
Relaxing the Instantiation Link: Towards a
Content-Based Data Model for Information

Retrieval

Youssef Lahlou Noureddine Mouaddib

CRIN-CNRS,
BP 239, Campus scientifique,

54506 Vandoeuvre-les-Nancy, France.
Tel : (33) 83 59 20 61.
Fax : (33) 83 41 30 79.

E-Mails : {lahlou, mouaddib}~loria.fr

A b s t r a c t

In this article, we define a semantic data model, where objects' struc-
tures are richer than those of their classes. This model is intended to be
used in applications such as content-based information retrieval, whose
particularity is the fact that objects do not have a predefined conceptual
structure that can be fully abstracted in a class schema.

For this purpose, we rela~x the classical instantiation link between classes
and objects, and rebaptize it the "realization" link.

Some of the problems that arise because of this relaxation are investi-
gated, especially when it comes to querying the database. We present a
query language for the model that respects the realization link.

The implementation of the model uses a class-based object-oriented
model as a meta-model. All of our model concepts are classes in the
meta-model, that will be instanciated, for each application of the model,
into objects representing all the application features (classes, objects, at-
tributes, queries, ...).

K e y Words:

Semantic Model, Information Retrieval, Relaxed Instantiation, Realization
Link, Query Language, Meta-Model.

I n t r o d u c t i o n

The present s tudy focuses on d a t a models for handl ing complex informat ion
(as commonly encountered in C A D - C A M and mul t imedia da tabase systems),

541

in comparison with Information Retrieval applications where objects are not
very structured. The major task is to find a suitable mapping for information
about real-world entities into machine representations which, from the user's
conceptual viewpoint, ensures the least loss in expressiveness for the entities
and enhances user expectations about the retrieval process.

The Relational Model [COD70] (along with its extensions [RKS88]) was the
first data model to provide an efficient representation theory and a mechanism
for query evaluation. It however turns out to be strongly limited when it comes
to coping with complex information. One reason for this is that such a model
disseminates semantic information over a large set of relations, the pertinence
of which is not always obvious to the user. A second reason for this has to do
with the value-based characteristic of the relational model [HUL89].

Semantic Data Models [HK87] arose as an attempt to o v e r c o m e the inher-
ent limitations of the relational theory. Their major contribution is to bridge
the semantic gap between the user's perception of a real-world application and
his conceptual and, to a lesser extent, physical representation of the application.
Semantic models played an important role as a transition from relational models
towards the new generation of object-oriented database environments [CAT94].

Unstructured objects such as texts and images handled by Information Re-
trieval systems cannot be modelled through only simple use of hierarchical struc-
tures, or abstraction into class structures. Common applications more often re-
quire object content indexing rather than grouping into well-structured classes.
Furthermore, unstructured objects may also refer to structured objects and vice
versa, especially in multimedia environments [WLK87].

The proposed model is able to cope with the representation and the manipu-
lation of both unstructured objects as encountered in content-based models as in
Information Retrieval, and structured objects as in semantic or object-oriented
models.

Systems based on the relational data model and dedicated to cope with
unstructured objects (such as images) are encountered in the current literature
[HLMM92]. Our concern is to define a semantic data model, capable of respond-
ing to a wide range of specific problems related to data modelling in Information
Retrieval. The model draws its conceptual inspiration from Semantic Data Mod-
els, and allows objects to have an individual flexible structure, rather than their
classes'.

We thus relax the traditional instantiation link between an object and its
class, and rebaptize it the "realization link". A class is no longer a set of ob-
jects having the same structure; it is only a minimal structure that have to be
implemented by each object tied to it.

This loss of similarity between object and class structures induces some prob-
lems when it comes to querying the database. We explore such problems and
show that they can be overcome by embedding our whole model into a higher
(meta) level (structured) model.

542

Section 1 presents an overview of data models and information retrieval.
Section 2 then sets out an informal definition of the concepts of our model while
section 3 gives a formal specification of them. Section 4 presents the query
specification language while section 5 describes an implementation of our model
and an image application of it. We then conclude by setting out the future
development envisaged for study.

1 D a t a M o d e l s and Informat ion Retr ieval

In this section, we explore the main approaches for modelling complex informa-
tion in 1.1; we present the specificities of Information Retrieval applications in
1.2. This will lead us to give some motivations behind the definition of a new
model, in 1.3.

1 .1 C o m p l e x o b j e c t s m o d e l l i n g

The relational model with its 1NF constraint provides a less suitable environment
for handling complex information. As mentioned above, the pertinence of the
associated sets of relations is not always obvious and natural to the user.

Attempts have been made to extend, improve and overcome the limitations
of the relational model through the introduction of surrogates [COD79] and/or
more complex data constructors than the flat classical relations IRKS88]. Ad-
vanced relational models (based on NF2 (e.g. nested) relations) provide a way
of using the power of the relational calculus and algebra to deal with complex
information. Such complex object models provide some abstractions for object
modelling (aggregation, grouping, ...) whose effects on algebra and calculus are
investigated. The inherent value-based approach does however represent a ma-
jor limitation for complex modeling [HUL89].

