
Handling Conceptual Model Validation by Planning

Dolors Costal, Ernest Teniente, Toni Urpf and Caries Farr6

Universitat Polit~cnica de Catalunya
LSI, Facultat d'Inform~ttica

Pan Gargallo 5. E-08028 Barcelona -- Catalonia
e-mail: [dolors I teniente I urpi]@lsi.upc.es, farre@goliat.upc.es

Abstract. An important amount of research has been devoted to conceptual model
validation, that is, to check whether a conceptual model correctly and adequately describes
the users' intended needs and requirements. In this paper we present a new approach to model
validation. We define a set of desirable properties that a conceptual model should satisfy and
we show how the accomplishment of all these properties can be checked in a uniform way
by means of planning. Our approach is independent of any particular planning method and
it extends the facilities of the methods developed so far.

1 I n t r o d u c t i o n

This paper describes an approach for validating conceptual models of information
systems. By validation we mean the process of checking whether a conceptual model
correctly and adequately desoibes the users' intended needs and requirements [ABC82].
This is one of the most important and crucial problems in information systems
engineering. Indeed, detecting possible problems during information systems
specification time will prevent possible errors during the following stages.

The validation task is not fully formalizable and it is based on intuition. Then, it is
desirable to provide the designer with the maximum set of tools that assist him in the
validation process [Bub86]. Among the support capabilities that have been proposed
there are: infological simulation [VF85, CO92], paraphrasing specifications in natural
language [RlX)2, Da192], generation of abstractions and abstracts of specifications
[JC92], animation and symbolic execution [LL93], explanation generation [GW93,
OS95] and semantic prototyping [LTP91, LK93].

One of the proposed approaches for validating conceptual models consists of
defining a set of desirable properties that the model should satisfy and to provide
methods for checking these properties [Kun84, Kun85]. However, this proposal has
several drawbacks. First, it deals only with a reduced set of properties. Second, it does
not take into account the presence of the operations of the conceptual model in both
the definition and the validation of the properties. Finally, it lacks of a uniform
treatment of the properties in the sense that they are checked using different techniques.
The work that we present in this paper extends previous research in this direction.

In our approach, the checking of the considered properties will be performed by
using plan generation techniques. We define for each property (e.g. satisfiability of a
conceptual model, redundancy of integrity constraints or executability of an operation)
an initial state and a final state such that if there exists a plan, that is, a sequence of
operations able to perform the transition between both states, the conceptual model
satisfies that property. The use of planning allows us to check the whole set of
properties in a uniform way. Moreover, it allows us to easily consider additional

256

desirable properties and to guarantee that their checking is performed correctly, due to
the existence of adequate planning methods.

We would like to point out that the generality of our approach allows us to be
independent of the concrete planning method used for checking the properties. This
facilitates the application of the improvements in the planning research area to our
approach.

Furtado et al. [VF85] proposed a concrete planning method for reasoning about
conceptual models. In their approach, the designer is provided with a tool that obtains
a sequence of operations able to perform the transition between a given initial and
target states. Therefore, the success of validation relies only on the designer's intuition
and experience when defining the initial and target states. Moreover, Furtado et al. do
not consider the integrity constraints when reasoning about conceptual models.

Recently, Feenstra and Wieringa [FW95] have also outlined a method for reasoning
about conceptual models specified in a language less expressive than ours which does
not consider derived predicates, in a similar way than the proposed by Furtado et al..
They propose a system able to answer reachability queries which permits to express
some properties similar to ours. Their method is based on extending planning
techniques with a satisfiability tester [BDM88]. However, as we will show in this
paper, these properties can be checked by using some of the current planning methods.

This paper extends our previous work on validation in the context of databases
[DTU96], which focused on the use of view updating for validating a database schema,
without taking the predefined transactions or operations into account. It also extends
our work reported in [CO92], where we proposed a concrete planning method for
explaining the teachability of a final state, departing from a given initial state. As for
[VF85], the success of validation relied only on the designer's intuition and experience
when defining the initial and target states.

This paper is organized as follows. Next section reviews basic concepts of usual
conceptual models, which are based on the concept of operation. Section 3 reviews the
main planning concepts and identifies the features of planning methods able to handle
the validation tasks considered in this paper. Section 4 defines a set of desirable
properties that a conceptual model should satisfy and shows how the checking of these
properties can be handled using planning. Section 5 illustrates how to apply our
approach by using two existing planning methods. Finally, section 6 presents our
conclusions and points out further work.

2 Conceptual models

In this section we review usual conceptual models of information systems and we
introduce our notation for describing them. Most conceptual models are based on the
concept of operation. We want to be general, and therefore we use a simple formalism,
based on the concept of operation, and easily adaptable to many conceptual modelling
languages.

Each conceptual modelling language provides a set of concepts and syntactic features
to define the structure of the Information Base: the Information Base schema. In
general, we may assume that the Information Base (IB) consists of two parts: Base and

257

Derived. The Base part includes all facts that are inserted and deleted directly by the
operations, while the Derived part includes all facts that are derived from base and/or
derived facts, by means of some kind of deductive roles.

We will assume the IB contains facts of a given set of predicates. Each predicate
consists of a name and a set of arguments. Facts of base predicates are updated by
operations while the existence of facts of derived predicates is defined declaratively by
deductive rules. We will use the clausal form of logic, augmented with negation, to
define deductive rules.

Many conceptual modelling languages provide some constructs tbr the definition of
integrity constraints. For the sake of uniformity, we define the constraints in denial
form by means of integrity roles which have the same form as the deductive rules. Any
integrity constraint can be represented in this form as described in [LT84].

