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Abs t rac t .  In this paper a multi-scale method for the estimation of op- 
tical flow and a simple technique for the extraction of motion edges from 
an image sequence are presented. The proposed method is based on a dif- 
ferential neighborhood-sampling technique combined with a multi-scale 
approach and flow filtering techniques. The multi-scale approach is intro- 
duced to overcome the aliasing problem in the computation of spatial and 
temporal derivatives. The flow filtering is useful near motion boundaries 
to preserve discontinuities. A residual function, which is a confidence 
measure of the least-squares fit used to compute the optical flow, is in- 
troduced and used to filter the flow and to detect motion boundaries. 
These boundaries, that we call motion edges are extracted by searching 
for the directional maxima of the map obtained by thinning this residual 
function. The proposed method has been tested in a variety of conditions. 
The results obtained with test images show that the proposed approach 
is an improvement of previous techniques available in the literature. 

Introduct ion  
The computation of the optical flow with a precise detection of image locations 
where the motion field presents discontinuities is a relevant and hard problem 
of Computer Vision. Because the gray level evolution at one pixel is not suf- 
ficient to determine the flow at its location, all the methods used to compute 
the image motion must use information coming from the surrounding pixels, 
making assumptions of constancy or smoothness of the motion in these points. 
Neighborhood-sampling optical flow estimators [2, 3, 5] provide a simple way to 
roughly identify the image locations where motion discontinuities occur. These 
methods assume that the flow is constant or linear over a small window cen- 
tered in the considered point, writing for each pixel of the window an equation 
relating the velocity components to the image derivatives (usually the gray-level 
constancy constraint dE/dt = 0 [1]) and solving the obtained overconstrained 
system with standard least-square techniques. If the flow is discontinuous in the 
window, a low confidence measure of the least-square fit is found and tests on 
the quality of the fit can be used for the detection of motion discontinuities. 
Nagel [6], suggests the use of stochastic tests on parameters measured by a flow 
estimator to detect the motion boundaries. A confidence measure of the fit can 
also be used to improve the accuracy of the computed flow near the discontinu- 
ities as proposed by Bartolini et al. [8]. However, to detect motion discontinuities 
and improve the accuracy of the flow. other sources of error should not affect 
the confidence measure. The flow can be wrong for at least other three reasons: 
if the brightness constancy equation is not satisfied, i.e. dE~dr ~ 0; if the ap- 
proximation of the derivatives with finite differences is not good; if the texture 
in the window is poor or ambiguous (aperture problem). The analysis of these 
errors suggested us to develop a refined optical flow algorithm based on a mul- 
tiscale approach [11, 9, 10] combined with edge-preserving flow filters [8]. We 
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also realized a new algorithm for the localization of "mot ion edges" based on a 
search for the local directional maxima of a refined residual function which is a 
local measure of the error of the multi-scale estimate. When the shape of the 
motion boundaries is available because of some a priori information, a better 
detection of motion boundaries can be obtained by a parametric estimation of 
shape templates through the detected motion edges. 

1 T h e  b a s i c  o p t i c a l  f l o w  a l g o r i t h m  

F i t t i n g  t h e  d e r i v a t i v e s  t o  t h e  c o n s t a n t  loca l  v e l o c i t y  m o d e l  - Let us 
assume that  that  the condition dE~dr = E=u + Eyv + Et = 0 linking the optical 
flow components v = (u, v) to the derivatives of the grey level E: Ex, E~, Et 
holds true over a window centered in the considered point. In detail, given the 
spatio-temporal window W with n x n • m pixels centered in the point we have: 

E,( i , j , k )u(x ,y , t )  + E~(i , j ,k)v(x,y, t)  = -E t ( i , j , k )  ( i , j ,k  E W) (1) 

where [~=,Ey, Et are the estimated derivatives. Applying the standard least- 
squares technique we obtain as the best estimate ~ the one minimizing the 
quantity: ~-~i,j,kew(Et(i,j, k) + Ex(i,j ,  k)u(x, y,t) + E~(i,j, k)v(x, y,t)) 2, 

that  is: ~ = ( B T B ) - I B T y  with B . . . . .  