Semantic Data Models arose as an attempt to bridge the gap between the
application semantics and the logical machine representation of the data it car-
ries. Even though every semantic model has its own concepts and characteristics,
they all share some underlying concepts [HK87] such as:

- Classes of objects,
- Standard abstraction of object types (generalization, specialization, associ-

ation, ...),
- Structured types of objects (aggregation, grouping),
- Semantic relationships between objects.

The Object-Oriented approach [KIM90, CAT94] combines advances in pro-
gramming languages and knowledge representation in Artificial Intelligence. An
object has a structure (static characteristics) and a behavior (associated proce-
dures). These two aspects are encapsulated within the object and one can access

543

the structure only through the associated behavior. Objects are abstracted into
classes with each object being an instance of one or more classes. A class is thus
a collection of objects sharing a common structure and behavior. The common
structure is a collection of instance variables. An instance variable refers to an
object class and has, as a value, an object of that class. The inheritance mech-
anism allows the transmission of structure and behavior from a generic class to
specific ones. With the exception of object behavior, (the static part of) the
object-oriented approach embraces the major characteristics of semantic data
models.

1 .2 I n f o r m a t i o n R e t r i e v a l

In some applications, the manipulated objects are not easy to structure and
group into classes, because of the different levels of description required and
the possibility of introducing subjective descriptions. Text, image and other
multimedia databases are examples of such applications.

In the preceding applications, a distinction is made between three description
levels [KKLgl]:

- the primitive data level: the contents of the physical representation of
objects before any analysis or indexing (strings, pixel matrixes, ...),

- the contextual data level: this concerns object contexts (length or width of
images, words count in texts, author name, ...),

- the semantic data level: this embraces information contained in, referenced
or connotated by the objects. They are the most difficult to model and re-
quire several specific treatements. They may be distinguished into objective and
subjective semantic data.

Text databases and text captioning of image databases can be indexed us-
ing key-words [HCK90, HLMM92, RS92], or subsequent to a natural language
analysis step [SCH90].

Image databases contain more information than do simple text captions or
key-words such as graphical items, subjective contexts (cultural connotations)
and so on. The authors in [HLMM92] further proposed the distinction between
pre-iconographic, iconographic and iconological contents of an image. For the
objective part, images can be seen [RS92] as component objects inter-linked by
object-to-object relations.

In such database applications, the data model is more an indexing-retrieval
model than a structuring model, inasmuch as object categorization (classifi-
cation) into structures is all but feasible. Some approaches [GPVG89] try to
overcome this problem by using a formal grammar instead of a structured model
for the description of their objects.

1 .3 M o t i v a t i o n s

The central aim is to design a data-model capable of coping with two opposing
paradigms involved in multimedia-like applications, where an object can either
be structured or remain unstructured.

544

An image in an image database is difficult to stucture into a class (category)
since it is practically impossible for the structure (contents) of an image to be
totally defined at the conceptual level. All the same, an image may refer to
other objects (contained therein) that are structured or need structuring simply
because such objects, like cars, houses or horses are intrinsically structured.

To reach our main goal, we propose a data model which adapts to the two
information retrieval contexts with facilities for representing classical paradigms
of (structured) semantic data models (generalization, aggregation, ...) for the
objects in the base, without necessarily imposing on the latter a predefined
structure within their classes.

An object in our approach is a weak instantiation or a realization of a class,
and has a specific individual structure. An image for instance, has some usual
features (e.g size, photographer, date, ...) and additional individual components
(e.g persons, flowers, ... whatever). Usual features are abstracted into an image
class, that describes them (e.g. the size of an image is a real value). Individual
features are defined within a particular image object.

2 Informal definit ion of the concepts

In this section, we informally present the main concepts of our model starting
with object types, moving on through classes to objects. Particularly, we define
our intent in relaxing the instantiation link between objects and classes.

2.1 T y p e s a n d c l a s s e s

According to the definitions given in [HUL89], we make a distinction between
the two different paradigms of type and class.

An object type is the static definition of a structure. A structure is a dis-
tribution of data in a specific way. Each part of the distribution is in turn
distributed in a certain way. A type is thus an intentional definition of objects.
This definition is similar to classical definitions of object types [HUL89, AB88].

Types are organised into a lattice corresponding to a partial order; that is,
a "sub-type" holds the complete definition of a "super-type" and augments it
with additional features. Since types are nothing more than structure defini-
tions, wherever a super-type can be used (in the definition of other types), it
represents itself along with all its sub-types.

On the other hand, a class is usually a set of objects (instances) of the same
type, that is the type of the class itself [HUL89]. In our model a class is not
a set of objects. A class is the association of a class name and an object type.
The definition of a class is the assignment of a name to an object type and some
attr ibute names to each part of the static structure of the type.

Classes are organized into a lattice of generalization / specialization links.
They can therefore be refined and incrementally defined using more specific
constraints and new attributes.

545

2 . 2 Objects
An object is the machine representation of a real universe (of discourse) entity. It
has a unique and exclusive identifier and a structure tha t involves other objects.
This incremental definition of objects referencing each other assumes that there
exists a collection of primitive objects, having no references to others and called
values or terminal objects.