Below, we show an example of an IB schema:

emp(employee,department)
dept(department)
manager(employee,departmenO
works-for(e,m)<-- emp(e,d) ^ manager(m,d)
icl <-- emp(e,d) ^ -~dept(d)

There is a single derived predicate: works-for. Its deductive rule indicates that an
employee E works for another employee M if E is an employee of a department D and
M is the manager of that department. Note that we also include an integrity rule. It
states that all employees must belong to an existent department.

It can be seen that there is a straightforward correspondence between our IB schema
and that of ER [Che76], SDM [HM81], NIAM [NH89], and many others. Note that
not all of them include a derived part in the IB. Our model is even adaptable to
languages based on the relational data model. In such case, views are derived predicates
and their definition is a deductive rule.

A conceptual modelling language has also to provide the definition of the
transitions between different states of the Information Base: the transition schema.
Most conceptual modelling languages define the transition schema in terms of
operations. Application of an operation induces a transition from the current state of
the IB to a new state.

We describe operations by: its name, its parameters, a precondition that must hold
in the state of the IB in which the operation is applied, facts to be added to the IB by
the operation and facts to be deleted from the IB by the operation.

Preconditions are expressed as first order formulas. In order to guarantee domain
independence, range-restrictedness of the formulas is required. We use the common
definition of range-restrictedness as introduced in [Nic82]. Additions and deletions can
be expressed as sets of base facts.

In this paper, we assume that the specified precondition guarantees that facts to be
deleted hold in the IB state in which the operation is applied and facts to be added do
not hold in that IB state. However, our approach could also be applied if this
requirement was not considered. Below, we show the transition schema for the IB
schema described.

258

New-dept(D)
prec: -, dept(D)
add: {dcpt(D)}
del: {]

Hire(E,D)
prec: -, qd' emp(E,d')
add: [emp(E,D)]
del: { }

New-manager(E,D)
prec: -3d' manager(E,d')
add: {manager(E,D)}
(]el: { }

Rem-dept(D)
prec: D-4=Staff A dept(D)

del: { dept(D) }
Fire(E)

prec:3d emp(E,d)A-,manager(E,d)

del: {emp(E,d) }
R e m - m g r (E)

prec:3dmanage~(E,d)

del: {mana~cr(E,d)}

The execution of an operation is valid only if its precondition holds in the IB state
in which the operation is applied and the resulting IB state obtained after its execution
is consistent, i.e., integrity constraints are satisfied in it. Otherwise, the operation can
not be performed.

For example, the execution of operation Hire(John,Marketing) is not valid when
applied to an IB state where base fact dept(Marketing) does not hold. In this case,
emp(John,Marketing) would hold in the resulting state and dept(Marketing) would not.
Thus, integrity constraint icl would be violated in the resulting state of the IB and this
resulting state would be inconsistent.

Similarly, a sequence of operations is valid only if the execution of each operation
of the sequence is valid. Moreover, an IB state is reachable only if it can be obtained
by a valid sequence of operations.

In our example, the IB state: {dept(Marketing), emp(John,Marketing)} is reachable
due to the fol lowing sequence of operations: New-dept(Market ing) ,
Hire(John,Marketing)

As it happens with our IB schema, there is a straightforward correspondence
beetween our transition schema and the transition schema of many conceptual
modelling languages, such as that of Taxis [MBW80] and the one introduced by
Furtado et al. in [VF85].

3 Planning

In this section we present classical planning problems and we identify the features
of planning methods able to handle the validation tasks considered in this paper.

A classical planning problem can be stated as follows: given a description of the
world or domain of the problem, given an initial state of that world and given a goal to
accomplish at a final state, obtain one or several plans able to perform the transition
between the initial state and a final state in which the desired goal holds. The obtained
plans have to be consistent with respect to the world description. Note that, in
particular, the obtained plan may be empty which means that the initial state already
satisfies the goal.

A planning method has to provide both a way to represent a planning problem and a
mechanism to generate plans for the planning problems it is able to represent.

259

The representation used by a planning method is important because it characterizes
the planning problems it is able to solve. Actually, the representation of a planning
problem is strongly related with conceptual modelling of information systems. In both
cases, it is necessary to represent static and dynamic knowledge about a domain that
evolves through several situations or states.

In order to use a planning method for the validation of the conceptual models
described in section 2, it must provide a representation of a planning problem in terms
of those conceptual models either directly or through an automatic transformation.

Using this representation the planning problem can be formulated more concretely
as: given an IB schema and a transition schema, given an initial state of the IB
expressed as a set of base facts I and given a goal expressed as a range-restricted first
order formula to accomplish at a final state of the IB, obtain one or several valid
sequences of operations able to perform the transition between the initial state of the
IB and a final state of the IB where the desired goal holds.

For example: given the planning problem domain described by the IB schema and
transition schema examples of section 2, given the initial state: {dept(Marketing),
emp(John,Marketing)} and given the goal: 3d emp(Peter,d) ^ qe works-for(e,Peter), a
possible plan to obtain is the valid sequence of operations: Hire(Peter,Marketing),
New-mgr(Peter,Marketing).

We also have a requirement on the plan generation mechanism. It must obtain at
least a solution plan for a given planning problem if any solution plan for the
planning problem exists. The need of this requirement will become clear in section 4
when defining the properties to validate in terms of planning.

4 U s i n g P l a n n i n g f o r V a l i d a t i n g C o n c e p t u a l M o d e l s

In this section we define a set of desirable properties that a conceptual model should
satisfy and we show how the checking of these properties can be handled by using
planning. The main idea is to define for each property an initial state and a goal to
accomplish at a final state such that if there exists a sequence of operations able to
achieve the goal departing from the initial state, the conceptual model satisfies that
property. If a property is not satisfied, the conceptual model is ill-specified and its
specification should be changed. In general, this may be due to the specification of the
deductive rules, integrity constraints, operations or even due to a combination of them.

