One can notice that this definition involves both the notions of database 
schema (in the class set and its partial order) and database instances (in fact 
realizations, in the object set and the realization relation). 

As mentioned earlier, the user defines the classes, the objects, the partial 
order on simple classes and the realization link on simple objects. The remainder 
of the database structure is deduced, according to the previous inheritance and 
realization rules. 

3 .5  D i s c u s s i o n  

We shall point out some advantages of the realization link in 3.5.1, but also note 
some drawbacks in 3.5.2. 

3.5.1 Advantages from relaxing the instantiation link 

The realization link frees objects from the imposed structure constraint 
induced by their class. 

In modelling some kinds of applications (particularly in the Information 
Retrieval field), the database designer is not always able to catch the exact 
structure of all classes, but only a part of it, representing a minimal stable 
and standard structure. The advantage of the realization link resides in 
allowing objects afterwards to have individual structures that might be 
further abstracted into the class, if the designer so decides. 

When exceptions are encountered among objects, i.e. when some objects 
have several different properties compared to their classes, the realization 
link prevents users from turning to some artificial design solutions to deal 
with such problems, like creating lots of sub-classes, one for each exception. 

The realization link is a good "design tool" when dealing with evolutionary 
applications, where objects' structures are often time-changing, in a way 
that can not be predicted in advance (non-stable life cycle). Such phe- 
nomena are often encountered in CAD-CAM or architectural applications. 
The realization link allows objects to evolve quite independently from their 
classes. 

Besides, it provides a basis for a possible "reverse engineering", which 
allows one to redefine class structures, once objects have stopped evolving. 
This is a classical problem in evolutionary databases. 

3.5.2 Some drawbacks from the realization link 

The main problems arising from the model we defined earlier appear when it 
comes to querying the database or specifying integrity constraints among it. In 
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classical structured models (relational, semantic, object-oriented), query formu- 
lation or integrity constraints specification are based on class structures, assum- 
ing that  objects only value those structures with other objects or values. 

In the remainder of this paper, we will focus on query formulation and pro- 
cessing, and defer integrity constraint investigation to a later study. 

So, when querying a database for 50 years old employees, living in Nancy, the 
user is aware a priori of the existence of a class named Employee, representing 
employees and having an at tr ibute giving their age (say age) and an other giving 
the town they live in (say address). The query can then be expressed by the 
set: 

{o E Employee, o.age = 50 A o.address.town = "Nancy"} 

As is the case in structured data  models, this kind of query can also be spec- 
ified in our model, since each object realizing the Employee class has an age 
attribute,  and an address attribute, and each object realizing the class Address 
has a town attribute. In order to fully make use of the power of the realization 
link, queries have to deal also with the additional part  of object structures that  
is not in their class structures. But this structure is not known at the conceptual 
level; for instance, the ol object, realizing the Image class uses, in its (additional 
individual) structure, the 06 object, realizing the Employee class. This is not a 
mandatory (predictable) reference in the Image class. 

The main question is how to make the user be able to specify such queries 
as images of 50 years old employees, living in Nancy? 

In our opinion, an easy solution is to formulate queries the same way as 
objects: a part  tied to class structures and an other tied to individual contents. 

The first part  comprises some criteria expressible at the conceptual level (i.e., 
involving properties from the target class). The second part  is a set of sub-queries 
that  have to be satisfied by component objects (mandatory and additional) of 
the main object satisfying the query. This strategy makes a good use of the 
expressive power of our model. 

4 Queries 

In this section, we define in 4.2 a model of queries suited to our data  model. We 
first give some basic notions in 4.1. 

4.1 B a s i c  n o t i o n s  

For specifying queries, we need to define some preliminary notions, such as valid 
paths and path  destinations for classes and objects. 

A path is a list of attributes names, separated by points; e.g. address.town 
or age.salary. 
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This definition yields arbi t rary paths; thus, we define valid paths for classes 
and objects, and along with it, we define valid pa th  destinations, noted Dest(c,  p) 
(for a class c) and Dest(o,p)  (for an object  o). 

4.1.1 Va l id  p a t h s  a n d  t h e i r  d e s t i n a t i o n s  for  a c la s s  

For obvious reasons, we define these notions only for simple and set classes (not 
for terminal classes). 

�9 Simple Classes: 

- a p a t h  of length 1: p = a, is valid for a class c = (al : Cl, . . . ,am : c,~) 
iff 3 j  E [1 ,m] ,a j  = a. Then we have: Dest(c,p)  = cj, 

- a pa th  p = al...an (n > 1), is valid for a class c, iff p '  = al. . .a,~-i 
is valid for c and p"  = a,, is valid for Dest(c,p~). Then we have: 
Dest(c ,p)  = Des t (Des t (c ,p ' ) ,p ' ) .  

�9 Set classes: 
a pa th  is valid for c* iff it is valid for c ; and we have: Dest(c*,p) = 
(Dest(c, p) )*. 

Example: 

Dest(  Image,  date.month) = Dest(  Dest(  Image,  date), month)  
-- Dest(  Date, month)  
= Integer. 