Realization is a mechanism that links an object to a class. In other words,
an object can never exist without a class to which it is tied: in this sense the
object is said to be a realization of the associated class.

The mechanism of realization can be seen as the operation of giving a value
to the attributes of the class by assigning an object to each of them.

The possibility is then left for objects to have in turn other additional objects
in their structure, in addition to those fixed by the class. This enables objects to
have an individual composition rather than their abstraction into classes. From
this comes the improved flexibility and extensiveness of the model.

Thus, the link between an object and its class is different from the tradi-
tional "instantiation" link, where an instance of a class has exactly the structure
abstracted in that class.

According to the definition of super-types and sub-types, we can characterize
the realization mechanism by the fact that the type of the realization (the object)
is a sub-type of the class type, since it holds information and structure, additional
to that of the class type.

As we stated in paragraph 1.3, an image object holds more information than
does the image class, to which it is tied: flowers, hourses, ... (or whatever
appears in the image), are added to the common image features e.g. size, pho-
tographer, ... etc.

2 . 3 O v e r v i e w

It follows from the preceding presentation that our model has two related levels
of abstraction, a concrete level (objects) and a conceptual level (classes, types).

For the purpose of taking the realization mechanism into account, we use a
third level of abstraction called the meta-level. In this level, all the concepts
of the model (classes, objects, ...) are described in terms of meta-classes, as is
summarized in figure 1. This figure points out the strategy of implementation
of the model within a class-based object-oriented model, such as that presented
in [CAT94].

2 . 4 Queries
Queries are intentional expressions on the structures of objects satisfying them.
For this purpose, the query specifier is aware, at query specification time, of the
structures of the classes (s)he will use in his (her) query, knowing that instances

546

Object Model of Implementation

Weak Instantlation Object Model

Meta Level

Object class I I Class class

instance of instance of

 L:L:o:
/

' ~ a class
I

Concrete Level Conceptual Level

Classes

I

I
Objects

Figure 1: The realization mechanism

of those classes would have the same structure. The query only specifies some
values for the structures.

In our model, little about object structures is known at the conceptual level
(that of classes). Only the minimal structure of objects tied to a class (by the
realization mechanism), i.e., the class structure, is known. Thus, queries have
to deal with the additional structure of objects in order to fully make use of the
expressiveness of the model. The query language must provide the user with
features allowing her (him) to query both the class structure and the individual
structure of objects.

3 Formal definition of the concepts

The main features of our model are types (cf. 3.1), classes (cf. 3.2) and objects
(cf. 3.3). We give a formal definition for each of them and describe in 3.4 what a
database is, according to our model. Finally, we exhibit some problems related
to the flexible nature of the model.

3 .1 T y p e s

3.1.1 Definit ion

We assume the existence of some terminal types, corresponding, for example, to
basic data types: integer (I), real (R), string(S), ... and a special type, called
the "empty type" and noted T.

547

We refer to T as the set of all object types, which are recursively defined as
follows:

�9 terminal types and the empty type are types,

�9 if t is a type, then t* is also a type, called a se t type,

�9 if t l , ..., tn are types, then tl • ... • tn is also a type, called a tuple type.

Examples:
Let R, S and I be terminal types.
R • S* • I and (R • I)* are types.

3 .1 .2 P a r t i a l o r d e r o n t y p e s

Assuming tha t its restr ict ion to terminal types is known, we recursively define
a part ial order _<~ on 7- by:

�9 Vt E T , t <_~ T; in other words, T is the greatest element of (7", _<~)

�9 i f 3 i E [1,n],t~ <~ t then tl x ... x t,~ _<~ t

�9 t*_<~t I * i f f t _ < ~ t I

�9 i f t = t l x . . . • I = t ~ • 2 1 5 lift :

- - nl~_n
- t ~ < ~ t ~ f o r l < i < n ~

Example:
R • <_.~ R •
Indeed, R x S * • 2 1 5 •
and we have: R_<~ R and S* • I <_~ I .

3 . 2 C l a s s e s

3 .2 .1 D e f i n i t i o n

Objec t classes, are members of the set C; they are defined as follows:

�9 a t e r m i n a l class is defined by the ass ignment of a class name c to a terminal
type,

�9 a s imp le class is defined by a name c and a list (al : O , ..., a~ : c,~), possibly
empty and called the s t ruc ture of c ; we note c = (al : cl , . . . , a s : c~) ; a~
are a t t r ibu te names while c~ are classes ; if the s t ruc ture of a simple class
c is empty, then c is said to be an "empty class",

�9 a se t class c* is defined for each simple class c.

548

We assume for the purpose of this s tudy tha t the recursive definition of classes
is cycle free. In other words, a class c can not refer to a class d tha t is a specific
class of c (in the sense of the inheritance graph defined in 3.2.3).