In sections 4.1 and 4.2 we deal respectively with the properties related to the
validation of the IB schema and to the validation of the operations.

4.1 Checking of Properties of the IB Schema

In this section we will define three properties related to the Information Base
schema: satisfiability, liveliness of a predicate and redundancy of a constraint. We will

1 Note that we only need the base facts of the I13 to describe the initial state because the
derived facts may be derived using the deductive rules. In particular, this set of base facts
may be empty and we will call empty initial state its corresponding initial state

260

also show how these properties can be uniformly handled using planning. As a related
work, we would like to mention the methods for handling satisfiability proposed in
[Kun84, Kun85] and [Lun82]. These methods are only concerned with finding a model
that satisfies all the integrity constraints since they do not take the operations into
account in both the definition and the verification of the property. In the database field,
three different methods [BDM88, LMSS93, GSUW94] have been proposed that handle
respectively satisfiability, liveliness and redundancy. Besides the non uniformity of the
way in which these properties are handled, again the main difference relies on the fact
that these methods do not consider the operations.

4.1.1 Satisfiability

A fundamental property that a conceptual model should satisfy is satisfiability.
Intuitively, a conceptual model is satisfiable if there exists a state of the IB satisfying
all the integrity constraints which can be obtained by a sequence of operations. If there
is not such a state then the entire conceptual model becomes useless since no operation
can be executed. To illustrate this property, consider a subset of the conceptual model
defined in section 2 with the additional integrity constraint ic2, stating that it must
exist the employee Joan assigned to the department Staff:

emp(employee, departmen0
dept(department)
icl <-- emp(e, d) A -~dept(d)
ic2 <--- -~emp(Joan, Staff)

Hire(E, D) New_dept(D)
prec: -, 3 d emp(E, d)
add: {emp(E, D)}
del:{ }

prec: -~ dept(D)
add: {dept(D)}
del:{)

This conceptual model is dearly unsatisfiable. Satisfaction of integrity constraint
ic2 would require a state in which at least emp(Joan, Staff) was true, which could be
achievable by the operation HireOoan, Staff), however the execution of this operation
would violate icl since the department Staff would not exist. Thus, it would be
necessary to execute previously the operation New_dept(Staff) that can not be executed
since this execution would violate ic2.

Satisfiability in this example could be achieved, for instance, by removing
integrity constraint ic2, in which case the conceptual model becomes satisfiable since
the empty state satisfies all the integrity constraints. Satisfiability could also be
achieved by proposing a new transaction that inserts at the same time an employee and
a department.

More precisely, a conceptual model M is satisfiable if there exists a reachable state
of the Information Base.

Satisfiability of a conceptual model M is equivalent to the planning problem of
finding a plan for the goal TRUE where the description of the world is given by the
conceptual model M and the initial state is empty. The tautology TRUE is the least
restrictive possible goal. Thus, if it does not exist a plan for that goal, the integrity

261

constraints can not be satisfied and therefore the conceptual model is unsatisfiable. On
the other hand, if there exists at least a plan for that goal, then there exists a valid
sequence of operations that leads the Information Base to an state in which all the
integrity constraints are satisfied and therefore the conceptual model is satisfiable.

Note that, if the operations of the conceptual model are not taken into account, the
state {emp(Joan,Staff), dept(Staff)}, for instance, would satisfy all the integrity
constraints and therefore the previous conceptual model would be satisfiable according
to the definition of satisfiability considered in [Lun82, Kun84, Kun85]. However, as
we have seen, this state is not reachable by the operations of the model.

4.1.2 Liveliness of a Predicate

A desirable property for base and derived predicates is that they can have non empty
extensions. Effectively, a predicate that has an empty extension in each reachable state
of the IB is clearly a useless predicate and probably the conceptual model in which it is
defined is ill-specified. As an illustrative example, consider again a subset of the
conce)tual model defined in section 2:

emp(employee,department)
dept(department)
icl <--- emp(e, d) ^ -xlept(d)
Hire(E, D)

prec: -~ q d emp(E, d)
add: {emp(E, D)}
del:{ }

Clearly, both predicates dept and emp are not lively. The first one, dept, is not
lively since there is no operation to insert a department and consequently it will have
an empty extension in each possible state. The second one, emp, is also not lively
since even though there is an operation to insert an employee this operation may never
satisfy the integrity constraint icl that requires the existence of the department when
inserting an employee. If we assume a new operation:

New-dept (D)
prec: -~ dept(D)
add: {dept(D)}
del: { }

then both predicates become lively: predicate dept due to the presence of this new
operation and predicate emp due to the fact that the sequence of operations:
New_dept(Dept), Hire(Emp, Dep0 leads to an state of the Information Base in which
emp has the fact emp(Emp,Dept). Note that the inverse sequence Hire(Emp, Dep0,
New-dept(Dept) is not a valid sequence since the execution of the tirst operation would
violate icl.

More precisely, a predicate p is lively in a conceptual model M if there is a
reachable state of the Information Base in which at least one fact about p is true.

262

The problem of finding out whether a predicate p(x) 2 is lively in a conceptual model
M is equivalent to the planning problem of finding a plan for the goal 3x p(x) where
the description of the world is given by the conceptual model M and the initial state is
empty. If there is at least a plan for such a goal then the plan will contain a valid
sequence of operations that leads to a reachable state in which p has a non empty
extension and thus, predicate p is lively. Otherwise p is not lively.

