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A b s t r a c t .  We analyze the problem of recovering rotation from two im- 
age frames, deriving an exact bound on the error size. With the single 
weak requirement that the average translational image displacements are 
smaller than the field of view, we demonstrate rigorously and validate 
experimentally that the error is small. These results form part of our cor- 
rectness proof for a recently developed algorithm for recovering structure 
and motion from a multiple image sequence. In addition, we argue and 
demonstrate experimentally that in the complementary domain when the 
translation is large the whole motion can typically be recovered robustly, 
assuming the 3D points vary significantly in their depths. 

1 I n t r o d u c t i o n  

We have demonstrated in [12, 13] a new algorithm for structure from motion 
(SFM) which, in the appropriate domain, provably reconstructs structure and 
motion correctly. In the current paper, we present a part  of the correctness proof 
for this algorithm, deriving tight bounds and estimates on the error in recovering 
rotat ion between two image frames when the translation is moderate. We show 
in [9] that  these bounds typically give good estimates of the rotation error. 

It has traditionally been believed that  recovering rotation is difficult. We 
prove here that  this is not true when the translation is moderate or small. Intu- 
itively, our result is straightforward: if the translational displacements of image 
points are not large, then merely aligning the fields of view (FOV) of two images 
gives reasonable rotation estimates. We make this intuition precise in this paper. 

We also argue and show experimentally that  in the complementary large 
translation domain, if we additionally assume that  perspective effects are im- 
portant ,  then the complete motion and structure typically can be determined 
reliably. Experimentally, it seems that  the domain where "small translation" 
techniques reliably determine the rotation overlaps the domain where "large 
translation" techniques work. 

Our experimental work on the large translation domain suports our previous 
claim [13, 12] that  this domain is essentially an easy one: any SFM algorithm, 
including the notoriously unreliable "8-point" [6] algorithm, typically works well 
in this domain. In addition, we demonstrate that  often most of the error in 
recovering the Euclidean structure is due to a single structure component. 
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2 R o t a t i o n  E r r o r  B o u n d  

In this section we derive an explicit bound on the error in recovering the relative 
rotation between two noisy images n e g l e c t i n g  a nonzero  t rans la t ion  be-  
t w e e n  t h e  two  images .  The derived bound goes beyond a first order estimate; 
it does not require that  the translation and noise be infinitesimally small. 

Let the first image be represented by unit rays Pi and the second by unit 
rays p~. Let there be Np points in both images. We assume that  the rotation is 
determined by finding R minimizing the least square error for the unit rays 

IP~ - RP[ 2, (1) 
i 

which is equivalent to maximizing 

y~.p; t  ap i .  (2) 
i 

The rotation minimizing (1) can be found by standard techniques, e.g., using 
the SVD. (1) is a least square error in the image ray orientations rather than 
in the image plane coordinates (as is usual). For moderate FOV this makes 
little difference, and the ray-based error may actually better  represent typical 
noise distributions. Probably, the rotations computed from (1) will be close to 
those computed by any standard algorithm and the bounds derived here will be 
relevant to such algorithms. 

Let RT represent the true rotation between the two images. Define R = 
RERT (RE is the error rotation) and ~ - RTPi. RE is the rotation maximizing 

E p ;  t REI)i. (3) 
i 

Let the unit vector & define the axis and 0 the angle of rotation for RE. 101 
measures the size of the error in the recovered rotation. We will derive a bound 
on 101 starting from (3). 

P r o p o s i t i o n  1. Define the 3 x 3 symmetric matrix M by 

1 
M - (la E p;t Pi - ~ (P~ -t  ,t Pi + Pi Pi )), (4) 

i 

where 13 is the identity matrix, and define the 3 vector 

i z ,  l z  (5) 

Assume i is positive definite. Then I01 <_ IM-1VI .  