Examples:
Integer , S t r ing , Real, ..., terminal classes
Date = (day : Integer , mon th : Integer , year : In teger)
Person = (name : S t r ing , f i r s t_name : S t r ing , age : In teger)
Image = (photograph : Person , date : Date, location : S t r ing , characteris t ics :

S tr ing*)

3.2.2 A s s o c i a t e d t y p e f o r a c lass

To each class c, we associate an object type [c], recursively defined as follows:

�9 terminal classes:
The associated type of a terminal class is the terminal type upon which
the class is defined,

�9 simple classes:
If c = (al : Cl , . . . , as : c~), then [c] = [Cl] X . . . X [Cn] ; if n = 0 then
[c] = T ,

�9 set classes:
[c*] = [c]*.

Example:
[Image] = [Person] x [Date] x [String] x [String*]

= ([String] x [String] x [In teger])x
([Integer] x [Integer] x [Integer]) x [String] x [String]*

:(SxSxl) x(Ixlxl)xSxS*

3.2.3 I n h e r i t a n c e l ink b e t w e e n c l a s s e s

The inheritance link between classes is a partial order, noted <~, such that:

�9 its restriction to terminal classes is deduced from the partial order on the
associated terminal types: Cl _<~ c2 iff [cl] ~ r [c2],

�9 it is user defined for simple classes, in such a way that :
if cl = (an :cn, . . . ,aD~l : c1~1) _<~ c2 = (a21 : c21,...,a2,~2 : c2n2), then:

-- n 2 ~ n l ,

- there exists an injection a from [1,n2] to [1,nil, called "attr ibutes
renaming", such tha t Vi E [1,n2],cla(0 _<~ c2~,

549

�9 C~ ~ , C~ i• Cl ~ , C2.

If C I ___~-y e2, we will say tha t cl inherits from c2.

o : [1,3]
1
2
3

because:

Example:
If we have:
Employee = (ssn : String, name : String, f irs t_name : String, age : Integer

s a l a r y : R e a l , addresses:Address*) ,
with:
Address = (number : Integer, street : String, zip_code : Integer, town : String),
then:
Employee <~ Person, given the renaming function:

[1,6]
) 2

) 3

) 4

Cla(1) : c12 : Str ing <_.~ Str ing = c21 ,
a l e (2) = C13 = Str ing <-7 Str ing = c22,
c1~(3) = c14 -- Integer <~ Integer = c23.

The role of the a function is to take into account the possible renamings
and reorganisations of at tr ibutes across the inheritance link, particularily in the
case of multiple inheritance. For the sake of simplicity, we assume from now on,
without loss of generality, tha t this function equals the identity function.

3 . 3 O b j e c t s

3.3.1 D e f i n i t i o n

An object o = (i, s), is an element of O (the set of all objects), and is defined
by a unique and exclusive identifier i(o) E E (where 2: is the set of all object
identifiers) and a structure s(o).

We distinguish three kinds of objets according to the nature of their structure:

�9 terminal objects, where the structure is a value associated to a given ter-
minal type;

�9 simple objects, where the structure is a list (al : Ol, ...,a,~ : o,~/, possibly
empty, where a~ are a t t r ibute names and o~ are component objects; a
special a t t r ibute name is "X", it will be used whenever no semantics can
be at tached to the role that the component plays in the composit ion of the
main object; if s(o) is the empty list, o is called an "empty object" ;

�9 set objects, where the structure is a set {Ol, ..., op}, o~ being objects.

Examples: We give some examples of objects ' structures.

550

s(ox)=

s(o2) =
s(o2) =
s(o4) =
s(os) =
s(o8) =
s(o7) =

(photograph : o2, date : 03, location : o4, character is t ics : 05,
X : o~, X : 07)

(n a m e : os, f i r s t _ n a m e : o9, age : Olo)
(day : o i l , m o n t h : Ol2,year : o13)
" P a r i s "

{O14, O15}
(n a m e :016, f i r s t _ n a m e : ol7, age : 01s, sa lary :019, addresses : o20)
(n a m e :o21, f i r s t _ n a m e :o22, age : 023)

s(o1~)
s(o17)
S(OlS)
s(o10)
s(o2o)

= 1968 8(O21)
= "portrai t" s(o22)
= " b l a c k & w h i t e " s(o23)

= (n u m b e r : o 2 6 , s t r ee t :027 , z ip_code:o2s , t own :o29)
= (number :O3o, s t ree t : o31, zip_code : 028, t o w n :o29)
= 17
= " R u e des li las"
= 54000
= " N a n c y "
= 19
= " R u e des roses"

s(os) = " M a r t i n "
s(o9) = " Geor ges"
s(o10) = 65
s (o 1 1) = 1 4
s(o12)=5
s(o13)
s(o14)
s(o15)

s(o24)
s(o25)
s(o26)
s(o27)
s(o2s)
s(o29)
s(o30)
s(o31)

= " M e u n i e r "
= " J e a n "
= 50
= 7645, 34

= {024,025}
= " D u c h e m i n "
= " E m i l e "
= 23

3 .3 .2 A s s o c i a t e d t y p e fo r a n o b j e c t

To each object o, we associate an object type [o], recursively defined as follows:

* Terminal objects:
The type associated to a terminal object o is the terminal type to which
is t ied the value s(o).