4.1.3 Redundancy of a Constraint

Intuitively, a constraint is redundant if integrity does not depend on it. Clearly,
such a redundancy should be detected by the validation process and the designer should
be informed in order that s/he could take the opportune decisions. Redundancy of a
constraint may be due to several reasons. For instance, a constraint may be a
tautology, it may be redundant because it is enforced by the specifications of the
operations, by other integrity constraints or due to a combination of these reasons. To
illustrate this property, consider a subset of the conceptual model defined in section 2
with two additional integrity constraints:

emp(employee,departmen0
dept(deparlmen0
icl +-- emp(e, d) ^ --~lept(d)
ic2 ~ emp(Joan, d) ^ -xlept(d)
ic3 <--- emp(e, dl) ^ emp(e, d2) ^ dl~xl2
Hire(E, D) New-dept(D)

prec: -- 3 d emp(E, d) prec: -~ dept(D)
add: {emp(E, D)} zdO" {dept(D)}
del:{ } del:{ }

Integrity constraint ic2 is redundant, since it is entailed by icl and therefore it can
not be violated without violating icl. Moreover, integrity constraint ic3 is redundant
since the precondition of the operation Hire forbids to have an employee assigned to
more than one department. Thus, the integrity of the conceptual model does not depend
on ic2 neither ic3, in the sense that they could be removed and the resulting conceptual
model would admit the same reachable states than the original one.

More precisely, let M be a conceptual model and let I be an integrity constraint in
M, I is redundant if it is satisfied in each reachable state of M - {I}.

Satisfiability and liveliness can be checked by showing the existence of some
reachable state. As opposed to that, the definition of redundancy of a constraint requires
something for each state. Hence, redundancy of a constraint is best checked by
verifying or falsifying the lack of redundancy, which can be done by attempting to
construct one state which would show that the constraint under investigation can be
violated and hence that is not redundant. Thus, the non redundancy of a constraint I of
the form ic ~ Body in a conceptual model M is checked by showing the existence of a
plan for the goal 3x Body, where x are the variables in Body, with M - {I} as a

2 Note that here and in the following bold lowercase letters stand for vectors of variables

263

description of the world and with an empty initial state. If it does not exist such a plan
then the integrity constraint is redundant.

In our example it does not exist any plan for the goal 3 d emp(Joan, d) A ",dept(d) in
the world corresponding to the original conceptual model except ic2. The same
happens with goal 3 e,dl ,d2 emp(e,dl) A emp(e,d2) A al l*d2 in the world
corresponding to the original conceptual model except ic3. Thus, both ic2 and ic3 are
redundant. Instead, since the plan. Hire(Peter,Marketing) is a possible plan for the
goal 3 e,d emp(e, d) A -~dept(d) in the world corresponding to the original conceptual
model except icl, icl is not redundant.

4.2 Checking of Properties of the Operation Specifications

In addition to the checking of properties of the Information Base, the designer may
also be interested in the checking properties of the operations of the conceptual model.
For instance, s/he could be interested on checking whether the precondition of each
operation is correctly specified or whether it will be possible to execute the specified
operations at execution time. These properties, i. e. the applicability of an operation
and the executability of an operation, are defined in this section.

Similar properties to our applicability and executability of an operation were defined
in [Kun84, Kun85]. Besides the non uniformity of the way in which these properties
are handled, again the main difference relies on the fact this approach does not take
account of the presence of the other operations in both the definition and the
verification of the properties related to an operation.

4.2.1 Applicability of an Operation

Intuitively, an operation is applicable if there exists a reachable state where its
precondition holds. If an operation is not applicable, it will never be possible to
execute it because its precondition may never be true. As an example, consider the
following conceptual model:

emp(employee, deparUnen0
manager(employee, deparunen0
dept(departmen0
has-emp(d) <-- emp(e,d)
has-emp(d) ~-- manager(e,d)
has-mgr(d) ~-- manager(e,d)
icl <-- dept(d) A -~ has-mgr(d)

Hire(E,D) New-mgr(E,D)
prec: ", 3d' emp(E,d') prec: -, 3d' manager(E,d')
ad~ {emp(E,D)} ad~ {manager(E,D)}
~el: { } ~el: { }

New-dept(D) Rem-dept(D)
prec: -xlept(D) prec: dept(D) A -,has-emp(D)
a ~ : {0ept(n)} actt {}
del: { } del: {dept(D) }

264

At a first glance, it may seem that all the operations of this conceptual model are
applicable. However, consider the operation of removing a department: Rem-dept(D).
The satisfaction of the first part of the precondition, dept(D), requires the previous
execution of the operation New-dept(D). Moreover, because of the integrity constraint
icl, the operation New-dept(D) can only be executed if department D has some
manager, which in turn requires the previous execution of the operation New-mgr(E,D)
to add the information manager(E,D) to the IB. By the second derivation rule,
manager(E,D) implies has-emp(D) and, since there is no possible way to remove this
information, it cannot be achieved a state where the precondition of the operation Rem-
dept(D) holds. Therefore, we have that this operation is not applicable. Several ways of
making operation Rem-dept(D) applicable exist, for instance by changing its
precondition, by changing the deductive rules or integrity constraints of the IB or by
considering additional operations.

More precisely, an operation Op is applicable if there is a reachable state S where,
for some instantiation of the parameters of Op, the precondition of Op holds in S.

