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ABSTRACT 

The design of a software component, such as a database, is the trace of all the processes, products and 
reasonings that have led to the production of this artifact. Such a document is the very basis of system 
maintenance and evolution processes. Unfortunately, it does not exist in most situations. The paper 
describes how the design of a database or of a collection of files can be recovered through reverse 
engineering techniques. Recording the reverse engineering activities provides a history of this process. By 
normalizing and reversing this history, then by conforming it according to a reference design methodology, 
one can bbtain a tentative design of the source database. The paper describes the baselines of the approach, 
such as a wide spectrum specification model, semantics-preserving transformational techniques, and a design 
process model. It describes a general procedure to build a possible DB design, then states the requirements 
for CASE support, and describes DB-MAIN, a prototype CASE tool which includes a history processor. 
Finally it illustrates the proposals through an example. 
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1. Introduction 

[...] design recovery must reproduce all of  the information required for  a person 
to fully understand what a program does, how it does it, why it does it, [ ...]. 

[BIGG,89] 

History and Design 

The history of  a complex process, whatever its nature and its objective,  is the trace of  all 
the operations that have been carried out in order to complete  it. This definition stands for 
program execution for exemple,  but it is also applicable to human activities, such as 
information system engineering. The design of  an information system, or of  a part thereof, 
is the history of  the processes through which the system was built, together with the 
various specification products (schemas, documentation, operational code) used and 
produced by these processes. The design also includes the requirements that the system 
was to satisfy and the reasonings (also called the rationale) according to which the 
processes and the decisions were carded out. The design of  an exist ing system should be 
available, not only as the core documentation, but also as the basis for further system 
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maintenance and evolution. Ideally, this design should be recorded in the repository of a 
CASE tool which supports these maintenance and evolution processes. 

The concept of history is broader than suggested above. Indeed, any system engineering 
activity can be described by its history. Such is the case for system reverse engineering, 
system migration, system evolution, and system integration to mention only some 
examples. In the following, we will often make use of the more general term history 
instead of design, 

The role of histories in system evolution 
One immediate application of a history is to explain how and why the system has been 
developed in this way some years ago. Another important usage of a history is its replay. 
For instance, let us consider that we are provided with the history of the development of a 
database. This history is supposed to be the trace of all the activities of the conceptual 
design, of the logical design, of the physical design, and to include all the schemas which 
have been elaborated during these activities. Let us now suppose that we have to make a 
minor change in the conceptual schema of a database, such as adding a simple attribute, 
Ideally, all we should have to do is to carry out this change in the conceptual schema, then 
to replay the former history. If this history has been recorded in the repository of a CASE 
tool, this second operation can be carried out automatically, and can produce new versions 
of the logical and physical schemas. Of course, if the change is deeper, merely replaying 
the former design activities could prove insufficient since the conceptual change could 
imply a revision of the former decisions. The concept of history replay must be refined in 
order to cope with these more complex situations. Anyway, considering both applications 
of histories, it appears clearly that this concept must play a central role in computer- 
supported system evolution [BIGG,89] [HAI,94]. 

Unfortunately, in the current state of development practices, all this discussion may appear 
as basically theoretic, and far from the reality. Indeed, most systems have been (and still 
are) designed without any methodological concern, and consequently without CASE 
support. Consequently, many systems have no decent documentation, and when it exists 
and is up-to-date and usable, the history is unknown. In conclusion the design of most 
legacy systems is absent, or, at best, degenerates into a collection of hopefully correct and 
consistent schemas. 

Reverse engineering 
Trying to make a legacy information system evolve implies first to recover a possible 
design, i.e. a possible history together with its various (inherited or recovered) schemas 
and other documents. When no documentation is available for such a system, it is 
possible to rebuild it, at least partially, through a process called reverse engineering. For 
instance, successfully reverse engineering an existing database or a collection of files (i.e. 
the physical system) yields plausible logical and conceptual schemas for this database. It 
can be shown [HAI,93b] [HAI,95c] that most system forward and reverse engineering 
activities are transformational by nature, i.e. that they can be modelled as chains of 
schema transformations. Indeed, they most generally appear as processes which transform 
one specification product into another one. In addition reverse engineering can be 
described as a suite of processes, each of which is the inverse of a definite forward 
engineering process [HAI,93a]. 

Design recovery 
We can record the activities which are carried out during reverse engineering. This 
history will be made of a sequence of elementary transformations. This is a free, but 
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extremely valuable by-product of the process. Indeed, reversing this history, i.e. reversing 
the order of the operations, and replacing each of them by its inverse, should provide a 
way to get back the physical system from the abstract specification just recovered through 
the reverse engineering process. In this perspective, reverse engineering seems to be a 
realistic way to recover a possible design of the system. 

This is precisely the idea developed in this paper, applied to database design recovery. 

About this paper 

The paper is organized as follows. Section 2 shortly describes the data structure 
specification model which will be used to illustrate the concepts developed. Section 3 
defines the concept of schema transformation. Section 4 discusses the notion of history 
and relates it to that of methodology. Section 5 proposes a general methodology for 
database reverse engineering. Section 6 presents the principles of database design 
recovery. In section 7 we discuss the role of CASE technology in design recovery, while 
an example is developed in section 8. 

2. A data structure specification model 

Database design and reverse engineering are concerned with building, converting and 
transforming database schemas at different levels of abstraction, and according to various 
paradigms. Elaborating DMS-independent techniques and reasonings that support these 
activities requires the availability of a set of models to express all these schemas. Due to 
the transformational approach adopted in this presentation, and due to the large scope of 
the proposal that encompasses all the traditional levels of abstraction, it has been found 
essential to base it on a unique wide spectrum schema specification model. This model 
and its transformational operators are intended, 

�9 to support forward as well as reverse engineering, 
�9 to express conceptual, logical and physical schemas, as well as their manipulation, 
�9 to support any DMS model and the production and manipulation of their schemas. 

In short, conceptual schemas as well as physical schemas are expressed into a unique, 
generic, extended entity-relationship model. 

In this model, a schema is a description of the data structures to be processed. It is made 
up of specification constructs which can be classified into the usual three abstraction 
levels, namely conceptual, logical and physical (Fig. 1). We will enumerate the main 
concepts in each level : 

conceptual constructs 
entity types (with/without attributes; with/without identifiers), super/subtype 
hierarchies (single/multiple inheritance, total and disjoint properties), relationship types 
(binary/N-ary; cyclic/acyclic), roles of relationship type (with min-max cardinalities; 
with/without explicit name; single/multi-entity-type), attributes (of entity and 
relationship types; multi/single-valued; atomic/compound), identifiers (of entity type, 
relationship type, attribute; comprising attributes and/or roles), constraints (inclusion, 
exclusion, coexistence, at-least-one, etc); 

logical constructs 
record types, fields, foreign keys, redundancy, etc; 

physical constructs 
files, access keys (abstracting index, calc key, etc), physical data types, bag and list 
multivalued attributes, and other implementation details. 
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Figure 1 - A typical hybrid schema that could appear during reverse engineering. This schema 
includes conceptual objects (PRODUCT, CUSTOMER, ACCOUNT, of), logical objects (record 
type ORDER, with single-valued and multivalued foreign keys) and physical objects (access keys 
ORDER.ORD-ID and ORDER.ORIGIN; file DSK:MGT-03). 

In database engineering, a schema describes a fragment of the data structures at a given 
level of abstraction. In reverse engineering, an in progress schema may even include 
constructs at different levels of abstraction. Fig. 1 illustrates this fact through a schema 
which includes conceptual, logical and physical constructs. Ultimately, this schema will 
be completely conceptualized through processing of the remaining logical and physical 
constructs. 