�9 Simple objects:
If s(o) = (al : o l , . . . , a~ : o,~), then [o] = [Ol] • ... • [oN]. If n = 0 then
[o] = T.

�9 Set objects:
If s(o) -- {Ol, ..., op}, then:

P , [o] = (sup[od)
i----1

where sup means the upper bound in the sens of the part ial order on object
types (_<~).

Remark:
The la t ter definition is consistent, since (T, <~) admi ts a greatest element: T.

551

3:3 .3 R e a l i z a t i o n l ink

The realization link is a binary relation, noted +-, defined on the set (9 • C, in
such a way that:

�9 if o is a terminal object and c is a terminal class of the same type, then
O~--C,

�9 its restriction to the cartesian product of the set of simple objects by the
set of simple classes, is user defined, in such a way tha t if o +-- c and
c = (al : c l , . . . , a~ :c~), then:

-- S(O) = (al : 01, ...,a,~, : o,~,), with n ' > n,

- Vi E [1 ,n] ,oi +-- ci,

�9 if o is a set object such tha t s(o) = {ol, . . . ,op}, then o +-- c* iff Vi E
[1,p],o~ ~- c,

�9 if o +-- c and c g~ c ~, then o +-- c ~.

If o +-- c, we will say tha t o realizes c.

Assuming this definition, we can exhibit the fundamental following rule:

[If o +- c, then [o] _<r [c]]

Proof:

See appendix A.

Examples:
From the previous object and class examples, we have:
ol +- I m a g e , o3 +-- Date
o2 +-- P e r s o n , o6 +-- Employee , o6 +-- P e r s o n

o4 +-- S t r i n g , o5 +'- S t r ing* , olo +-- In teger , o19 +-- Real
o20 +-- Address*, o24 +-- Address , o25 +-- Address

Remark:
In order to provide objects with richer structures than their classes', we sepa-
rately defined the type and class paradigms. In contrast to the definition given
in [HUL89], a class is not a set of objects in our model. It references a type tha t
is more generic (in the sens of the partial order on types) than tha t of all its
realizations (objects).

3 . 4 D a t a b a s e s

A database according to our model, is a triple ((C, ~) , O, +--), where (C, <~) is
a set of classes, latticed by a partial order, representing the inheritance link; O is

552

a set of objects and +- is a binary relation on O x C representing the realization
link.

One can notice that this definition involves both the notions of database
schema (in the class set and its partial order) and database instances (in fact
realizations, in the object set and the realization relation).

As mentioned earlier, the user defines the classes, the objects, the partial
order on simple classes and the realization link on simple objects. The remainder
of the database structure is deduced, according to the previous inheritance and
realization rules.

3 .5 D i s c u s s i o n

We shall point out some advantages of the realization link in 3.5.1, but also note
some drawbacks in 3.5.2.

3.5.1 Advantages from relaxing the instantiation link

The realization link frees objects from the imposed structure constraint
induced by their class.

In modelling some kinds of applications (particularly in the Information
Retrieval field), the database designer is not always able to catch the exact
structure of all classes, but only a part of it, representing a minimal stable
and standard structure. The advantage of the realization link resides in
allowing objects afterwards to have individual structures that might be
further abstracted into the class, if the designer so decides.

When exceptions are encountered among objects, i.e. when some objects
have several different properties compared to their classes, the realization
link prevents users from turning to some artificial design solutions to deal
with such problems, like creating lots of sub-classes, one for each exception.

The realization link is a good "design tool" when dealing with evolutionary
applications, where objects' structures are often time-changing, in a way
that can not be predicted in advance (non-stable life cycle). Such phe-
nomena are often encountered in CAD-CAM or architectural applications.
The realization link allows objects to evolve quite independently from their
classes.

Besides, it provides a basis for a possible "reverse engineering", which
allows one to redefine class structures, once objects have stopped evolving.
This is a classical problem in evolutionary databases.

3.5.2 Some drawbacks from the realization link

The main problems arising from the model we defined earlier appear when it
comes to querying the database or specifying integrity constraints among it. In

553

classical structured models (relational, semantic, object-oriented), query formu-
lation or integrity constraints specification are based on class structures, assum-
ing that objects only value those structures with other objects or values.

In the remainder of this paper, we will focus on query formulation and pro-
cessing, and defer integrity constraint investigation to a later study.

So, when querying a database for 50 years old employees, living in Nancy, the
user is aware a priori of the existence of a class named Employee, representing
employees and having an at tr ibute giving their age (say age) and an other giving
the town they live in (say address). The query can then be expressed by the
set:

{o E Employee, o.age = 50 A o.address.town = "Nancy"}

As is the case in structured data models, this kind of query can also be spec-
ified in our model, since each object realizing the Employee class has an age
attribute, and an address attribute, and each object realizing the class Address
has a town attribute. In order to fully make use of the power of the realization
link, queries have to deal also with the additional part of object structures that
is not in their class structures. But this structure is not known at the conceptual
level; for instance, the ol object, realizing the Image class uses, in its (additional
individual) structure, the 06 object, realizing the Employee class. This is not a
mandatory (predictable) reference in the Image class.