As with the other properties, the problem of deciding whether an operation is
applicable may also be handled by means of planning. In this case, we have that an
operation Op, with parameters x and precondition Prec, will be applicable if there
exists a valid sequence of operations that, starting from an empty initial state, leads to
a final state of the IB that satisfies the goal: 3x Prec. In the previous example, since
the operation Rem-dept(D) is not applicable, no plan exists that satisfies the goal: 3d
dept(d) ^ -~has-emp(d). However if, for instance, we remove the second deductive rule,
the following sequence of operations would be a solution plan: New-mgr(Peter,Sales),
New-dept(Sales). Therefore, the operation Rem-dept(D) would be applicable.

4.2.2 Executability of an Operation

Even though an operation is applicable, it may be the case that it may never be
executed because the result of applying this operation to each of the states that satisfy
its precondition leads to an inconsistent resulting IB state. Detection of non-executable
operations is also an important task in conceptual model validation. This is illustrated
in the following example.

manager(employee, department)

dept(departmen0
has-mgr(d) <--- manager(e,d)
icl ~ dept(d) ^ -1 has-mgr(d)
New-dept(D) New-mgr(E,D) Rem-mgr(E)

prec: -xlept(D) prec: -~ 3d' manager(E,d') prec:3d manager(E,d)
^ -1 3e' manager(e',D) ^ dept(d)

~ : {dept(D)} add:{manager(E,D)} add: {}
del: {} del: {} del: {man_ager(E,d)}

Consider the previous conceptual model, where all the operations are a subset of the
operations of the example considered in section 2, except that we have slightly chan~ed

265

the precondition of the operation New-mgr(E,D) by requiring also that it may only be
applied if D has no manager, and the precondition of the operation Rem-mgr(E) by
requiring that E must be the manager of some known department.

Rem-mgrfE) is an applicable operation because there exists a reachable state,
obtained by the execution of the operations: New-mgr(E,D), New-dept(D), that
satisfies its precondition. However, it will never be possible to apply it because its
execution always leads to an inconsistent IB state. It is not difficult to see that the
reason why Rem-mgr(E) is not executable lies on the fact that the integrity constraint
icl requires all departments to have a manager and that the precondition for applying
New-mgr(E,D) requires that no manager exists for D. Therefore, in this conceptual
model a department may never have two managers and, then, the application of the
operation Rem-mgr(E) will always result in a state that violates icl.

More precisely, an operation Op is executable if there exists a valid sequence of
operations that contains Op.

Checking the executability of an operation Op by means of planning has to deal
with the problem of finding a plan that contains Op and that satisfies certain
conditions of the IB. Unfortunately, most of the known planning methods do not
allow the specification of conditions that the plan to obtain must satisfy. However, if
the IB keeps trace of the executions of Op it is also possible to check the executability
of an operation Op with usual planning methods. In conceptual models, this can be
done by including in the specification of Op a new information to be added to the IB:
Executed-Op, where Executed-Op is a distinguished predicate which does not occur
elsewhere in the lB. Then, the executability of the operation Op is checked by showing
the existence of a valid plan for the goal Executed-Op, starting from the empty initial
state. If some plan exists, it must necessarily contain Op since the execution of this
operation is the only possible way to add Executed-Op to the IB, and thus Op will be
executable; otherwise it will not.

In the previous example, the operation Rem-mgr(E) should be described as:
R e m - m g r (E)

prec: qd manager(E,d) ^ dept(d)
add: {Executed-Rem-mgr}
del: {manager(E,d) }

and since no plan exists that satisfies the goal Executed-Rem-mgr the operation Rem-
mgr(E) is not executable. Note that if we remove the second part of the precondition of
New-mgr(E,D) then Rem-mgr(E) would be executable since: New-mgr(Sue,Sales),
New-dept(Sales), New-mgr(Mary, Sales), Rem-mgr(Sue), would be a valid plan for the
goal Executed-Rem-mgr.

5 Using Planning Methods for Conceptual Model Validation

In this section we illustrate our approach to tackle conceptual model validation by
using some of the actual planning methods.

In order to use a planning method for the validation of the conceptual models
described in section 2 (operational conceptual models in the following), it must
provide a representation of a planning problem in terms of those operational

266

conceptual models. This representation may be provided either directly or through an
automatic transformation.

We will consider two planning methods: CDP [DMMP91] and our planning method
[CO92, Cos95]. CDP will illustrate the case in which the required representation is
directly provided while our planning method will illustrate the case in which the
representation is provided by using an automatic transformation. This automatic
transformation will show that a planning method using a representation not based on
the concept of operation but only based on deductive rules can also be used for our
validation tasks.

We also have a requirement on the plan generation mechanism. It must obtain at
least a solution plan for a given planning problem if any solution plan for the
planning problem exists. Note that this requirement is less restrictive than obtaining
the complete set of solution plans. Both CDP and our planning method fulfill this
r e q ~ e a t .

5.1 CDP [DMMP91]

CDP uses deductive databases for modelling states of the planning problem world
and it uses operation specifications to model transitions between those states.

CDP obtains a complete set of correct minimal solution plans for a given planning
problem. A solution plan is minimal if none of its subsequences of operations is also
a solution plan. Therefore, CDP obtains at least a solution plan for a given planning
problem if any solution plan for the planning problem exists.

Components of planning problems represented by CDP have a direct correspondence
to a planning problem represented in terms of our operational conceptual models. We
will illustrate this direct correspondence by using the example presented in section
4.2.1 to check the applicability of operation Rem-dept.