R e m a r k .  As we discuss below, M will be positive definite when the translation 
and noise are sufficiently small. The noise is usually insignificant. 
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Proof. (3) can be decomposed as 

i i 

+ Z (  & X p~)t (COSg( dJ X P i )  -- s i n g (  & x ( dJ x P i ) ) ) ,  (6) 
i 

where the first term on the right hand side involves the rotation only through & 
and is O-independent. The coefficient of cos(g) in the second term is proportional 
to CatMda and is nonvanishing since M is positive definite. The g~ giving the 
maximum can be solved for explicitly: 

E~( ~ x p')~ p~ _ A ( ~ )  
tan(g~) = ~]i( dJ x p~)t ( d~ x Pl) - B(d~)' (7) 

where 

1 ,t 1 ~/ 
A ( & ) -  ~ ( O x p i )  Pi, B ( ~ ) = ~  ( d J •  ( d ~ x p i ) .  (8) 

P i 

Substituting tan(g~) back into (6) yields N-p(A2(&) + B 2 (d:)) 1/2 for the second 
term at the maximum. The first term in (6) can be rewritten as 

w pi) (dJtf)i) ~ p~t Pi -NpB(dJ). (9) 

Thus after the substitution for tan(8~), (3) becomes up to rotation independent 
terms and an irrelevant factor of Np 

E ( D )  - ~/A2(&) + S 2 ( & )  - B ( & )  = B(~/1 + ( A / B )  2 - 1). (10) 

We also have B(d~) = &tM ~ and A(&) = V t d~. where M, V are the matrix 
and vector defined in the statement of the theorem. 

Define X(&) -- (1/2) A2(&)/B(dJ). As we discuss below, when the transla- 
tion and noise are sma!LlA/B] will in general also be small and E ( & )  ~ X ( & ) .  
Thus, as a first step toward maximizing E,  we consider maximizing X ( & ) .  

L e m m a  2. Let O)M be the value of the unit vector dJ maximizing X(O) .  Assume 
M is positive definite. Then the ratio ]A(&M)/B(&M)I = [M-1VI,  and gM = 
tan -1 (A(d)M)/B(CaM)) satisfies IgMI ~ IM-xVI . 

Proof. Since M is real symmetric and positive definite, we can write M = 
MU2MU2 where MU2 is real symmetric and positive definite. Let w' - M 1/2 d) 
and V' - M-1 /2V .  Maximizing X over unit vectors dJ is equivalent to maximiz- 
ing (dr.  V ' )  2, where &' - w'/Iw'l,  over the ellipsoid w ' t M - l w  ' = 1. Clearly, the 
maximum occurs at one of the two points on the ellipsoid where w' is parallel to 
V', corresponding to a value for ~ of ~ M  ~ M -1 /2v l  ---- M - I V .  Substituting 
this value into the expressions for A(~M), B(d)M) yields IA(d)M)/B(d)M)I = 
IM-1V] and since ]gMI --~ Itan(gM)], it follows that  ]gMI ~-- ] M - I V ]  �9 
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We now return to the maximization of the exact expression E (&).  In terms 
of X(d~) and p(&) - A(O)/B(~), 

2 x ( ~ )  , 
E(&) = ~ ( ~ / 1  + p2 (&) _ 1) -= X (d~) K(p 2 (&)), 

p-(w) 
(11) 

where K(x) = 2 ( ~ -  1)/x is a monotonically decreasing function for x k 0. 
Recall that  t~) M ' ~  M - I V  gives the maximum value XM of X (O). Let PM ---- 

p (dJM); the lemma showed that  IPMI = IM-1VI �9 The only way to achieve a value 
E (&) larger than E ( W M )  : XMK(p2M) is via a value of O such that  K(p 2 (&)) > 
K(p2).  But since g(x) is monotonic decreasing this implies [p(&)[ < IPM[. 
Since [0 (&)[ < Itan (0 (&))l = [P (&)l we have the desired result: the error in the 
rotation is bounded by 101 < IM-1VI. 

2.1 E s t i m a t e s  on  the  R o t a t i o n  B o u n d  

In the remainder of this section we discuss the expected magnitude of the derived 
bound and the conditions under which it is valid--that  is, the conditions under 
which M is positive definite. More detail can be found in [11], where we focus 
especially on how the rotation error is affected by the FOV size. 

Let (fpi = p~ - Pi. Recall that  5pi reflects the displacement due to noise 
and translation only since the rotation has been compensated exactly in the 
definition of ~i. We derive crude but simple bounds on the eigenvalues of M and 
on ]M-1V] in terms of the 5pi. For extensions see [11]. 