The main question is how to make the user be able to specify such queries
as images of 50 years old employees, living in Nancy?

In our opinion, an easy solution is to formulate queries the same way as
objects: a part tied to class structures and an other tied to individual contents.

The first part comprises some criteria expressible at the conceptual level (i.e.,
involving properties from the target class). The second part is a set of sub-queries
that have to be satisfied by component objects (mandatory and additional) of
the main object satisfying the query. This strategy makes a good use of the
expressive power of our model.

4 Queries

In this section, we define in 4.2 a model of queries suited to our data model. We
first give some basic notions in 4.1.

4.1 B a s i c n o t i o n s

For specifying queries, we need to define some preliminary notions, such as valid
paths and path destinations for classes and objects.

A path is a list of attributes names, separated by points; e.g. address.town
or age.salary.

554

This definition yields arbi t rary paths; thus, we define valid paths for classes
and objects, and along with it, we define valid pa th destinations, noted Dest(c, p)
(for a class c) and Dest(o,p) (for an object o).

4.1.1 Va l id p a t h s a n d t h e i r d e s t i n a t i o n s for a c la s s

For obvious reasons, we define these notions only for simple and set classes (not
for terminal classes).

�9 Simple Classes:

- a p a t h of length 1: p = a, is valid for a class c = (al : Cl, . . . ,am : c,~)
iff 3 j E [1 ,m] ,a j = a. Then we have: Dest(c,p) = cj,

- a pa th p = al...an (n > 1), is valid for a class c, iff p ' = al. . .a,~-i
is valid for c and p" = a,, is valid for Dest(c,p~). Then we have:
Dest(c ,p) = Des t (Des t (c ,p ') ,p ') .

�9 Set classes:
a pa th is valid for c* iff it is valid for c ; and we have: Dest(c*,p) =
(Dest(c, p))*.

Example:

Dest(Image, date.month) = Dest(Dest(Image, date), month)
-- Dest(Date, month)
= Integer.

4 .1 .2 Va l id p a t h s a n d t h e i r d e s t i n a t i o n s for an o b j e c t

A path p is valid for an object o, iff 3c E C, o +- c and p is valid for c. Now, let
us define the destination of a valid pa th for an object.

�9 Paths of length 1:

- Simple objects: Dest(o, a) = o.a: the object corresponding to at-
t r ibute a in s(o).

- Set objects: Dest(o,a) = o' such that: s (d) = {Dest(oi ,a) ,oi e
8(0)}.
Remark:
In this case, we create a new object not already existing in the object
base. I t is the only case of automat ic object creation.

�9 Paths of length n > 1 :
Dest(o, al ...an) = Dest(Dest(o, al ...a,~-l), a,~).

Example:

Dest(ol , photograph.name) = Dest(Dest(ol , photograph), name)
= Dest(o2, name)
-~Os.

555

4 . 2 T h e q u e r y m o d e l

In 4.2.1, we define the general syntax of a query, and in 4.2.2 its semantics.

4.2.1 Q u e r y s y n t a x

A query is a quadruple q = (c, Cl, Q,p) where:

�9 c is a class, called target of q,

�9 Cl = {C/l,..., cl,~} is a set of clauses, called criteria of q,

�9 Q = {ql,..., qm}, is a set of queries, called sub-queries of q,

�9 p is a valid pa th for c, called projection of q.

Criteria, sub-queries and /or projection may be empty.

A clause is a disjunction of literals: cli = l~l V ... V liq,.

A literal l~j takes one of the following forms:

�9 p = p ' or p ~ p' , where p and p ' are valid paths for c, such that Dest(c , p) <<_~
Dest(c ,p ') or Dest(c ,p ') <_.y Dest (c ,p) ,

�9 p = Oo or p ~ o0, where p is a valid pa th for c and Oo is a terminal object,
such tha t o0 ~ Dest(c ,p) ,

�9 p E p ' or p ~ p' , where p and p ' are valid paths for c, such that Des t (c, p') <_~
(Dest(c,p))* or (Dest(c,p))* <~ Dest(c ,p ') ,

�9 o0 E p or Oo r p, where p is a valid pa th for c and oo is a terminal object,
such tha t Dest(c ,p) = d* and Oo +-- c ~,

�9 p C_ p~ or p ~: p ' , where p and p ' are valid paths for c, such tha t Dest(c , p) =
c ~* and Des t (c ,p ~) = c"*, having d _<~ c" or c" _<-y d ,

�9 Oo C_ p or oo ~ p, where p is a valid pa th for c such tha t Dest (c ,p) = c t*,
and Oo is a set object, the structure of which is a set of terminal objects,
and such that oo +-- d*.

If c = c'*, then we define: q. = (c', C1, Q, p).

Before giving the formal semantics of such queries, we outline their informal
meaning: query q looks for objects realizing class c, satisfying all clause members
of Cl and referencing, for each query member of Q, at least one object resulting
from this query. The result of q is the set of pa th p destinations for all objects
satisfying those three conditions.