The kind of deductive databases treated by CDP can be viewed as an IB of an
operational conceptual model. The IB schema with some syntactic changes will be a
deductive database schema of CDP. In our example, rules corresponding to predicate
has-emp after the syntactic changes will be: Ve,d emp(e,d)-+has-emp(d), Ve,d
manager(e,d)--~has-emp(d)

Operation specifications consist of: a head, o p (x l Xn) , where o p is the operator
name and the parameters x I x n are variables, a precondition and a postcondition.
Preconditions are range-restricted fast order formulas which define the database state
where the operation is applicable. Postconditions describe the additions and deletions of
base facts that must be performed to obtain the operation resultant database state.
Additions are described by positive literals and deletions are described by negative
literals. Therefore, a simple rewriting will turn our operations into CDP operations. In
our example, the rewriting of operations New-dept(D) and Rem-dept(D) is:

New-dept(D) Rem-dept(D)
prec: -dept(D) prec: dept(D) A -~has-emp(D)
post: dept(D) post: -1 deptfD)

The initial state of the planning problem world is described as the deductive database
initial state. This deductive database initial state can be seen as the initial state of the

267

IB of an operational conceptual model. In our example, the empty initial state will
correspond to a deductive database with an empty set of base facts.

The planning problem goal G is defined as a set of range-restricted first order
formulas. For uniformity reasons, it is assumed that a goal G implicitly introduces an
operation goal(). The precondition of goal() is G and its postcondition is empty.
Again, a simple rewriting will turn our goal into the CDP operation goal(). In our
example, for applicability of operation Rem-dept we will have:

goal()
prec: 3d dept(d) ^ -~has-emp(d)
post:

A plan for a planning problem is described as a sequence of operations where the
last operation is goal(). A plan is a solution for a planning problem if for all
operations in the plan: its precondition is satisfied at the database state where the
operation is applied and the database state resulting from the operation application is
consistent, that is, integrity constraints are satisfied in it. Therefore, this sequence of
operators will be a solution plan for the planning problem. In our example, no
sequence is obtained which shows that operation Rem-dept is not applicable.

5.2 Our Planning Method [C092, Cos95]

In [CO92, Cos95] we defined a planning method which uses a representation of the
planning problem in terms of deductive conceptual models. Deductive conceptual
models differ mainly from usual operational conceptual models of information systems
in that they do not use the concept of operation and the transitions of the IB schema
are entirely described in terms of deductive rules.

Our planning method obtains a complete set of correct minimal solution plans for a
given planning problem. A solution plan is minimal if none of its subsets is also a
solution plan. Therefore, our planning method obtains at least a solution plan for a
given planning problem if any solution plan for the planning problem exists.

In deductive conceptual models time is a key concept. The passing of time is
considered as an external event (or operation occurrence) as any other entry to the
system. Consequently, there exists a state of the IB for each time point. Each possible
information has an associated time point. The Information Base (IB) consists of two
parts: Base and Derived. In deductive conceptual models the Base part at a time point t
corresponds to the information of all the external events (or operation instances) that
have occurred at time point t. As the passing of time is an external event, the Base part
contains facts of an standard predicate time(t). A fact time(T) holds if T belongs to the
life span of the system. The rest of the information, that is, the Derived part, can be
deduced from the Base part by means of deductive rules. At a given time point t, the IB
contains all the informations known until t. In deductive conceptual models the
transition schema is embedded in the deductive rules.

In the following, we describe how to transform each of the components of an
operational conceptual model in order to obtain a deductive conceptual model. We will
illustrate this transformation by using the example presented in section 2.

For each operation Op(x) we define a corresponding base predicate op(x,0 of the

268

deductive conceptual model. Note that we have an additional time term t to indicate its
time of occurrence. In our example, we will have the following five base predicates:
new-dept(d,t), rem-dept(d,0, hire(e,d,t), fire(e,0, new-manager(e,d,0, rem-mgr(e,0. The
knowledge represented in the body of operations will be transformed in deductive rules
as we will see in the following paragraphs.

For each base predicate p(x) we define a corresponding derived predicate p(x,t) of the
deductive conceptual model. Again, the additional time term t indicates the time of
occurrence of the associated information. In our example, we will have that emp(e,d,t),
dept(d,0 and manager(e,d,0 are derived predicates.

We have to define deductive rules for these derived predicates. These deductive rules
will represent the knowledge that in our previous operational conceptual models was
described by operations. For each base predicate p(x) of our previous model whose
facts are added by operations a 1 a n and deleted by operations dl d m we will define
the following deductive rules in our deductive conceptual model: add-p(x,0<-- al(Yl,0
^ prec-al add-p(x,0<--- an(Yn,0 ^ prec-an, del-p(x,t)r dl (Yl,0 ^ prec-dl
del-p(x,t)~-- dm(Ym,t) ^ prec-dm, p(x,t)6-- add-p(x,tl) ^ t l<t ^ -, 3t2 del-p(x,t2) ^
t2>tl ^ t2<t.

We have defined auxiliary derived predicates add-p and del-p which indicate the
addition and deletion of predicate p by an operation, respectively. Rules for these
predicates permit to deduce a fact of them at a time point T if the operation that
performs the addition or deletion has occurred at time T and the precondition of the
operation held at the previous time T-1. We assume that if F is the precondition of the
operation Op then prec-op stands for the formula F with the addition of a time term t- 1
to each predicate of the formula. Then, it is easy to define a rule for predicate p which
states that a fact of this predicate holds at a time T if it has been added at a time T1
before T and has not been deleted at a time T2 between T1 and T.

In our example we will have the following rules for predicate emp(e,d,t):
add-emp(e,d,0<--- hire(e,d,0 ^ -,3 d' emp(e,d',t-1)
del-emp(e,d,0<--- fLre(e,0 ^ 3d emp(e,d,t-1)^ -,manager(e,d,t-1)
emp(e,d,0~--- add-emp(e,d,tl) ^ t l<t ^ -, 3t2 del-emp(e,d,t2) ^ t2>tl ^ t2<t

Previous deductive rules have to be allowed and in normal form [LT84]. This may
require a transformation of the rules using the procedure described in [LT84]. This is
also applied to the rules that we describe in following paragraphs.