B is the "coefficient matrix",  where (xl...ym) are the coordinates of the pixels 
inside the window, while Y = ( - /~ t (x l ) ,  . . . , - / ~ t ( z , ) ) .  is the "data" vector. 
Supposing that  eqn. (1) holds true, the estimated optical flow is close to the 
true image velocity only if: 1) the system is well conditioned; 2) the assumption 
of constant v holds true. Condition 2 suggests the use of small windows, so as 
to reduce the number of wrong estimates hue to the presence of discontinuities 
inside the window. In this case, however, the equations of the system are heavily 
correlated due to the effect of the derivative mask and of image smoothing[10]. 
In order to have a well conditioned system larger windows must be used; to re- 
duce the computational  weight, as the data  from neighboring points are strongly 
correlated, it is possible to eliminate some equations by su-bsampling the w]ri- 
dows as suggested in Fig. 1. Large windows are not sufficient to guarantee a 
correct estimate. In fact ( in  order to compute a reliable flow, spatial-derivatives 
must be nonzero in more than one point and the ratio E=/Ey should not be 
constant. This can be ensured by requiring a nonzero determinant of the matr ix  
BTB .  To eliminate wrong estimates it is necessary to haven threshold dT on the 
value of Det (BTB).  A threshold on the conditioning number CT, defined as the 
absolute value of the ratio between the minimum and the maximum eigenvalue 
of the matr ix  avoids numerical instability of the inversion of (BTB)  [7]. 

A c c u r a c y  o f  t h e  fit  - The quality of the fit can be evaluated by analyzing the 
value of the residual function: 

Q(W(x))  = ~ (/~t(i, j ,  k) + /~ ,  (i, j, k)fi(~, y, t) +/~y(i,  j ,  k)~(x, y, t ) )2 /Y(W) 
i,j,kEW 

(2) 
where N(W) is the number of the pixel of the window used for the estimation. 
High values of this function indicate a bad fit of the model and an inaccurate flow 
field. This is the case when there are points in the window where the ~ray level 
constancy is false or where the estimation of the derivatives is wrong or'if there is 
a sharp motion discontinuity inside the window. In the following we will always 
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Fig. 1: Advantages of using sub-sampled windows. A: 9 • 9(• window: the size is 
almost always sufficient to have a well conditioned system, but the number of equation 
is high. B: 5 x 5 window: the computation is speeded up, but the conditioning of the 
system is often poor. C: 9 • 9 subsampled window: the number of equations is the same 
as in B, but the system is almost always well conditioned. 

consider condition (1) to hold. If this is true and the estimates of the derivatives 
are correct, Q can be then used for the location of motion discontinuities. In 
order to do this it is necessary to analyze carefully the problems in computing 
derivative estimation. 

2 E r r o r s  i n  c o m p u t i n g  d e r i v a t i v e s  

Two main kinds of errors affect derivatives computed from finite difference or 
polynomial fitting: errors due to poor texture, and errors due to the spatio- 
temporal  sampling steps. 

P o o r  t e x t u r e  - It is evident that,  whenever a spatial derivative is almost 
zero, eqn. (1) becomes meaningless because of the large relative errors. Let us 
consider, the three point approximation of the derivatives: /~=(x, y) = [E(x + 
~x, y) - E ( x  - ~x, y)]/2~x and suppose that  the first order approximation of the 
signal is good so that  the use of the finite difference does not introduce error. The 
only error will be due to the uncertainty on the values of E. Let us suppose that  
this uncertainty is limited by the quantity ~E; then the error on the derivative 
will be ~ E / J x .  The relative error is then: 

~E=/E= = ~ E / ( E , ~ x )  (3) 

that  is high when local variations of E are negligible. A similar analysis show 
that  the second order derivatives computed with the standard 5-points mask are 
much more sensitive to noise: in fact the relative error is 165E/3[~==$~x and the 
average value of E== is usually lower than the average value of E=. 