In consequence, as was the case for classes, the recursive definition of queries
must be cycle free.

Examples:
The query ql -- (cl, Cl l , QI ,p l) looks for 50 years old employees, living in Nancy.

556

Cl = E m p l o y e e
Cll = {age =
" N a n c y "

Q1 =~
Pl is empty.

O01,002 e addresses . town} , with S(Ool) = 50 and s(o02)

The query q2 = (c2, Cl2, Q2,p2) looks for images of such employees.
c2 = I m a g e
Cl2 = 0
Q2 = {ql}
P2 is empty.

The realization link is taken into account in our query specification language,
within the set Q, that specifies criteria on all referenced objects of the main
object. Conceptual knowledge on objects, coming from their class structure is
used in the set Cl.

Thus, a query uses more structures than only those of the target class.

4.2.2 Query semantics

We define the formal semantics of a query q = (c, Cl, Q, p) as being an application
pq, defined on the powerset of O as follows:

~q :p(o) ~p(o)
0 ~-+ pq(O) = { D e s t (o , p) , o E O A o satisfies q}.

The satisfaction of a query by an object is defined as follows:

�9 A simple object o such that s(o) = (al : o l , . . . , an : o,~) satisfies a query
q = (c, Cl, Q,p) , iff the three following conditions are satisfied:

- - o + - - c .

- The evaluation of all clause members of Cl within o leads to True.
This evaluation is done in an intuitive way, according to the kind of
each literal in the clause. Within a literal, a path p is evaluated to
Dest (o ,p) .

- Vq' = (c r ,C l ' ,Q ' , p ') e Q , 3 i e [1 ,n] ,3d e O, d satisfies q' A
D e s t (d , p ') = oi.

�9 A set object o satisfies a query q, iff Vd E s(o), d satisfies q..

Examples:
Object oe satisfies query ql and as a consequence, object Ol satisfies query q2.

557

5 Implementation

To validate our approach, we developped a prototype within the Smalltalk-80
object oriented programming environment [GR83], on a SPARC station.

Each of the model concepts (objects, classes, attributes, queries, ...) has been
represented by a class in Smalltalk, that is a meta-class in our model. Accurate
methods are at tached to each class. Those methods implement the "philosophy"
of our model, by describing the behaviour of each concept.

The object-oriented data model of smalltalk is then used as a meta-model for
our model.

Each feature of our model (an object, a class, a query, ...) is represented as
an object in Smalltalk, that is a meta-object in our model. It is an instance of
the related meta-class (cf. figure 1).

To the concepts presented throughout the paper, we added two important
features:

�9 the distinction between objects and values; that is terminal objects are
treated as values (no identifiers);

�9 the capability to manage semantic relationships between objects; e.g. a
person is on a boat, a house is in the back of an image.

Those features have not been specified in this paper, in order to define the
realization mechanism (that is the main originality of our model), in a simple
and clear way. But they are also integrated into the mechanism.

The prototype allows one to:

�9 create, modify or delete classes and relationships, within a conceptual level
browser (cf. figure 2),

�9 create, modify or delete objects, within a concrete level browser that has
the same look as the precedent,

�9 create, modify or delete queries, within a query browser that also has the
same look as the conceptual browser.

In the actual version, queries are evaluated among the object base, according
to the query semantics presented in 4.2.2, extended to capture relationships.

We have experimented our approach on an image database containing images
of Paris in the 1900's, that has also served as an example database for the
RIVAGE system, also developped in our team [HCK90]. Figure 3 gives the
results of a query looking for images containing two aquatic vehicules, side by
side.

When queries address images, the resulting objects (images) are visualized us-
ing an image viewer, that has been developped for the RIVAGE system [CHA93]
(figure 3).

558

Figure 2: Conceptual browser

This experimentation clearly showed that queries on image databases can
be extended to capture complex objects and semantic links in image contents,
rather than the simple use of keywords.

Conc lus ion

We have presented a data model intended to model and query complex objects
having a strong individual structure, as those usually encountered in Content-
Based Information Retrieval (images, texts, ...).

One particularity of the model is to provide objects related to a given class
with an extra individual structure, in addition to that of the class (common to
all its related objects).

The classical instantiation link between an object and its class has been
relaxed and rebaptized "realization link", in order to clearly outline the gained
freedom for objects, with regard to their classes.

We have also presented a query specification language suited to our data
model and showed that all the model concepts can be represented as meta-
classes in a class-based object-oriented model.

559

Figure 3: Image browser

The realization link shows itself particularily useful in the Content-Based
Information Retrieval field, as has been stated in some of our previous research
[MLH94, LAH95].

The perspectives envisaged for this work are to explore integrity constraints
specification and maintainance, according to our model features. In classical
databases, integrity constraint specification, like query specification, uses some
conceptual knowledge about class structures, to specify criteria among objects.

Since in our model, objects have richer structures than their classes, it would
be interesting to use the additional individual object structures in constraint
specification, as we have done for queries.

References

[AB88] S. ABITEBOUL and C. BEERI. On the power of languages for
the manipulation of complex objects. Technical Report RR-0846,
INRIA, 1988.