Using the notation ix) = Y'~i xi/Np, where i varies over all Np points, 

1 
IVl = K-K[ E (  5pi x P)l -< (lSpl), (12) 

P i 

B ( ~ )  = ~--~'~ I ~ x p~l 2 + ( ~ x ~p~)t( ~ x 0~) . (la) 
i 

In (13), the second term is also bounded by (l~pl), 

E (  & x 5pi)t( a • Pi) 5 lap~, P,I - (l~Pl), (14) 

while the first term is positive for arbitrary & (assuming the image points Pi are 
not all collinear). We denote the first term of (13) by Bo(&): 

where 

1 
Bo (~)  = ~ ~ . l .  a, • ~ l :  = ~ M o  ~ ,  

M o ~  13 - PiPi. 

(15) 

(16) 
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Denote the eigenvalues of Mo by ei and those of M by e~, ordered from greatest 
to least, e3 depends just on the initial observed image points and is typically of 
order 1 if the FOV is moderate or large [11]. Elementary linear algebra implies 

B(dz) = detM ~ >_ e~ _> e3 - ([Sp[). (17) 

If (15pl) is sufficiently small, e3 - (15pl) > 0 and B(&) > 0 for arbitrary &, 
implying that  M is positive definite. Moreover, e3 - (Idpl) > 0 implies 

10l < ] u - l v l  < I_~[ < (IaPl) (18) 
- - - e3  - ( 1 5 P l ) "  

When e3 ~ 1 and (15Pl) << 1, the rotation error (in radians) is bounded 
approximately by (15pl), the average displacement of an image point due to the 
translation or noise. Recall that  5p~ is a difference of unit vectors; (15pl) ~ 1 
would imply a large average translational shift in the image of about 45 ~ 

2 . 2  A n  I m p r o v e d  E s t i m a t e  

(18) is a pessimistic bound on IM-1VI since the overlap of V with the least 
eigendirection of M - - t h e  one corresponding to e~--is typically small. We can 
improve this bound based on the propositions below (proofs omitted). Proposi- 
tions similar to these appear in [2] and [16] but we obtain slightly better bounds 
since they apply to the l e a s t  eigenvalues. 

D e f i n i t i o n 3 .  Let H' ,  H be N x N symmetric matrices, and let H be positive 
definite. Define the perturbation ZIH - H '  - H. Let e~, ei be the eigenvalues 
respectively of H '  and H,  ordered from greatest to least, and let E~ and Ei be 
the corresponding unit eigenvectors. Define P i N  to be the projection operator 
P •  ~ 1N -- ENEmy, where 1N is the N x N identity matrix. Define 

D -- P •  (H '  - 1 N ( e N  + AHNN)) P• (19) 

where A H N N  -- E~N A H  E N ,  and also define A H • 1 7 7  -- P • 1 7 7  Let a be 
a lower bound on the eigenvalues of the matrix D (excluding the zero eigenvalue 
associated with EN) and let b -- [ P •  Finally, define 

B2( ) - x / 1  + _ 1 < 

2 

P r o p o s i t i o n  4 E igenva lue  b o u n d .  A s s u m e  that a > O. Then the perturbation 
o f  the least eigenvalue is bounded by 

A H N N  ~ eIN -- eN ~_ A H N N  -- aB2(b /a) .  (20) 

De f in i t i on  5. With the definitions above and assuming that  E~ �9 Ei ~ 0, define 
5Ei by 

Ei + 5Ei 
E~ -= [Ei + 5Ei[ ' E i  " 5E i  = O. 
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Proposition6 E i g e n v e e t o r  b o u n d .  A s s u m e  that a > O. Then 

2b 
I ENI < - .  

a 

Based on these propositions, a detailed theoretical analysis [11] shows that ,  
even for moderate to small FOV, 

1. M is positive definite and the derived bound is valid unless the average image 
displacement due to the translation or noise is comparable to the FOV. 

2. Larger rotation errors can be expected for translations parallel to the image 
plane and for 3D points lying on a plane approximately perpendicular to the 
image plane. 

3. The rotation error due to neglecting the translation is bounded roughly by 
the ratio of the average translational image displacement to the FOV. 

2.3 E x p e r i m e n t s  

We have experimentally verified these theoretical expectations. The results of 
our synthetic experiments appear in Table 1, where each entry summarizes 100 
trials. For each trial, feature points were selected randomly within the specified 
FOV (shown in the Table), and values of ITI / r i  (the inverse radial depth scaled 
by the translation magnitude) were chosen randomly varying uniformly from 0 
up to the input maximum value. (Note that using the uniform distribution for the 
i nve r se  depths gives a stringent test of our claims. Typically, the radial d e p t h s  
ri are distributed uniformly; assuming this instead for the inverse depths causes 
the 3D points to cluster at small depths, with probability density P(r i )  "~ 1/r~.) 
A second image was generated from the first using the specified translation and 
randomly computed structure; then Gaussian image noise with 2 pixel s tandard 
deviation was added to each image point in the second image. 