Note 
A schema can be defined as a set of constructs, or specification objects. Therefore, set- 
theoretic relations and operators apply on schemas. For instance, a schema can be 
declared a subset of another one ($2 ~ S1) or can be defined as the union of other schemas 
($3 = S I u $2). However, a proper subset of a valid schema is not necessarily a valid 
schema : a relationship type with one role only can be a subset of a valid relationship type, 
but is not valid itself. 

3. S c h e m a  trans format ion  

In general, a schema transformation consists in deriving a target schema S' from source 
schema S by some kind of local or global modification. Adding an attribute to an entity 
type, deleting a relationship type, and replacing a relationship type by an equivalent entity 
type, are three examples of schema transformations. Several authors postulate that 
producing a database schema from another schema can be carried out through selected 
transformations. For instance, normalizing a schema, optimizing a schema, producing an 
SQL database or COBOL files, or reverse engineering standard files and CODASYL 
databases can be described mostly as sequences of schema transformations. Some authors 
propose schema transformations for selected design activities [NAVA,80] [KOBA,86] 
[KOZA,87] [ROS,88] [BATINI,92] [HALPIN,95] [RAUH,95]. Moreover, some authors 
claim that the whole database design process, together with other related activities, can be 
described as a chain of schema transformations [BATINI,93] [HAI,93b] [HAI,95c] 3. 

3 It is interesting to note that this approach has long be considered in pure software development. 
According to [BALZER,81] and [FICKAS,851 for instance, the process of developing a program [can be] 
formalized as a set of transformations. 
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Schema transformations are essential to formally define forward and backward mappings 
between schemas, and particularly between conceptual structures and DBMS constructs. 
In addition, they provide a concise and precise trace of any engineering activity, and will 
be the building blocks of histories. 

The notion has been defined in [HAI,91] and [HAI,95c], and can be summarized as 
follows. 

3.1 Principles 

A t ransformation ~ consists of two mappings T and t : 

�9 T is a structural mapping that replaces source construct C in schema S- with construct 
C'; C' is the target of C through T, and is noted C' = T(C). In fact, C and C' are classes 
of  constructs that can be defined by structural predicates. T is therefore defined by a 
minimal precondition P that any construct C must satisfy in order to be transformed by 
T, and a maximal postcondition Q that T(C) satisfies. T specifies the syntax of the 
transformation. 

�9 t is an instance mapping that states how to produce the T(C) instance that corresponds to 
any instance of C. If c is an instance of C, then c' = t(c) is the corresponding instance of  
T(C). t specifies the semantics of the transformation. Its expression is through any 
algebraic, logic or procedural language. 

According to the context, ]~ will be noted either <T,t> or <P,Q,t>. 

3,2 Reversibility 

In terms of  semantics-preservation, some transformations appear to augment the semantics 
of  the source schema (e.g. adding an attribute), some remove semantics (e.g. removing an 
entity type), while others leave the semantics unchanged (e.g. replacing a relationship type 
with an entity type). The latter are called reversible or semantics-preserving. If a 
transformation is reversible, then the source and the target schemas have the same 
descriptive power, and describe the same universe of discourse, although with a different 
presentation (or syntax). 

�9 A transformation Y~I = <P1,  Q1, t l >  = <T1, t t >  is reversible, iff there exists a 
transformation ~2 = <P2,  Q2, t 2 >  = <T2, t 2 >  such that, for any construct C, and 
any instance C of C: Pl (C) ~ ([T2 (TI (C))=C ] and [ t2 (tl (c) =C ]). )"-2 is 
the inverse of ~I, but, surprisingly, not conversely. For instance, an arbitrary instance 
c ' of T (C) may not satisfy the property c '  = t l  ( t 2  ( c ' )  ). 

�9 If E2  is reversible as well, then E1 and :s are called symmetrically reversible. In this 
case, ][]2 = <Q1, P1 ,  t 2> ,  and both transformations can be defined through the unique 
notation ]~ = <P,  Q, t l ,  t 2 > .  It is called an SR-transformation. This is the most 
desirable form. However, in database design, and particularly at the implementation 
level, non fully reversible transformations may be used due to the unavailability of  SR- 
transformations. 

Similarly, in the pure software engineering domain, [BALZER,81] proposes the concept 
of correctness-preserving transformation aimed to compilable and efficient program 
production. 
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Remark. 

We have discussed the concept of reversiblity in a context in which some kind of instance 
equivalence is preserved. However, the notion of  inverse transformation is more general. 
Any transformation, be it semantics-preserving or not, can be given an inverse. For 
instance, de l -ET(CUSTOMER),  which removes entity type CUSTOMER from its schema, 
clearly is not a semantics-preserving operation, since its mapping t has no inverse. 
However, it has an inverse transformation, namely c r e a t e - E T ( C U S T O M E R ) .  Since only 
the T part is defined, this partial inverse is called a structural inverse transformation. We 
will discuss these operators in more detail in the next sections. 

3.3 Notation 

Though these definitions do not depend on any specific data structure model, we will 
concentrate on ER schemas. A PROLOG-like specification of T through the expression of 
its components P and Q is suggested in [HAI,92]. However, we will use a more readable 
expression in which generic versions of C and T (C) are represented through ER graphical 
convention. As an illustration, figure 2 describes how a many-to-many tel-type (i.e. C) can 
be replaced by a new entity type, by two one-w-many rel-types, and by an identifier (i.e. 
T (C)). The t part of the transformations will be ignored from now on. 

" ~  I1-Jl I2-J2 

< < ll H 
IIJ1 " @ I2-J2 T2 

Figure 2 - Representation of structural mapping T1 (from left to right) & T2 (from right to 
left) of a typical SR-transformation. 

This transformation is generic since the names A, B, R, R1, R2,  I 1 ,  J 1 ,  I 2 ,  J2  must be 
replaced by actual values (e.g. CUSTOMER, PRODUCT, o rde r  . . . .  1 , 1 )  in order to get 
an instantiated transformation acting on an actual schema. 

3.4 Stuctural analysis of a transformation 

A transformation is known to replace construct C with construct C' in schema S, to yield 
new schema S'. The effect of transformation T in schema S can be precised as follows. 
Let us consider the structural functions C_, C§ and C O : 

C_(T)=S- S' 

C+(T)=S' - S 

Co(T) 

returns the objects of S that have disappeared; 
returns the new objects that appear in S'; 
returns the objects of S that are concerned by T, but that are preserved 
from S to S' (the catalytic constructs of T). 