[CAT94] R.G.G. CATTELL, editor. The Object Database Standard: ODMG-
93. Morgan Kaufmann, 1994.

[CHA931 D. CHAFFIOL. Rivage et imageur. Rapport de stage ESIAL 2,
Univ. Nancy I, 1993.

560

[COD70]

[COD79]

[GPVG89]

[GR83]

[HCK90]

[HK87]

[HLMM92]

[HUL89]

[KIM90]

[KKL91]

[LAH95]

[MLH94]

E.F. CODD. A relational data model for large shared data banks.
Communications of the ACM, 13(6):377-387, 1970.

E.F. CODD. Extending the relational model to capture more mean-
ing. ACM Transactions on Database Systems, 4(4):397-434, 1979.

M. GYSSENS, J. PAREDAENS, and D. VAN GUCHT. A grammar-
based approach towards unifying hierarchical data models (extended
abstract). In ACM-SIGMOD'89, pages 263-272, 1989.

A. GOLDBERG and D. ROBSON. SmaUtalk80: The Language and
its Implementation. Addison-Wesley, 1983.

G. HALIN, M. CREHANGE, and P. KEREKES. Machine-learning
and vectorial matching for an image retrieval model : Exprim and
the rivage system. In ACM-SIGIR'90, pages 99-114, 1990.

R. HULL and R. KING. Semantic database modelling: Survey, ap-
plications and research issues. ACM Computing Surveys, 19(3):201-
260, 1987.

J.N.D. HIBLER, C.H.C. LEUNG, K.L. MANNOCK, and
N. MWARA. A system for content-based storage and retrieval in an
image database. In Image Storage and Retrieval Systems, IS~T /
SPIE Symposium on Electronic Imaging - Science and technology,
SPIE'92, pages 80-92, San Jose, California, 1992.

R. HULL. Four views of complex objects: A sophisticate's intro-
duction. In Nested relations and complex objects in databases, pages
87-116. Springer-Verlag, Lecture Notes in Computer Science, No
361, 1989.

W. KIM. Object-oriented databases: definitions and research di-
rections. IEEE Transactions on Knowledge and Data Engineering,
2(3):327-341, 1990.

D.A. KEIM, K.C. KIM, and V. LUM. A friendly and intelligent
approach to data retrieval in a multimedia dbms. In Database and
Expert Systems Applications, DEXA '91, pages 102-111, Berlin, Ger-
many, 1991.

Y. LAHLOU. Modeling complex objects in content-based image
retrieval. In Storage and Retrieval for Image and Video Databases
III, IS~T / SPIE Symposium on Electronic Imaging - Science and
technology, SPIE'95, pages 104-115, San Jose, California, 1995.

N. MOUADDIB, Y. LAHLOU, and G. HALIN. Emir: A content-
based data model. In Maghrebian Conference on Software Engineer-
ing and Artificial Intelligence, MCSEAI'94, pages 503-512, Rabat,
Morocco, 1994.

561

[RKS88]

[RS921

[SCH90]

[WLK87]

M.A. ROTH, H.F. KORTH, and A. SILBERSCHATZ. Extended
algebra and calculus for nested relational databases. A CM Transac-
tions on Database Systems, 13(4):389-417, 1988.

F. RABITTI and P. SAVINO. Automatic image indexation to sup-
port content-based retrieval. In]ormation Processing ~ Manage-
ment, 28(5):547-565, 1992.

C. SCHWARZ. Content-based text handling. Information Process-
ing ~J Management, 26(2):219-226, 1990.

D. WOELK, W. LUTHER, and W. KIM. Multimedia applications
and database requirements. In IEEE O~ce Automation Symposium,
pages 180-189, 1987.

A P r o o f o f t h e r e a l i z a t i o n r u l e

Let o E O and c E C, such that o +-- c. We have to prove that [o] <~ [c].

�9 If o is a terminal object, then c is a terminal class of the same type, and
we have indeed [o] <~ [c].

�9 I f o i s a simple object, then s(o) = {al : ol,...,a,~, : On,) and c---- {al :
Cl, ..., an : ca), having:

- - 721 __~ n ,

- Vi E [1, n] , oi +-- ci,

The proof is done in an inductive fashion, on the component objects of
s(o). Assume, as induction hypothesis, that Vi E [1,n], [o~] <_~ [c~]; we
then have:

[o](= [ol] • ... x [On']) _<~ [c](= [cl] x ... • [Cn]), coming from the definition
of the partial order on tuple types.

�9 If o is a set object, then s(o) = {ol, ..., op} and c = c'*. From the definition
of the realization link, we get: Vi E [1,p], oi +-- c'.

The proof is also done in an inductive fashion, on the member objects of
s(o). Assuming, as induction hypothesis, that Vi E [1,p], [oil <_~ [c'], we
see that [c'] is greater than all the [oil's, in the sense of the partial order
on object types; and so we induce:

s~p[oi] ~ r [c']
i=1

which yields:

[o] = (s p[oJ)* < , ([c'])* = [c'*] = [c]
i=1

[]