The maximum computed rotation error over all trials and all cases is 23.4 ~ 
.41 radians. In our structure from motion algorithm [13, 12], the first order 

effects of rotation error are eliminated. Thus the effect of rotation error on the 
estimates of structure and motion are in the worst case scaled by .412 ~ 17%. As 
shown in the last column, expecially at moderate to large FOV the upper bound 
B is a very good estimate of the actual rotation error 101. It can be shown that  
a lower bound on t01 exists which at such FOV is very close to the upper bound. 
Since for 3D planar scenes the rotation errors are expected to be relatively large, 
we also ran experiments explicitly for this case. The results were similar to those 
reported in the Table. 

We also report  results on two real image sequences: the rocket field sequence 
[1, 17, 10] and the PUMA sequence [14, 15] (Figure 7b). The rocket sequence 
consists of nine images obtained by approximately forward motion in an outdoor 
environment. The maximum translation magnitude, between the first and ninth 
image, was 7.4 feet, while the depth of the nearest point relative to the first 
(farthest) camera position was 17.8 feet. The field of view was about 45 ~ . We 
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Npt~ FOV ~ 
20 90 
20 40 
20 20 
20 20 
20 2O 
20 20 
20 40 
20 30 
20 30 
20 30 
40 30 
40 30 
20 30 

T 

1 0 0  
10  
10  
10  

)  100; 

1 0 0  

_21 
1 0 1  
1 0 0  
1 0 2  

max(lTI/ri) range(10[) range(B) rh, a (B)  
.3 5.5~ ~ 5.5-11.0 8.4 ~ 1.2 ~ 
.3 6.3-12.5 6.3-13.3 9.3 1.4 
.3 5.6-19.0 5.7-28.3 11.5 4.0 
.3 4.5-13.7 4.5-18.1 8.8 2.4 
.3 3.3-10.9 3.3-11.6 5.6 1.5 
.3 2.3-7.7 2.3-8.1 4.1 1.2 
.5 9.7-18.1 9.8-22.9 15.3 2.6 
.5 9.5-23.4 9.6-45.0 17.8 5.3 
.5 7.9-20.5 7.9-31.0 15.0 3.5 
.5 6.0-14.9 6.0-16.6 9.4 1.9 
.5 10.2-17.6 10.3-21.0 14.1 2.1 
.5 10.8-17.8 10.9-23.5 15.7 2.6 
.5 5.8-16.4 5.8-20.1 10.2 2.1 

range(101/B) 
.984-.997 
.94-.996 
.62-.995 
.75-.995 
.92-.998 

.93-.9995 
.78-.989 
.39-.988 
.66-.992 
.88-.995 
.81-.988 
.73-.986 
.81-.994 

T a b l e  1. Measured rotat ion error computed by SVD and bound B - M , 1 V .  
Each entry summarizes the results of 100 trials. 

computed the rotations neglecting the translation. The rotat ion was recovered 
with errors increasing nearly linearly with the translation size from .33 ~ to 4.3 ~ . 

The PUMA sequence consists of 16 images of 32 points, with predominantly 
rotat ional  motion of the camera at the rate of about  4 ~ per image. The max imum 
translat ion was 1.5 feet, while the depth of the nearest point to the first camera 
position was 13.4 feet. The maximum rotat ion from the first image was 60.5 ~ . 
The FOV was about  40 ~ Neglecting the translation, the rotat ion was recovered 
with error increasing almost perfectly linearly with the translation magnitude.  
The error varied from .37 ~ to a maximum of 4.3 ~ 

3 L a r g e  T r a n s l a t i o n s  

We now turn to the case when the translation is of the same order or large 
compared to the distances of the 3D points. We argue and demonstrate  exper- 
imentally tha t  if the feature points vary significantly in depth then typically 
both  the rotat ion and translation can be recovered accurately 1. The structure 
can also be recovered accurately except for very distant points. 