We ~so have:  

C(T) 
C'(T) 
S' 

= C0(T) UC_(T) 
= C0(T) UC§ 
= (S - C_(T)) UC+(T) 
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These concepts are illustrated in the following scenario, in which an instance of the rel- 
type/entity type transformation of Figure 2 is applied on rel-type R, and in which every 
object has been given a denotation : 

0-N < ~  1-1 
sA sB T 

rA ~'-s rB 

0-N < ~  1-1 
sA sB 

~N 0-N 
rRA ~ rRB 

I l~.rltAI 

The structural functions evaluate as follows : 

C_(T)= 
C+ (T) = 
Co(T)= 
S = 
S' = 

C(T) = 
C' (T)= 

{R, rA, rB} 
{R', RA, RB, rRA, rAR, rRB, rBR, id (R') } 
{A,B} 
{A,B,AI,BI, S, sA, sB,R, rA0 rB} 
{A, B,AI, BI, S, sA, sB, R', RA, RB, rRA, rAR, rRB, rBR, id (R')} 
{A,B, R,rA, rB} 
{A,B,R',RA, RB, rRA, rAR,rRB,rBR,id(R')} 

3.5 Signature of a transformation 

In a history, a transformation will be specified through its signature, that states the name 
of the transformation, the names of the concerned objects in the source schema, and the 
names of  the new objects in the target schema. For example, the signatures of  the 
transformations T1 and T2 in Fig. 2 are as follows 4 : 

TI: (R',{(A,RI), (B,R2)}) ~-- RT-to-ET(R) 

T2 : R~-- ET-to-RT(R' ) 

The first one is interpreted as "when applying RT-to-ET to relationship type R, the new 
entity type is called R', the tel-type involving A is called R1 and that involving B is called 
R2". The second one must read as follows : "when applying ET-to-RT to entity type R', 
the new rel-type is called R". The objects which are involved in the operation, but that can 
be identified in the schema from the names mentioned in the signature, are not specified. 
In the signature of  T2 for instance, entity types A and B are not mentioned since they can 
be deduced as "all the entity types linked to R' in the source schema". A signature alone 
does not comprise the C_, C+ and C O structural components, but it can be used to identify 
them in the source and target schemas. In addition, the format of a signature is not unique, 
but depends, a.o., on the default naming conventions. For instance, the roles are given 
default names in transformations T1 and T2 described above. 

4 Fixedqength lists are enclosed into parentheses, while variable-length lists are enclosed into curly 
brackets. 



279 

Just like transformations, signatures can be generic or instantiated. For instance, the 
generic signature 

(R', { (A,RI), (B,R2) }) <-- RT-to-ET(R) 

could be instantiated, in an actual schema, into 

(ORDER, { (CUSTOMER, from) , (PRODUCT, of) } ) (-- RT-to-ET (order) 

From these examples, we can observe an essential property of  the signatures : their 
reversibility. Being provided with the right-side schema and the signature of T2, we can 
derive the signature of  T1, and conversely. In other words, the signature provides enough 
information, not only for redoing the operation, but also to undo it. 

This property is less obvious for some non-SR-transformations. Let us consider the 
example of the d e l - E T  operator, which removes an entity type from a schema. It can be 
illustrated as follows. 

deI-ET 

At first glance, it seems that the following signature could be quite right : 

() <-- del-ET (B) 

Unfortunately, the problem is that, though we can redo the transformation, we are unable 
to undo it. Of course, we are informed that entity type B was removed, but we have lost 
information about its structure : what were its attributes, its roles, its constraints, etc ? 

In this case, we must augment the signature with those of the derived operations. We 
consider that removing B consists in removing its constraints (e.g. identifiers), then its 
attributes and its roles, then the inconsistent relationship types, and finally B itself : 

() <--del-lD(B, {BI},S) 

( ) <-- del-Att (B,BI,5) 

( ) <-- del-Att (B, B2,5) 

( ) <-- del-Role (R, B, 5) 

( ) <-- del-Role (R, A, 8) 

( ) <-- del-RT (R, 5) 

() <-- del-ET (B, 5) 

In these signatures, the symbol 8 stands for any kind of additional information needed to 
create the object, e.g. value type, value length, cardinality constraint, narrative description, 
etc. Now the signature of the d e l - E T  operation is reversible, though the operation itself 
is not. 

3.6 Some examples of reversible transformations 

A realistic toolset aimed at building complex database schemas would include several 
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dozens of schema transformations. We will briefly specify some of the most popular 
techniques for which only the graphical expression of mapping T will be given. Some 
examples of usage are proposed, together with the signature of the direct and inverse 
transformations. A more comprehensive development will be found in [HAI,91], 
[HAI,93b] and [HAI,95c] for instance. 

3.6.1 Transformation of a relationship type into an entity type 

Any relationship type R can be expressed by an entity type E, and as many one-to-many 
relationship types R1, R2 . . . .  as there are roles in R. The transformation preserves the 
cardinality constraints, the possible attributes as well as the identifiers. It is an SR- 
transformation. 

This generalization of the transformation depicted in Fig. 2 will be used to reduce 
complex relationship types, such as those with more than 2 roles, or with attributes. It can 
also be used to get rid of many-to-many or recursive relationship types. 

(~N ~ (~N 
1-1 

1 - 1 \ ~ 1 - 1  

Signatures: (E,{(EI,RI), (E2,R2), (E3,R3)}) <-- RT-to-ET(R) (direct) 
R <-- ET-to-RT (E) (inverse) 

3.6.2 Transformation of  a relationship type into a foreign key 

This one replaces a one-to-many relationship type R with a foreign key, which can be 
either multivalued or single-valued according to the cardinality of R. It is the main 
operator to produce relational schemas, but also standard file structures. 

r162 

Signatures : {A1} +- RT-to-FK(R,B)  (direct) 
R ~-- FK-to-RT (B, {A1}, A) (inverse) 
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3.6.3 Transformation of an attribute into an entity type 

Transforming an attribute into an entity type is another common technique. It comes in 
two variants, namely value representation (above), in which each distinct value of A2, 
whatever the number of its instances, is represented by a distinct EA2 entity, and instance 
representation (below), in which each instance of A2 in each E entity is represented by a 
distinct F_A2 entity. There are many applications of these techniques : eliminating 
multiva/ued attributes, eliminating optional attributes, eliminating compound attributes, 
extracting long attributes, defining dictionaries, promoting attributes (in conceptual 
analysis), normalizing entity types, etc. 

r 

r 

Signatures : (EA2, R) <-- Att-to-ET/Value (A,A2) (direct) 
(EA2, R) 4-- Att-to-ET/Instance (A,A2) (direct) 
A2 <-- ET-to-Att (EA2) (inverse) 

3.6.4 Transformation of a multivalued attribute into serial attributes 

This technique is often used to represent multivalued attributes while avoiding building an 
additional table, which would in turn imply costly joins in application programs. Each 
instance of A2 is represented by a single-valued attribute. Unfortunately, this is an R- 
transformation only. Indeed, the right version will allow situations which are not 
permitted by the left schema. For instance, the uniqueness of the A2 values is no longer 
ensured (the serial attributes implement a bag and not a set) and an implicit order is 
defined on the value set. 

[A21 
] A22[0-1 ] 
[A23[0-1] 
IA3 

Signatures: {A21,A22,A23} <-- MultiAtt-to-SerialAtt(A,A2) (direct) 
A2 <-- SerialAtt-to-MultiAtt (A, {A21, A22, A23 } ) (inverse) 
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4. Methodologies and histories 

4.1 Modelling methodologies and histories 

A history is not an arbitrary sequence of operations. It should obey to a structured way of 
proceeding called a methodology 5. A methodology specifies the products and the 
processes that appear when carrying out any instance of a general engineering activity. For 
instance, several database design methodologies have been proposed so far, ranging from 
standard ERA-based approches to the more recent OO approaches. Less common 
activities such as database reverse engineering [HAI,93a] or schema integration 
[SPACCA,92] have been formally described through specific methodologies as well. 

Describing methodologies relates to (software~design) process modelling, a discipline that 
is concerned with the understanding, representation and computer-based support of the 
software engineering activities [POTTS,88], including the development of data structures 
in data-centered applications. Such activities can be modeled as a set of documents, or 
products (schemas, programs, specifications, etc) and a set of engineering processes that 
transform input products into output products according to specific requirements to satisfy. 
For instance, in the database realm, conceptual user's views are integrated into the unique 
conceptual schema by an integration process, the conceptual schema is normalized into a 
canonical conceptual schema through a normalization process, this schema is translated 
into an SQL schema by a DBMS-oriented translation process, the latter schema is then 
optimized, and finally coded by other ad hoc processes. Each process in turn can be 
decomposed into a local set of products and processes, until primitive processes can be 
described. 