4 .1 .2  Va l id  p a t h s  a n d  t h e i r  d e s t i n a t i o n s  for  an  o b j e c t  

A path  p is valid for an object o, iff 3c E C, o +- c and p is valid for c. Now, let 
us define the destination of a valid pa th  for an object. 

�9 Paths  of length 1: 

- Simple objects: Dest(o, a) = o.a: the object corresponding to at- 
t r ibute  a in s(o). 

- Set objects: Dest(o,a)  = o' such that:  s (d )  = {Dest(oi ,a) ,oi  e 
8(0)}. 
Remark:  
In this case, we create a new object not already existing in the object 
base. I t  is the only case of automat ic  object creation. 

�9 Paths  of length n > 1 : 
Dest(o,  al ...an) = Dest(  Dest(o, al ...a,~-l ), a,~). 

Example: 

Dest(  ol , photograph.name) = Dest(  Dest(  ol , photograph), name) 
= Dest(o2, name)  
-~Os.  
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4 . 2  T h e  q u e r y  m o d e l  

In 4.2.1, we define the general syntax of a query, and in 4.2.2 its semantics. 

4.2.1 Q u e r y  s y n t a x  

A query is a quadruple q = (c, Cl, Q,p)  where: 

�9 c is a class, called target of q, 

�9 Cl = {C/l,..., cl,~} is a set of clauses, called criteria of q, 

�9 Q = {ql,..., qm}, is a set of queries, called sub-queries of q, 

�9 p is a valid pa th  for c, called projection of q. 

Criteria, sub-queries and /or  projection may be empty. 

A clause is a disjunction of literals: cli = l~l V ... V liq,. 

A literal l~j takes one of the following forms: 

�9 p = p '  or p ~ p' ,  where p and p '  are valid paths for c, such that  Dest(c ,  p) <<_~ 
Dest(c ,p ' )  or Dest(c ,p ' )  <_.y Dest (c ,p) ,  

�9 p = Oo or p ~ o0, where p is a valid pa th  for c and Oo is a terminal  object,  
such tha t  o0 ~ Dest(c ,p) ,  

�9 p E p '  or p ~ p' ,  where p and p '  are valid paths for c, such that  Des t  (c, p') <_~ 
(Dest(c,p))* or (Dest(c,p))* <~ Dest(c ,p ' ) ,  

�9 o0 E p or Oo r p, where p is a valid pa th  for c and oo is a terminal  object,  
such tha t  Dest(c ,p)  = d* and Oo +-- c ~, 

�9 p C_ p~ or p ~: p ' ,  where p and p '  are valid paths for c, such tha t  Dest(c ,  p) = 
c ~* and Des t (c ,p  ~) = c"*, having d _<~ c" or c" _<-y d ,  

�9 Oo C_ p or oo ~ p, where p is a valid pa th  for c such tha t  Dest (c ,p)  = c t*, 
and Oo is a set object, the structure of which is a set of terminal  objects, 
and such that  oo +-- d*. 

If c = c'*, then we define: q. = (c', C1, Q, p). 

Before giving the formal semantics of such queries, we outline their informal 
meaning: query q looks for objects realizing class c, satisfying all clause members  
of Cl and referencing, for each query member  of Q, at least one object resulting 
from this query. The result of q is the set of pa th  p destinations for all objects 
satisfying those three conditions. 

In consequence, as was the case for classes, the recursive definition of queries 
must  be cycle free. 

Examples: 
The query ql -- (cl, Cl l ,  QI ,p l )  looks for 50 years old employees, living in Nancy. 
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Cl = E m p l o y e e  
Cll  = {age = 
" N a n c y "  

Q1 =~ 
Pl is empty. 

O01,002 e addresses . town} ,  with S(Ool) = 50 and s(o02) 

The query q2 = (c2, Cl2, Q2,p2) looks for images of such employees. 
c2 = I m a g e  
Cl2 = 0 
Q2 = {ql}  
P2 is empty. 

The realization link is taken into account in our query specification language, 
within the set Q, that  specifies criteria on all referenced objects of the main 
object. Conceptual knowledge on objects, coming from their class structure is 
used in the set Cl. 

Thus, a query uses more structures than only those of the target  class. 

4.2.2 Query semantics 

We define the formal semantics of a query q = (c, Cl, Q, p) as being an application 
pq, defined on the powerset of O as follows: 

~q :p(o)  ~p(o) 
0 ~-+ pq(O) = { D e s t ( o , p ) , o E  O A o  satisfies q}. 

The satisfaction of a query by an object is defined as follows: 

�9 A simple object o such that  s(o) = (al : o l , . . . , an  : o,~) satisfies a query 
q = (c, Cl, Q,p) ,  iff the three following conditions are satisfied: 

- -  o + - -  c .  

- The evaluation of all clause members of Cl within o leads to True. 
This evaluation is done in an intuitive way, according to  the kind of 
each literal in the clause. Within a literal, a path p is evaluated to 
Dest (o ,p ) .  