For each derived predicate p(x) we define a corresponding derived predicate p(x,0 of
the deductive conceptual model. In our example, we will have that works-for(e,m,0 is
a derived predicate.

For each deductive rule p(x)<--- Ll(Xl) ^ ... ^ Ln(x n) we define a corresponding
deductive rule p(x,t)+-- Ll(Xl, 0 ^ ... ^ Ln(xn,0 of the deductive conceptual model. In
our example we will have the rule: works-for(e,m,0~--- emp(e,d,t) ^ manager(m,d,t).

For each integrity constraint ic(x) we define a corresponding integrity constraint
ic(x,0 of the deductive conceptual model. The time term t indicates the time of
occurrence of the integrity constraint violation. In our example, we will have the
integrity constraint icl(t).

For each integrity rule ic(x)~--- Ll(Xl) ^ ... ^ Ln(xn) we define a'corresponding
integrity rule ic(x,0<---- Ll(Xl,0 ^ ... ^ Ln(xa,0 of the deductive conceptual model. In

269

our example we will have the integrity rule: icl(t) <-- emp(e,d,t) A -~dept(d,0.
In operational conceptual models a transition of the IB is induced by the occurrence

of a single operation and more than one operation can not occur simultaneously. In a
deductive conceptual model transitions of the IB are induced by the passing of time and
several external events or operation instances may occur at the same time. Therefore,
in the deductive conceptual model, it will be necessary to forbid explicitly
simultaneous operation occurrences by means of additional integrity rules.

For each operation Op(x) we define an integrity constraint ic(t) with the following
integrity rule: ic(0<-- op(x,t) A op(y,t) A x~y. This integrity constraint will forbid
two different instances of operation Op to occur at the same time. In our example, one
of these integrity constraints will be the following: ic2(t)<--- new-dept(dl,t) ^ new-
dept(d2,0 ^ dl~L2.

For each pair of operations OPi(Xl), Opj(xj) we define an integrity constraint ic(t)
with the following integrity rule: ic(t)<--- opi (xi , t)A opj(xj,t). This integrity
constraint will forbid two instances of operations Op i and Opj to occur at the same
time. In our example, one of these integrity constraints will be the following: ic3(t)<----
new-dept(d,0 A hire(e,dl,t).

Besides transforming the conceptual model that describes the planning problem
world, we also have to transform accordingly the initial state, the goal to achieve and
the solution plans.

The initial state has to be described as a set of base facts of the deductive conceptual
model that represent the operations that have occurred before the planning problem is
stated. In the case of an empty initial state the corresponding set of base facts will be
empty.

A goal described by a formula F will be defined by a new derived predicate G(0 with
a deductive rule: G(t)<--- F' where F' stands for the formula F with the addition of a
time term t to each predicate of the formula. For example, the goal 3e,d emp(e,d), will
be transformed into: G(O~-- 3e,d emp(e,d,t). The description of the goal is completed
with a final time Tf in which it has to be achieved.

The plan will be obtained in terms of base facts which represent the operations that
must occur. The time term of the base facts will give the order of execution of the
events. For example, if we have the empty initial state and the goal G(t)<---3e,d
emp(e,d,t) which has to be achieved at a time 2, one of the plans we will obtain will
be the following: P={new-dept(Marketing,1), hire(John,Marketing,2)}

6 Conclusions and Further Work

In this paper we have presented an approach to the validation of conceptual
models. We have defined a set of desirable properties that a conceptual model should
satisfy (satisfiability of a conceptual model, liveliness of a predicate, redundancy of
integrity constraints, applicability and executability of an operation) and we have
shown how these properties can be checked by using plan generation techniques.

The use of planning allows us to check the whole set of properties in a uniform
way. The generality of our approach allows us to be independent of the concrete
planning method used to check the properties. This facilitates the application of

270

improvements in the planning research area to our approach.
We have illustrated how to apply our approach by using two concrete planning

methods, one proposed for operational conceptual models and the other for deductive
ones. In this sense, we have also shown how a method for planning in deductive
conceptual models can be used for planning in operational ones.

As further work, we would like to extend our approach by providing explanations
when a certain property is not satisfied. In this direction, we believe that by refining
the definition of the properties the designer could also be informed about which part of
the conceptual model should be changed to satisfy the property. We would also like to
define similar properties in a framework where the operations are automatically
generated (see e.g. [PO95]) and to study whether they can be validated by planning.

Another extension of our work would be to adapt it to the validation of object-
oriented specifications. This can be done by extending current planning methods to the
use of object-oriented representations.

We also plan to develop a tool for validating conceptual models following this
approach and to integrate our approach into a conceptual model design methodology.

Acknowledgements

We would like to thank Antoni Olive who encouraged pursuance of this work. We
are also grateful to Hendrik Decker, the members of the IS group and the anonymous
referees for their helpful comments. This work has been partially supported by
PRONTIC CICYT program projects TIC94-0512 and TIC95-0735.

References

[ABC82] Adrion, W.R.; Branstad, M.A.; Cherniavsky, J.C. "Validation, Verification and
Testing of Computer Software", ACM Computing Surveys, Vol. 14, No. 2, 159-
192, 1982.

[BDM88] Bry, F.; Decker, H.; Manthey, R. "A Uniform Approach to Constraint
Satisfaction and Constraint-Satisfiability in Deductive Databases", in J.
Schmidt et al (eds): Proc. I st EDBT, 488-505, Springer LNCS 303, 1988.