The model we have developed derives from proposals such as [POTTS,88] and 
[ROLL,93], extended to all database engineering activities. This model describes quite 
adequately not only standard design methodologies, such as the Conceptual-Logical- 
Physical approaches [TEOREY,94] [BATINI,92] but also any kind of heuristic design 
behaviours, including those that occur in reverse engineering. A fairly comprehensive 
specification of the model has been given in [HAI,94], but we will shortly recall the 
elements which will be used in the following (Fig. 3). 

Product and product instance. A product instance is any outstanding specification object 
that can be identified in the course of a specific design. A conceptual schema, an 
SQL DDL text, a COBOL program, an entity type, a table, a collection of user's 
views, an evaluation report, can all be considered product instances. Similar product 
instances are classified into products, such as CONCEPTUAL SCHEMA, 
NORMALIZED_ BINARY_SCHEMA, SQL_DDL_SCHEMA. 

Process and process instance. A process instance is any logical unit of activity in a history 
which transforms a product instance into another product instance. Normalizing 
schema S1 into schema $2 is a process instance. Similar process instances are 
classified into processes. NORMALIZATION is a process. There are two 
categories of processes, namely engineering processes and primitives. An 
engineering process is a goal-oriented process that is intended to make its input 
product satisfy specific requirements. NORMALIZATION, TIME_ 
OPTIMIZATION and REVERSE_ ENGINEERING are examples of design 
processes. On the contrary, a process is a primitive if it is a deterministic atomic 
operation. Generally, a primitive is neutral w.r.t, the requirements (it has no goal). 
Another difference is that the strategy of a primitive is encapsulated and is carried 

5 We should have used the term method. 
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out by the CASE tool, while the strategy of a design process is visible, and has to be 
carried out by the designer, or at least under its control. The creation of an entity 
type and the transformation of a attribute into an entity type are examples of  
primitives. 

~ processes process (;_NORM 
title "Conceptual normalization' 
explain CNORM 
object SCHEMA 
input ER_SCHEMA 
internal ER_SCHEMA 
output ER_SCHEMA 
strategy 

do-any ( 
C_TRANSFORM, 
C_EVALUATE ) 

until weak(C_NORMALIZED) 
make(NS) 

end-strategy 
end-process 

(a) (b) 

product- process 
instances instances 

(c) 

Figure 3 - Graphical representation of some aspects of the process model. (a) a process C_NOPa~ is 
defined as a transformation of product US (un-normalized schema) into NS (normalized schema). (b) 
this text specifies the process, a.o. by declaring its strategy as a script ("carry out transformations and 
evaluations until the current schema satisfies - preferably [weak] - the submodel C_NOPMALIZED" ). 
(c) a history that shows two instances c n l  and cn2 of C NORM, carried out on product instance us, 
and yielding instances n s l  and ns2 of NS. Hypotheses have been associated with each of these 
process instances. One of these product instances is selected, and this decision is justified. The 
histories of c n l  and cn2 would show instances of C TRANSFOP,~ and C EVALUATE. 

Process strategy. The strategy of a process is the specification of how its goal can be 
achieved, i.e. how the process must be carried out. A strategy can be deterministic,  
in which case it reduces to an algorithm (and can often be implemented as a 
primitive), or it can be non-deterministic, in which case the exact way in which each 
of its instances will be carried out is up to the designer. The strategy of a design 
process is defined by a script that specifies, a.o., what lower-level processes 
must/can be triggered, in which order, and under which condition. The control 
structures in a script include action selection (at most one, one only, at least one, all 
in any order, all in this order, at least one any number  of times, etc.), alternate 
actions, iteration, parallel actions, weak condition (should be satisfied), strong 
condition (must be satisfied), etc. 

Decision, hypothesis and rationale. In many cases, the engineer/designer will carry out an 
instance of a process with some hypothesis in mind. This hypothesis is an essential 
characteristics of this process instance since it implies the way in which its strategy 
will be performed. When the engineer needs to try another hypothesis, (s)he can 
perform another instance of the same process, generating a new instance of the same 
product. After a while (s)he is facing a collection of instances of this product, from 
which (s)he wants to choose the best one (according to the requirements that have to 
be satisfied). A justification of the decision must be provided. Hypothesis and 
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decision justification comprise the design rationale [MYLO,92]. The decisional 
aspects of  process modeling are particularly addressed in [POTTS,88] (through the 
concept of  deliberation) and in the NATURE project [ROLL,93]. In our model, the 
decision is a built-in primitive process. 

History. The history of a process instance is the recorded trace of  the way in which its 
strategy has been carried out, together with the product instances involved and the 
rationale that has been formulated. Since a project is an instance of the highest level 
process, its history collects all the design activities, all the product instances and all 
the rationales that appeared, and will appear, in the life of the project. The history of 
a product instance P (also called its design) is the set of all the process instances, 
product instances and rationales which contributed to P. For instance, the design of 
a database collects all the information needed to describe and explain how the 
database came to be what it is. 

4.2 Structure of  a history 

Depending on the complexity of the engineering process, and on the intelligence (e.g. the 
methodology-awareness) of  the recorder, the history can be available in different formats. 
We will describe two dimensions according to which histories can be classified. 

(a) (b) 

Figure 4 - The history of Fig. 3c has been restructured as a tree structure (a), and as a linear 
structure (b). The product instances have been hidden. 

4.2.1 History topology 

Technically speaking, a history can be materialized by a sort of logfile, and therefore is a 
pure sequence of operations. However, if we consider multi-hypotheses approaches and 
decision processes, this sequence can be interpreted as a more complex graph. In general, 
a history has a directed acyclic graph structure, as illustrated in Fig. 3c. We can simplify 
an arbitrary history by associating every decision process instance with the successful 
branch, as suggested in Fig. 4a. In this way, a history appears as a tree. 

Now, let us consider the successful branches only. We remove all the branches 
corresponding to hypotheses which have not been retained, and whose end products have 
been discarded. Keeping the live branches only produces a linear history (Fig. 4b). This 
derived history is important since it describes the way the final products could have been 
obtained should the engineer have proceeded without any hesitation : replaying this history 
on the source products will yield the same output products as the actual process did. 
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This classification can be generalized to methods comprising parallel branches, but this 
case is beyond the scope of this paper. 

4.2.2 Level of aggregation 

A history can be presented at different levels of detail. Fig. 3 and 4 describe instances of 
C_NORM only, i.e. cn l  and cn2. In a more detailed presentation, the history of cn l  and 
cn2 would have been described as well, showing instances of  C_TRANSFORM and 
C E V A L U A T E .  Developing in this way all the instances of engineering processes 
produces a complete history that can be given two extreme presentations. 

�9 A s t ruc tu red  history,  which appears as an ordered tree in which each node represents a 
process instance. Leaves are primitive process instances, and non-leaf nodes are 
engineering process instances. The immediate children of node N represent instances of  
the processes mentioned in the script of the process of N. The root represents the 
instance of the main process, i.e. the project. 

�9 A flat  h is tory shows the primitive process instances only. This concept is interesting 
because it is the easiest form of history to record. Indeed, since it represents no 
engineering processes, it is methodology-neutral, and can be built by simple CASE 
tools. In some situations, it could be the only form of history available. Such could be 
the case for loosely structured activities, such as some scenarios of reverse engineering. 

A CASE tool must be able to present a history at various levels of aggregation. 

4.2.3 Addi t iona l  definitions 

A history Hp is a subset of history Hn (Hp ~ Hn) if all the process instances of lip appears 
in Hn, in the same order. 