- Vq' = ( c r ,C l ' ,Q ' , p  ') e Q , 3 i  e [1 ,n] ,3d  e O, d satisfies q' A 
D e s t ( d , p ' )  = oi. 

�9 A set object o satisfies a query q, iff Vd E s(o), d satisfies q.. 

Examples: 
Object oe satisfies query ql and as a consequence, object Ol satisfies query q2. 
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5 Implementation 

To validate our approach, we developped a prototype within the Smalltalk-80 
object oriented programming environment [GR83], on a SPARC station. 

Each of the model concepts (objects, classes, attributes,  queries, ...) has been 
represented by a class in Smalltalk, that  is a meta-class in our model. Accurate 
methods are at tached to each class. Those methods implement the "philosophy" 
of our model, by describing the behaviour of each concept. 

The object-oriented data  model of smalltalk is then used as a meta-model for 
our model. 

Each feature of our model (an object, a class, a query, ...) is represented as 
an object in Smalltalk, that  is a meta-object in our model. It is an instance of 
the related meta-class (cf. figure 1). 

To the concepts presented throughout  the paper, we added two important  
features: 

�9 the distinction between objects and values; that  is terminal objects are 
treated as values (no identifiers); 

�9 the capability to manage semantic relationships between objects; e.g. a 
person is on a boat, a house is in the back of an image. 

Those features have not been specified in this paper, in order to define the 
realization mechanism (that is the main originality of our model), in a simple 
and clear way. But they are also integrated into the mechanism. 

The prototype allows one to: 

�9 create, modify or delete classes and relationships, within a conceptual level 
browser (cf. figure 2), 

�9 create, modify or delete objects, within a concrete level browser that  has 
the same look as the precedent, 

�9 create, modify or delete queries, within a query browser that  also has the 
same look as the conceptual browser. 

In the actual version, queries are evaluated among the object base, according 
to the query semantics presented in 4.2.2, extended to capture relationships. 

We have experimented our approach on an image database containing images 
of Paris in the 1900's, that  has also served as an example database for the 
RIVAGE system, also developped in our team [HCK90]. Figure 3 gives the 
results of a query looking for images containing two aquatic vehicules, side by 
side. 

When queries address images, the resulting objects (images) are visualized us- 
ing an image viewer, that  has been developped for the RIVAGE system [CHA93] 
(figure 3). 
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Figure 2: Conceptual browser 

This experimentation clearly showed that queries on image databases can 
be extended to capture complex objects and semantic links in image contents, 
rather than the simple use of keywords. 

Conc lus ion  

We have presented a data model intended to model and query complex objects 
having a strong individual structure, as those usually encountered in Content- 
Based Information Retrieval (images, texts, ...). 

One particularity of the model is to provide objects related to a given class 
with an extra individual structure, in addition to that of the class (common to 
all its related objects). 

The classical instantiation link between an object and its class has been 
relaxed and rebaptized "realization link", in order to clearly outline the gained 
freedom for objects, with regard to their classes. 

We have also presented a query specification language suited to our data 
model and showed that all the model concepts can be represented as meta- 
classes in a class-based object-oriented model. 
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Figure 3: Image browser 

The realization link shows itself particularily useful in the Content-Based 
Information Retrieval field, as has been stated in some of our previous research 
[MLH94, LAH95]. 

The perspectives envisaged for this work are to explore integrity constraints 
specification and maintainance, according to our model features. In classical 
databases, integrity constraint specification, like query specification, uses some 
conceptual knowledge about class structures, to specify criteria among objects. 

Since in our model, objects have richer structures than their classes, it would 
be interesting to use the additional individual object structures in constraint 
specification, as we have done for queries. 
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A P r o o f  o f  t h e  r e a l i z a t i o n  r u l e  

Let o E O and c E C, such that  o +-- c. We have to prove that  [o] <~ [c]. 

�9 If o is a terminal object, then c is a terminal class of the same type, and 
we have indeed [o] <~ [c]. 

�9 I f o i s  a simple object, then s(o) = {al : ol,...,a,~, : On,) and c---- {al : 
Cl, ..., an : ca), having: 

- -  721 __~ n ,  

- Vi  E [1, n] ,  oi +-- ci, 

The proof is done in an inductive fashion, on the component objects of 
s(o). Assume, as induction hypothesis, that  Vi E [1,n], [o~] <_~ [c~]; we 
then have: 

[o](= [ol] • ... x [On']) _<~ [c](= [cl] x ... • [Cn]), coming from the definition 
of the partial order on tuple types. 

�9 If o is a set object, then s(o) = {ol, ..., op} and c = c'*. From the definition 
of the realization link, we get: Vi E [1,p], oi +-- c'. 

The proof is also done in an inductive fashion, on the member objects of 
s(o). Assuming, as induction hypothesis, that  Vi E [1,p], [oil <_~ [c'], we 
see that  [c'] is greater than all the [oil's, in the sense of the partial order 
on object types; and so we induce: 

s~p[oi] ~ r  [c'] 
i=1  

which yields: 

[o] = (s p[oJ)* < ,  ([c'])* = [c'*] = [c] 
i=1  

[] 