[Bub86] Bubenko, J.A. "Information system methodologies - A research view". In
Olle,T.W.; Sol,H.G.; Verrijn-Stuart, A.A. (Eds.) Information Systems Design
Methodologies: Improving the Practice, 289-318, North-Holland, 1986.

[Che76] Chen, P.P. "The Enitiy-Relational Model. Towards a Unified View of Data",
ACM TODS, Vol. 1, No. 1, 9-36, 1976.

[CO92] Costal, D.; Olivt, A. "A Method for Reasoning about Deductive Conceptual
Models of Information Systems", Proc. of the CAiSE-92 Conference, 612-631,
Manchester, 1992.

[Cos95] Costal, D. Un m~tode de planificaci6 basat en l'actualitzaci6 de vistes en bases
de dades deductives, PhD Thesis, Universitat Polit~cnica de Catalunya,
Barcelona, 1995.

[Dal92] Dalianis, H. "A Method for Validating a Conceptual Model by Natural Language
Discourse and Generation", Proc. of the CAiSE-92 Conference, 425-444,
Manchester, 1992.

[DMMP91] Decker, M.; Moerkotte, G.; Mfiller, H.; Possega,J. "Consistency Driven
Planning", Proc. of the 5th Portuguese Conference on Artificial Intelligence,
195-209, Albufeira, Portugal, 1991.

271

[DTU96]

[FW95]

[GSUW94]

[GW93]

[HM81]

[JC92]

[Kun84]

[Kun85]

[LMSS93]

[LK931

[LL93]

[LT841

[LTP91]

[Lun82]

[MBWS0]

[NH89]

[Nic82]

[OS95]

[PO95]

[RP92]

[VF85]

Decker, H.; Teniente, E.; Urpf, T. "How to Tackle Schema Validation by View
Updating", To appear in prec. of the EDBT'96, Avignon, France, 1996.
Feenstra R.; Wieringa R. "Validating Database Constraints and Updates Using
Automated Reasoning Techniques", in B. Thalheim (ed): Prec. of the workshop
on Semantics in Databases, 24-32, TR Univ of Cottbus, 1995.
Gupta, A.; Sagiv, Y.; Ullman, J.D.; Widom, J. "Constraint Checking with
Partial Information", Prec. 13 th PODS, 45-55, ACM Press, 1994.
Gulla, J.A.; Willumsen, G. "Using Explanations to Improve the Validation of
Executable Models", Prec. of the CAiSE-93 Conference, 118-142, Paris, 1993.
Hammer, M.; McLeod, D. "Database Descritpion with SDM: a Semantic
Database Model", ACM TODS, Vol. 6, No. 3, 351-386, 1981.
Jesus, L.; Carapu~a, R. "Automatic Generation of Documentation for
Information Systems", Proc. of the CAiSE-92 Conference, 48-64, Manchester,
1992.
Kung, C.H. A Temporal Framework for Information Systems Specifications and
Verification, PhD Thesis, Univ. of Trondheim, Norway, 1984.
Kung, C.H. "A Tableaux Approadh for Consistency Checking", In Sernadas, A.;
Bubenko, J.; Oliv6, A. (Eds.) Information Systems: Theoretical and Formal
Aspects. Elsevier Science Publishers, North-Holland, 191-207, 1985.
Levy, A.; Mumick, I.S.; Sagiv, Y.; Shmueli, O. "Equivalence, Query-
reachability, and Satisfiability in Datalog Extensions", Proc. 12 th PODS,
1993.
Lindland, O.I.; Krogstie, J. "Validating Conceptual Models by
Transformational Prototyping", Proc. of the CAiSE-93 Conference, 165-183,
Paris, 1993.
Lalioti, V,; Loucopoulos, P. "Visualisation for Validation", Proc. of the CAiSE-
93 Conference, 143-164, Paris, 1993.
Lloyd, J.W.; Topor,R.W. "Making Prolog more expressive", Journal of Logic
Programming, No.3, 225-240, 1984.
Loucopoulos, P.; Theodoulidis, B.; Pantazis, D. "Business rules modelling:
conceptual modelling and object-oriented specifications", In Van Assche, F.;
Moulin,B.; Rolland,C. (Eds.) Object Oriented Approach in Information
Systems, North-Holland, 323-342, 1991.
Lundberg, B. "On Correctness of Information Models". Information Systems,
Vol. 8, No. 2, 87-93," 1983.
Mylopoulos, J.; Bernstein, P.A.; Wong, H.K.T. "A Language Facility for
Designing Database-Intensive Applications", ACM TODS, Vol. 5, No. 2, 185-
207, t980.
Nijssen, G.M,; Halpin, T.A. Conceptual Schema and Relational Database
Design. A Fact Oriented Approach, Prentice-Hall, 1989.
Nicolas, J.M. "Logic for improving integrity checking in relational
databases", Acta lnformatica, 18, 227-253, 1982.
Oliv~,A.; Sancho,M.R. "A Method for Explaining the Behaviour of Conceptual
Models", Proc. of the CAiSE-95 Conference, 12-25, Jyv~iskyRi, 1995.
Pastor, J.A.; Oliv~,A. "Supporting Transaction Design in Conceptual
Modelling of Information Systems", Proc. of the CAiSE-95 Conference, 40-53,
Jyv~iskyla, 1995.
Rolland, C.; Proix, C. "A Natural Language Approach for Requirements
Engineering", Proc. of the CAiSE-92 Conference, 257-277, Manchester, 1992.
Veloso, P.A.S.; Furtado, A.L. "Towards simpler and yet complete formal
specifications", Proc. of the IFIP Working Conference on Theoretical and
Formal Aspects of Information Systems, 175-189, 1985.