A history H can be sliced into sequences of process instances h i ,  h2, h3, etc. We will note 
this decomposition H = <h 1 h2 h3 �9  �9 >, where h i  h2 h3 are history slices. 

Let us consider history slice h ~ H, which starts at a time point where product instance P l  
is known to he available, h can be seen as the history of a process instance, possibly 
fictive, which produces product instance P2. We can write : P2 = h ( P l )  - 

Due to the transformational interpretation of engineering processes, a history slice can be 
considered as a transformation. Therefore, the structural functions are valid as well, and 
we can use the expressions C_ (h ) ,  C+ ( h ) ,  C O (h ) .  

4.2.4 Independent history slices 

Let us consider history Ho = <.. h l  .. h2 ..>, in which we identify slices h l  and h2. The 
question addressed is : does the execution of h2 depend on the execution of h i ,  or are 
they independent, in which case they can be (or could have been) executed in any order, or 
even in parallel ? First, we define the partial order relation b e f o r e  ( h i ,  h 5 ), that states 
that slice h i  must be performed before h i .  This relation is defined as follows 6 : 

before(hi,hi) r Co(hi) r~C_(hj) ~OVC§ i) ~C(hj) ~ 
Intuitively, h j  must follow h i if h j  deletes catalytic elements of h i, or if h j  uses 
constructs created by hi .  Then we define t r - b e f o x e ,  the transitive closure of b e f o r e  : 

6 This relation is called the precedence relation in [BATIN1,93]. 
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tr-before(hi,h j) r before(hi,hi) V 

(3 h c H : tr-before (h i , h) A before (h, hj ) ) 

Finally, h l  and h 2 are  independent in H 0 / f f  

-~tr-before(h l,h 2) /k-~tr-before(h 2,h I) 

4.2.5 Equivalent histories 

Two histories (orhistory slices) H0 and H1 are equivalent w.r.t, product instance p / f f  

Hi(P) =H 5 (p). 

Let us consider history H0, which is expressed as a sequence of four subsequences : 

H 0=<h lh 2h3h4>, 

where h 1 and h 4 are  (possibly empty) sequences of operations and h 2 and h 3 are  two 
(non empty) history slices. 

If we can prove that h2 and h3 are independent slices, then they can be swapped in H 0, 
leading to history H1 = <hi  h3 h2 h4>. Therefore, Hi is equivalent to H 5 /ff H 5 can be 
built from Hi through a sequence of swap operations applied to independent slices. 

Let us consider history H, which transforms the schema of Figure 1 into a relational 
schema : multivalued attribute DETAIL is transformed into entity type DETAIL and one- 
to-many rel-type f rom,  then the latter and rel-type o f  are expressed as foreign keys. 

H = hl : (DETAIL, from) <-- Att-to-ET/Value (ORDER, DETAIL) 

h2: {ORD-ID} <-- RT-to-FK(from,DETAIL) 

h3 : {CUST-ID} <-- RT-to-FK(of,ACCOUNT) 

T h e  graph of tr-before is as f o l l ows  : 

hi ~ h2 h:3 " [ 

I 

Therefore, <h2,h3> and <hl,h3> are independent and swappable. According to the 
definition, <h3,  h l ,  h2> and < h l ,  h3 ,  h2> are equivalent to H, while <h3,  h2 ,  h l >  is 
not equivalent. 

4.2.6 Minimal history 
The history of a design process records the results of the decisions, be they right or wrong, 
of trials, errors, backtrackings, undos and redos which shape all the exploratory human 
activities. Histories generally have a complex structure including several branches which 
materialize the exploration of concurrent hypotheses (see Fig. 3c for instance), of which 
one only led to the discovery of a target concept, the other ones being abandoned. Cycles 
of doing, then undoing, and finally redoing, are not uncommon either. Such structures 
must be simplified : multiple branches must be reduced to the only one that has proved 
useful, useless loops must be discarded. Hence the concept of minimal history, which 
can be defined as follows : 

history H is minimal w.r.t, product instance p 
/ffforany H' CH, H'  (p) ~:H(p) 

In other words, there is no proper subsets of H which still are equivalent to H. Given 
history H, Hm is a mh2imal version of H if Hm is minimal, and Hm is equivalent to H. 
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5. D a t a b a s e  r e v e r s e  e n g i n e e r i n g  

Both reverse engineering and design recovery must be defined against a reference forward 
engineering approach. Indeed, reverse engineering can be modeled as the reverse of 
designing a database, and design recovery consists in developing a plausible history of  a 
definite design methodology. 

5.1. The reference database design methodology 

In this section, we draw the main principles of standard database design methodologies as 
described in [TEOREY,94] and [BATINI,92] for instance. Traditionally, database design 
can be described as made up of a sequence of four specific processes, namely 
CONCEPTUAL DESIGN, LOGICAL DESIGN, PHYSICAL DESIGN and VIEW DESIGN. 

�9 The CONCEPTUAL DESIGN process is aimed at producing the conceptual schema, a 
computer-independent representation of the information to be stored into the future 
database. Among others, this representation is to be given such desirable qualities as 
normality, minimality, clarity, that can be considered as provided through a specific 
sub-process called CONCEPTUAL NORMALIZATION. 

�9 Through the LOGICAL DESIGN process, the conceptual schema is transformed into a 
DMS-compliant optimized logical schema with the following three characteristics : 

- equivalence : it expresses the same semantics as the conceptual schema, 

DMS-compliance : it follows the data model of the chosen DMS 7, 

efficiency : it satisfies operational or technical criteria such as space and time 
performance. 

This process can be considered as being refined, at least conceptually, into three 
subprocesses : schema simplification, schema optimization and DMS-translation (Fig. 
5). 

SCHEMA SIMPLIFICATION replaces advanced constructs such as IS-A hierarchies, 
N-ary rel-types by equivalent basic constructs. The simplified conceptual schema is 
perceived as an adequate medium for logical reasonings when traditional DMS are 
considered. 

SCHEMA OPTIMIZATION modifies the schema in order to give it better 
performances. 

SCHEMA TRANSLATION converts the schema into data structures that are compliant 
with the model of the DMS. The result consists into two complementary parts : the 
DMS constructs, that can be controlled by the DMS, and the non-DMS constructs, 
most often integrity constraints, that will be ignored by the DMS. 

7 A DMS is a Data Management System. It is either a File Management System, or a Database 
Management System. 
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SIMPLIFICATION 

OPTIMIZATION 

TRANSLATION 

Figure 5 - Development of the Logical Design process of the reference design methodology. 

�9 The PHYSICAL DESIGN process translates the DMS constructs of this schema into a 
DMS-DDL text, and the non-DMS constructs into, e.g., procedural sections or local 
variables of the application programs. In addition, through physical tuning, technical 
parameters are set and physical constructs are built, such as indexes and clusters. 

�9 The VIEW DESIGN process builds the external views required by users and programs, 
and translates them in DMS-DDL and application programs fragments in the same way 
as for the global schema. 

Most of these processes can be in turn refined, directly or indirectly, into lower-level 
processes or operators that are primitive schema transformations as defined in Section 3. 

5.2 Database reverse engineering 

Grossly speaking, this process transforms input products, that mainly consist of source 
code texts, into schemas of the database. Two schemas are of particular interest, namely 
the logical schema of the database according to the DMS model, and a possible 
conceptual schema. The main input products consist in DMS-DDL description of the 
global schema and of the views, either in text format, or as data dictionary contents. 
Essential information, for instance on untranslated integrity constraints, can be found in 
the source text of the application programs (DML queries, procedure and data structures), 
in screen layout and procedural components of the user interface and in database checking 
procedures (e.g. triggers, check clauses). The physical schema may yield useful hints 
concerning the logical schema (indexes suggesting foreign keys, join-based clusters, etc). 
File/database contents analysis may provide strong hints, or validate hypotheses, on the 
presence of such constructs as identifiers, foreign keys, field layout and value domains. 