The reasons why the structure and motion can be recovered robustly for large 
translat ion from 2 images are straightforward. Most importantly,  because of the 
significant depth variation, it is easy to distinguish translations from rotations. 
For a rotation, the image displacements depend smoothly on the image point 
positions, while for translations the displacements for near and far points are 
very different and typically uncorrelated with image position. A large translat ion 
amplifies these differences allowing easy disambiguation. This leads to accurate 
recovery of the entire motion since it is well known that  the  ro ta t ion/ t rans la t ion 

1 Unless the 3D points lie close to a critical surface. 



191 

ambiguity is the main error source. With accurate motion, the structure com- 
putation is also typically robust; the nonlinearities in computing the depth are 
minimized because for large translations image rays from the two images tend 
to intersect at large angles. 

We conducted a set of 100 synthetic experiments to test these claim. In each 
trial, 20 3D points were chosen randomly in a 40 ~ FOV, with depths varying 
uniformly from 2 to 40 in units of the translation size. The translation was 
always in the x-direction (translation parallel to the image plane is traditionally 
believed to be a difficult case), and the rotation was chosen randomly up to a 
maximum of about 25 ~ The image noise was Gaussian with a a of one pixel. The 
results are displayed in the figures. The angular error in the translation direction 
as computed by the "8-point" algorithm is shown in Figure la,  while an improved 
error as computed by Levenberg-Marquardt starting from the result of the "8- 
point" algorithm is shown in Figure lb. Even though the "8-point" algorithm is 
notorious for its unreliability, it reconstructs the translation direction accurately 
when the translation is large. Similar results for the rotation error (in degrees) 
are shown in Figures 2a and 2b. 

Figures 3a and b show 3D histograms of the number of points reconstructed 
for given values of the depth and depth error; the results for the percentage 
depth error appear in Figure 4a 2. Clearly the error is small for depths less than 
about 20 units. 

The results for the depths are actually better than indicated. It can be shown 
that  the structure component that  is typically least accurately recovered is the 
constant component of the inverse  depths (e.g., [5, 8, 7, 9]). In Figures 4b--6a,  
this component has been corrected to the ground t ru th  for each of the 100 trials 
and the histogram shows the residual depth error. In Figures 6b and 7a, the 
fraction of points of a given depth with depth errors greater than 10% are shown 
before and after correction of the constant component. 

Finally, we computed the rotation directly assuming that  the translation is 
zero as in the earlier sections. Since the minimum 3D depth in these experiments 
is 2, the "large translation" domain considered here actually overlaps the "small 
translation" domain previously discussed, where the maximum inverse depth 
was .5. The maximum and average rotation errors obtained were 12 ~ and 6.4 ~ . 
These experiments can be considered successfully as either large translation or 
small translation. 

We have also obtained similar results for translations in the directions (1 0 1), 
(1 0 2), and (0 0 1). In these cases the single constant component accounts for 
less of the error (as expected [9])) but the motion is recovered more accurately. 

Lastly, we ran trials similar to those above but using the ground t ru th  struc- 
ture obtained from the real PUMA image sequence (Figure 7b and [14, 15]). 
The results for the "8-point" algorithm are shown in Table 2, where each entry 
summarizes 500 trials. 1 pixel uniform noise was added to each image point, and 

2 Note that in these histograms the bins corresponding to the largest depth error also 

include all hits with errors larger than the nominal value. 
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Fig.  6. a, b 
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the translation was selected randomly under the constraints indicated. 
The results of Levenberg-Marquardt  starting from the 8-point estimates 

on 250 trials with T z  = 0 and ITI = 12 were: the translation direction was 
determined with an average angular error of 1.6 ~ standard deviation of 1.2 ~ 
and maximum angular error of 8.6 ~ . Also, the average depth error (in feet), its 
s tandard deviation, and the maximum depth error were recorded for each trial. 
The averages (and standard deviations over trials aT) of these results over the 
250 trials were .3 feet (fiT ---- .2), .2 feet (qT ---- .1), and .7 feet (aT ---- .4), and their 
maximum values were 1.3 feet, .6 feet, and 2.5 feet. Thus the largest depth error 
for any feature point over all 250 trials was 2.5 feet. Clearly, these results support 
our claim that  the depth can be recovered accurately from just two image frames 
when the translational displacement is large. These experiments were repeated 
for forward motion. As expected, for forward motion the translation is better  
determined than for sideways motion. The depths are determined with only 
slightly less accuracy, presumably because the depths of points near the FOE 
are recovered relatively badly. 
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