In [HAI,93a] and [HAI,95a], a general procedure is proposed for reverse engineering any 
database or collection of files. It consists into two major processes, namely DATA 
STRUCTURE EXTRACTION and DATA STRUCTURE CONCEPTUALIZATION (Fig. 6). 

�9 DATA STRUCTURE EXTRACTION produces a complete description of the data 
structures according to the model of the DMS, e.g. COBOL file structures, CODASYL 
schema, relational schema, etc. In addition, the non-DMS parts of the schema have 
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been elicited from, a.o. the procedural parts of the applications or database contents. 
According to the DMS, the process can be more or less easy. For instance, the DMS 
part of COBOL data structures can be difficult to discover while CODASYL or 
relational schemas can be analysed more easily. DATA STRUCTURE EXTRACTION 
appears as the inverse of the PHYSICAL DESIGN forward process. 

DATA STRUCTURE 
EXTRACTION 

DATA STRUCTURE 
CONCEPTUALIZATION 

Figure 6 - Database Reverse Engineering : the major processes. 

�9 DATA STRUCTURE CONCEPTUALIZATION tries to make the semantics of the logical 
schema explicit by recovering the intention of the optimized DMS data structures. This 
process is to a large extent the reverse of the LOGICAL DESIGN forward process, and 
can be decomposed into three subprocesses (Fig. 7). 

UNTRANSLATION 

CONCEPTUAL 

DE-OPTIMIZATION 

~ 4 

NORMALIZATION 

Figure 7 - Database Reverse Engineering : Development of the Data Structure 
Conceptualization process. 

- UNTRANSLATION detects DMS-compliant constructs and replaces them by their 
DMS-independent equivalent. This process appears as the inverse of the SCHEMA 
TKANSLATION forward process. 
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- DE-OPTIMIZATION detects and removes the non-semantic constructs from the 
logical schema, and particularly the optimization structures. This process appears as 
the inverse of the SCHEMA OPTIMIZATION forward process. 

- CONCEPTUAL NORMALIZATION has the same objectives as its forward engineering 
counterpart such as minimality, clarity and corporate standard compliance. In 
particular, it is intended to recover the high-level structures transformed by the 
SCHEMA SIMPLIFICATION. 

According to this approach, each DBRE process is either a forward process or the inverse 
of a forward process. Consequently, they can be based on basic schema transformations 
that are either forward transformations or the inverse thereof. 

6. Database design recovery 

In this section, we suppose that we have been provided with the history of a reverse 
engineering process which has led to a correct, coherent and validated conceptual schema 
of a legacy system. We will shortly describe a general procedure to built in a systematic 
way a possible design history of  this system. 

6.1 Normalizing the DBRE history 

The objective is to produce a correct and minimal DBRE history which complies with the 
standard way this process should have been carried out. The normalization includes two 
processes, namely minimizing and restructuring the history. 

A m i n i m a l  history is first extracted. Indeed, database reverse engineering basically is an 
exploratory process, and quite naturally, its history will include useless loops and dead 
branches. Getting rid of these structures produces a minimal history, as defined in Section 
4.2.6. We give some detail about this minimization process. 

- Removing dead branches provides a history in which only the branches and products 
that contribute to the final product (the conceptual schema) are kept. It consists in 
parsing the history backward, from the final product toward the input products, and 
marking the process instances and product instances examined. The unmarked 
instances are discarded. This process is fairly easy and can be automated. 

Detecting and reducing useless sequences, and particularly useless loops are more 
complex problems. Though the problem has not been completely formalized yet, we 
can propose the following heuristics : 

we consider history H, which is expressed as a sequence of transformations : 

H = <T 1 T 2 T 3 T4> , 

We denote by ~T the generic transformation of which T e H is an instance. If all the 
following properties stand in H, then H and <T1 T4> are equivalent : 

 :T2 -1 
C_(h3) =C+(h 2) 

-~(3TE H: (T@T3) AC+(T2) ~C(T) ~O) 

--,(qTe H: C+(T3) r%C(T) ~) 

In short, we can remove any pair of transformations which prove to be the inverse of 
each other, and whose target objects are not used in any other transformations. This 
heuristics is still valid when the T's are history slices instead. 
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Then this history is restructured according to the reference RE methodology. In 
particular, the operations are swapped, provided they are independent, and reclassified'  
into the reference engineering process instances in which they best fit, and the sequences 
are sorted in order to produce clusters of similar operations. These manipulations must 
preserve the equivalence of the source and final histories, according to the definitions in 
Section 4.2. 

6.2 Replacing each operation with its inverse 

Each operation of the normalized history is replaced by its inverse. Two cases will occur. 
The first one concerns primitive process instances. For each of them, there exists at least 
one inverse operation (e.g. transforming an entity type into an attribute has at least two 
inverse transformations, as illustrated in Section 3.6.3). The most adequate among them is 
chosen. 

The second case regards the engineering process instances. According to the way in 
which the reference DBRE methodology has been designed (Section 5.2), most of  its 
processes are, at least partially, the inverse of a forward process. Therefore, each reverse 
process instance is replaced, possibly after some redistribution of its contents, by its 
inverse forward process instance. Let us consider some representative examples : 

parsing -o  code generation 
conceptualization --o logical design 
normalization ~ simplification 
untranslation ---> translation 
un-optimization --~ optimization 
remove redundancies -~ introduce redundancies 

6.3 Reversing the order of the operations 

In each engineering process instance, whatever its level of aggregation, the order of the 
operations is reversed. 

6.4 Normalizing the design history 

The result of the preceeding processes is a correct design history. If the DBRE history has 
been correctly normalized, the resulting design history should enjoy the same minimality 
properties. However, when compared with the history of a native design project, it will 
generally appear as somewhat ackward. The objective of this normalization is to produce 
a more natural design history according to the corporate methodology standards, i.e. the 
reference methodology. This will be obtained by reordering, sorting and grouping the 
operations in each engineering process instance. For instance more than one instance of 
the optimization process can appear in the history. They should be merged in order to 
group them in one contiguous slice. In addition, several similar operations in the same 
engineering process instance can be grouped if they have the same objective. For 
instance, all the transform-rel-type-into-foreign-key operations are packaged into one 
contiguous sequence. 

Informal or linguistic information is associated with the important objects of the history. 
For instance, each data object must be given a semantic description, and for each 
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important process instance the rationale must be documented [BIGG,89]. Recovering the 
rationale of the decisions is a hazardous task. However, it can be improved by the context 
provided by the reference methodology. In each engineering process of this methodology, 
several ways of working are generally proposed, each driven by specific design criteria, 
such as space optimization, time optimization, normality, etc. By comparing the history 
profile with each of these suggested way of working, we can more easily guess what were 
the design criteria the developer had in mind when (s)he built the legacy system. For 
instance, transforming a multivalued attribute into serial attributes (3.6.4) suggests access 
time minimization, while transforming it into an entity type (3.6.3) suggests that 
readability and maintainability have been given higher priority. 

6.5 Generalizing the design history 
As it is described so far, a history traces elementary transformations only, be they 
primitive or enginering process instances. Indeed, each operation specifies the application 
of a generic transformation to an individual specification object : transform attribute 
PUBLISHER into an entity type, transform entity type BUYS into a relationship type, and 
so on. This has some important consequences, of which we will mention two. 

1. Such a dctailled history does not help much in understanding the reasonings underlying 
the (hypothetical) design of the system, in the same way as reading the log of the 
elementary manipulations performed by a surgeon during an operation does not inform 
much a medical student on the objectives and on the strategies used. 

2. Replaying this history works fine on the recovered abstract specifications, since it 
yields exactly the source logical schema, but it can lead to unsatisfying results when 
applied on modified abstract specifications, a scenario that is common in database 
maintenance and evolution. 

The problem can be stated as trying to recover the specific strategy used to perform each 
process. This problem has been tackled in the software engineering domain, where 
researches have been conducted in recovering a possible program from traces of its 
execution. 

These problems can be solved, at least partially, by generalizing the history, i.e. by 
replacing some sequences of similar individual operations by higher-level rules of which 
these sequences are the trace. For example, let us suppose that the schema on which 
engineering process instance I is performed includes relationship types R1, R2 and R3 
which all satisfy predicate P (e.g. is_H-ary),  and that no other objects satisfy p. Let us 
also suppose that, in I ,  transformation RT-to-ET is applied on R1, R2 and R3 : 

E1 (-- RT-to-ET (RI) 
E2 <-- RT-to-ET (R2) 
E3 <-- RT-to-ET (R3) 

Technically speaking, we can replace this sequence with the predicate-driven global 
transformation : 

for each rel-type R i such that is_N-ary (R i ) do : E i <-- RT-to-ET (R i ) 

When generalized in this way, the history is much shorter, it provides a clearer and more 
explicit specification of the reasonings driving the process instance (e.g. the intention of 
the origin history fragment obviously was to transform all N-ary rel-types into entity 
types), and it makes the history applicable to modified versions of the abstract 
specifications. For instance, let us consider that, due to changes in the user requirements, 
a new N-ary relationship type R4 has to be added to the conceptual schema. Replaying 
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the first version of the history of process T will leave R4 unchanged, while applying the 
generalized version will process R4 as well, therefore complying with the intention of :Z. 

As for most inductive reasonings, this process cannot be fully automated. Indeed, only a 
skilled designer can validate such a generalization. However, detecting similar 
transformation patterns, grouping them, and suggesting candidate generalizations can be 
described by formal rules, and supported by knowledge-based CASE functions. 

Once again, generalization is a complex process that can be made much easier and more 
deterministic if a precise reference design methodology is available. Indeed, each way of 
working proposed to solve the problem addressed in the current process should be 
supported by some standard transformations plans. The problem now reduces to 
identifying the most appropriate plan, and trying to map sequences of individual 
transformations to predicate-driven global transformation. 

7. C A S E  support of  design recovery 

Histories are the baseline of design recovery. Recording, managing, and processing 
engineering histories requires strong CASE support. From the discussion developed in 
this paper we can lay down the main requirements such tools should satisfy. We will 
mention some of them, then describe shortly a prototype CASE tool intended to support 
history management and design recovery. 

7.1 Requirements for CASE support of design recovery 

An environment that is to assist developers in design recovery of database should include 
some important functions. 

I. The repository of the tool must accomodate specification products at various levels of 
abstraction, and according to various common representation paradigms. 

2. Semantics-preserving transformations are the building blocks of history formalisation. 
Therefore, the tool must support some kind of transformational approach. 

3. The tool must provide the basic functions for reverse engineering. 

4. The tool must be methodology-independent : it will allow various engineering 
strategies, ranging from disciplined and formal approaches to informal, pragmatic and 
experimental ones. 

5. However, the tool must be methodology-aware, and include an active method model. 
It must also include a method specification language, a compiler for this language, and 
a method engine which provide method enactment to ensure that the actions performed 
by the developers comply with the current method 

6. The method engine must include a history recorder coupled with the current method. 

7. It must include various functions for history management : viewing at different 
aggregation levels, restructuring, reversing, pruning, analysing, updating, annotating. 

8. Finally, it must include a replay processor. 

7.2 The DB-MAIN CASE tool 

DB-MAIN is both a toolset to support system engineering, and a CASE tool development 
environment (i.e. a Meta-CASE or a CASE toolfactory).It is one of the main products of 
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the DB-MAIN project, dedicated to database applications engineering, and more 
particularly to the problems that arise when such applications evolve and have to be 
maintained. Its basic principles and its architecture have been described in [HAI,95b] and 
[HAI,96b]. DB-MAIN Version 1.0 offers both basic and sophisticated services for 
database forward and reverse engineering. Though coping with the very problem of 
database application evolution and maintenance in a significant way is due to 1997, the 
current version, and the current developments comprise important aspects that are to 
satisfy the requirements mentioned above. 

In its first version (October 1995), the tool offers support for most forward and reverse 
engineering activities. More specifically, it includes the following functions and 
components : specifications management; representation of all the project products 
through a generic, wide-spectrum, representation model for conceptual, logical and 
physical objects; multiple views of the specifications (4 hypertexts and 2 graphical views); 
a toolbox of more than 25 semantics-preserving transformational operators, allowing to 
carry out in a systematic way such activities as conceptual normalization, or the 
development of optimized logical and physical schemas from conceptual schemas, and 
conversely (i.e. reverse engineering); code generators and parsers; interactive and 
programmable source text and name analysers and processors. 

It also includes a history manager which records the engineering activities of the analyst, 
and which allows their further automatic or assisted replay; this manager can also reverse 
an existing history. A series o f  assistants (problem-driven expert modules) have been 
developed to assist the analyst in frequent, tedious, knowledge-based or complex tasks. 

The tool also allows the development of specialized CASE tool, either according to 
specific methodologies, or by adding new concepts and new functions to the basic toolset. 

The current version of the history manager, despite its early prototype state, already 
provides us with an experimental workbench to study the assisted building of forward 
histories from reverse histories. Developing an improved history manager is one of the 
objectives of Version 2 of DB-MAIN. 

DB-MA/N have been developed in C++ for PC/Windows workstations. It is currently 
used by several industrial partners, mainly in reverse engineering, redocumentation, 
reengineering and migration projects. An education/evaluation version s is used in an 
increasing number of schools and universities, and can be obtained free of charge by non- 
profit organizations. 

8. A short case study 

Let us consider the relational schema in Fig. 8, which could be the result of carrying out 
the Data Structure Extraction process on the DDL and procedural texts of an application. 

Interpreting this schema, i.e. rebuilding a possible conceptual schema, is the job of the 
Data Structure Conceptualization process. This process comprises three main 
subprocesses : Untranslation, De-optimization and Normalization. The first two ones can 
be conducted in parallel, while the third one will generally be carried out as the finishing 
touch. Let us imagine the following scenario, immediately translated into its history : 

�9 we express the first foreign key, R.NAME, as the relationship type from; we start the 
history with an Untranslation action : 

AI: from <-- FK-to-RT (CUSTOMER, {RNAME}, REGION) 

8 Fully functional, but limited to 1000-object projects. 
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F igure  8 - The logical schema of a relational database 

�9 we then observe the structure of serial attributes { PHONE1, PHONE2, PHONE3 } in the 
CUSTOMER table; we know it as a common low cost implementat ion of a multivalued 
attribute; we express these attributes as the multivalued attribute PHONE : 

A2: PHONE <-- SerialAtt-to-MultiAtt (CUSTOMER, {PHONE1, PHONE2, PHONE3 } ) 

This action obviously relates to the De-optimization process. 

�9 the schema includes two other foreign keys, which are known to express many-to-one 
relationship types; we augment the history with two Untranslation actions : 

A3: rl 4-- FK-to-RT ( SALES, {CID), CUSTOMER) 

A4:r2 e-- FK-to-RT (SALES, {PNUM}, PRODUCT) 

�9 the attribute SALESMAN of REGION is perceived as a low-level representation of an 
important concept, salesmen, that will feel better as an entity type. This attribute is 
transformed into an entity type : 

A5: ( SALESMAN, in) (-- Att-to-ET/Value (REGION, SALESMAN-NAME) 

The representation seems clearer and more readable. This is a Normalization 
transformation. 

�9 the SALES entity type is perceived as the representation of a relationship type. This 
decision belongs to the Normalization process : 

A6: SALES (-- ET-to-RT ( SALES ) 

�9 finally, the idea to express salesmen as an entity type is not a so good one, because it 
makes the schema more complex without any profit. We choose to transform this entity 
type into an attribute. This still is a Normalization operation : 

A7: SALESMAN-NAME <-- ET-to-ktt (SALESMAN) 

The actions are classified according to the process to which they are most relevant. The 
history of the conceptualization process of this reverse engineering project is summarized 
as follows. 
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Untransla t ion 

AI: from (-- FK-Uo-RT (CUSTOMER, {RNAME}, REGION) 

A3: rl(-- FK-to-RT ( SALES, {CID}, CUSTOMER) 

A4:r2 r FK-Uo-RT ( SALES, { PNUM}, PRODUCT ) 

De-optimization 

A2: PHONE 4-- SerialAtt-to-MultiAtt (CUSTOMER, { PHONE1, PHONE2, PHONE3 } ) 

Normalization 

A5: ( SALESMAN, in) <-- Att-to-ET/Value (REGION, SALESMAN-NAME ) 

A6: SALES <-- ET-to~RT (SALES) 

A7: SALESMAN-NAME <-- ET-to-Att (SALESMAN) 

A graphical view of this history is proposed in Fig. 9. The instances of  the primitive 
processes are represented by their labels. 

SQL-schema ~ untransi A3 
A4 

A2 

concept-schema no~.......~kA7A6 

Figure 9 - The history of the reverse engineering of the relational schema of Fig. 8 

The resulting conceptual scfiema appears in Fig. I0. 

Building a possible design history 
Let us consider the standard database design methodology whose Logical design phase is 
described in Fig. 5. It is obvious that following this strategy, it should be possible to 
produce a large variety of equivalent logical relational schemas. One of them is the source 
schema of Fig. 8. The objective is to build the unique history that produces exactly this 
logical schema from the recovered conceptual schema. As proposed in Section 6, we 
apply the 5-step strategy : 
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REGION ] 
m'JAME / 
SALESMAN-NAMEJ 
id:RNAME ] 

0-N 

1-I 

t 
CNAME 
ADDRESS [ "  \ - - - - - 7  
PHONE[0-3I | 
id:CID | 

PRODUCT I 
0 PNUM r 

|id:PNUM [ 

Figure 10 - A possible conceptual schema for the relational schema of Fig. 8. 

1. Normalizing the DBRE history 

Despite its simplicity, this history need be normalized. It appears that operations A5 
and A7 form a useless loop. Indeed, we have : 

�9 Att-to-ET/Value = ET-to-Att -I 

�9 C_ (A7) = {SALESMAN, SALESMAN-NAME, in, in. REGION, in. SALESMAN, 
id(SALESMAN) } = C+ (A5) 

�9 no transformations use C+ (A5) = { SALESMAN, SALESMAN-NAME, in, in. REGION, 

in. SALESMAN, id (SALESMAN) }, but A7 

�9 no transformations use C§ (A7) = {SALESMAN-NAME} 

Therefore A5 and A7 can be removed. 

2. Replacing each operation with its inverse 

Both engineering and primitive operations have direct inverse : 

Translation 

{RNAME} <-- RT-to-FK (from, CUSTOMER) 

(CID} <-- RT-to-FK (rl, SALES) 

{PNUM} <-- RT-to-FK (r2, SALES) 

Optimization 

(PHONE1, PHONE2, PHONE3 } <-- MultiAtt-to-SerialAtt (CUSTOMER, PHONE) 

Simplification 

(SALES, { (CUSTOMER, rl ) , ( PRODUCT, r2 ) ) ) <-- RT-to-ET ( SALES ) 
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3. Reversing the order of the operations 

Simplification 

(SALES, { (CUSTOMER, rl ) , ( PRODUCT, r2 ) } ) 4-- RT-to-ET (SALES) 

Optimization 
{PHONE1, PHONE2, PHONE3 ) <-- MultiAtt-to-SerialAtt (CUSTOMER, PHONE) 

Translation 
{ PNUM} <-- RT- to- FK (r2, SALES ) 

{CID) (-- RT-to-FK (rl, SALES) 

(RNAME) 4-- RT-to-FK (from, CUSTOMER) 

4. Normalizing the design history 

Due to its simplicity, this history need not be normalized. 

. Generalizing the logical design history 
The Simplification process includes one operation only. However, it is an instance 
of a standard way to get rid of N-ary relationship types, a typical complex construct. 
Therefore it is reasonable to generalize this instance into the transformation of all 
the N-ary relationship types into entity types. 
The Translation process includes a sequence of similar operations which are good 
candidates for generalization : express all functional relationship types into foreign 
keys. 
The Optimization process is much more difficult to generalize. Indeed, it often 
relies on complex reasonings strongly linked with the developer's skill, the 
technology state at development time, and with the data statistics and of the 
application requirements at the same time. These conditions may have changed 
since then. For these reasons, and in the absence of additional information, we 
propose not to generalize the operation(s). 

The result is presented in Fig. 11. 

9. Conclusion 

We have shown in this presentation that database design recovery can be tackled through 
reverse engineering techniques which are now fairly well understood and mastered. We 
have also shown that the proposed approach can be formalized thanks to the concept of 
semantics-preserving transformation. Moreover, this formality provides a sound basis for 
CASE support, as illustrated by the DB-MAIN CASE tool, where prototype functions of 
history recording and management have been implemented. It must be admitted, however, 
that design recovery, as interpreted by [BIGG,89], generally goes beyond purely formal 
treatment. In particular, explaining why some decisions have been taken, and declaring 
how the reconstructed artifacts relate with the application domain is up to the analyst, who 
is supposed to elicit such reasonings and relations from the technical traces which (s)he 
faces during reverse engineering activities. 
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Logical design 

Simplification 
for each rel-type R such that (R = R(E1,..,Ei) & -, (R is functional)) do : 

(R, { (El, rl) .... (Ei,ri) } ) <-- RT-to-ET (R) 

Optimization 

{PHONE1, PHONE2, PHONE3 } <-- MultiAtt-to-SerialAtt (CUSTOMER, PHONE) 

Translation 
for each rel-type R such that (R = R(EI,E2) & id(E1) = A) do : 

A <-- RT-to-FK (R, E2 ) 

Figure 11 - A possible design history for the relational schema of Fig. 8. 

An immediate question arises when a correct, concise and documented design is available: 
what to do with it ? For instance, how can we use this product to carry out system 
maintenance and evolution in a more systematic way than we now do ? This problem is 
beyond the scope of this paper, but a partial answer can be found in [HAI,94]. 

The data structure domain is fairly well formalized, and has long led to models and tools 
which are both formal and intuitive (and therefore used by practitioners). The domain of 
software engineering is much larger, and far less formalized, at least as far as practice is 
concerned. Hence a second question which can be asked at this stage : can these 
principles be generalized to help recover the design of other aspects of a legacy system, 
and in particular of the programs ? A tentative positive answer has been developed in 
[HAI,95a] for reverse engineering, but  the question is open as far as history recovery is 
concerned. 
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