S p a t l o - t e m p o r a l  s a m p l i n g  / A l i a s lng  - The recovery of the derivatives from 
a sampled signal i snot  always possible, because the knowledge about the original 
signal is not complete due to sampling. 
To see the effect of high frequencies on the derivatives of our sampled image 
we can compare the estimated derivatives in the point (0, 0, 0) (we choose this 
point to simplify the formulas, but it would be the same for a general location) 
with their true values. We consider a neighborhood I of (0,0,0) defined by 
Ix - ut I < )~, [y - vt I < ~, It I < 7-, so that,  assuming v constant in I, the signal 
can be written as [9]: E ( z ,  y, t) = f ( z  - ut, y - v t ) ,  where f can be expressed by 
the Fourier series: 

y ( z  - ut, y - vt) = ~ A,~m e x p ( j ( n w ( z  - ut) + mw(y  - vt)))  (4) 
n ~ - - - o o  m . . ~ - - o o  
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where w = 2rr/A is the fundamental frequency of the signal and the coefficients 
Anm are defined by integrals of the function multiplied by exponentials as usual. 
The derivative along the x -  direction in 0, 0, 0 is then: 

Ex = ~ Anmjnw (5) 

The three point approximation of the derivative is: 

E~ I~o,o,o~ = f ( ~ '  o) - f ( - ~ x ,  o) = 
2 

= A,,~ 28x = A,,n3 ,ix (6) 
n , r n =  - - c ~  n , r n =  - - v o  

The difference between the estimated and the true value is: 

E= - E~ = ~ Anmj(nwcix - sin(nw~x)) (7) 

We immediately notice that  the estimated derivative is correct only if all the 
coefficients A~m corresponding to frequencies nw < <  1/Sx are negligible. The 
approximation of the derivative is then good only if for the maximum frequency 
with relevant energy, Nw, we have: sin(Nw~x) ~_ Nw~x i.e. Nw~x < <  1 
When many frequencies over this limit present relevant coefficients, the relative 
error may De in the order of the unity. The analysis of the spatial derivative 
suggests to remove frequencies higher than 1/Sx to avoid large errors. With the 
same method used before, it is possible to see that  difference between the true 
value and the 3-point estimate of the temporal derivative in (0,0,0) is: 

E t -  Et = ~ ~ Anmj nwu~t + mwv~t -sin(nwu&t~t + rnwv6t) (8) 

The estimate is correct only if for the highest frequencies Nw, Mw with relevant 
coefficients ANM, we have: sin(Nwu~t + Mwv~t) ~ w(Nu + Mv)~t 
To eliminate all the frequencies introducing large errors in the estimates, it 
is therefore necessary to use a low-pass filter with a cutoff frequency chosen 
according to the largest value of v to be detected. 

3 M u l t i - s c a l e  t e c h n i q u e s  

A good solution to the problem of aliasing without the loss of all the high- 
frequencies information is the multi-scale approach [9, 11]. Multi-scale techniques 
are usually based on the "pyramid" decomposition of the images. Each of the 
original lx • ly images is smoothed and then subsampled keeping only even or 
odd pixels. The new l~/2 • l J 2  images can then be decomposed in the same 
way until the coarsest resolution 1=/2 N • 1~/2 N is obtained. Moving from the 
finer (l~ • ly) to the coarser (1~/2 x ly/2) image removes higher frequencies. To 
avoid the poor estimate due to the derivative errors, it is necessary to stop the 
decomposition at a resolution where the motion is in the order of 1 pixel/frame. 
The coarsest resolution 2 however, should be sufficiently fine to keep the assump- 
tion of flow constancy m the windows well approximated. We always used two 
or three resolutions in the experiments, enough to compute the largest motions 
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without introducing large errors. In the multi-scMe flow computation,  the in- 
tegration of the information relative to the different scales is performed in a 
coarse to fine framework. In [9] the flow is computed at finer scales only where 
the one computed at the coarse scale is considered wrong. We have chosen a 
different solution, consisting or computing the flow at the coarser resolution and 
then compute at the finer resolution corrective terms, i.e. differences between 
the flow and the integer approximation of the previously computed flow, with a 
scheme recently introduced by Xu [11]. Let us denote with V N = (U N, V N) the 
integer approximation of the flow v Iv computed at the resolution l=/2 g x ly/2 N. 
If at the finer resolution Ix~2 N-1 • ly/2 N - l ,  we compute the shifted derivatives 
defined as follow: 

E,N-1 E ( x + U N , y + V ~ , t + I ) - E ( x - U  N y - V  N t - l )  
t = ' ' ( 9 )  

2 

in all the points of a window W(x) centered in the point x of interest; from the 
overconstrained system 

E N - l ( x ) e x  q- E N - I ( x ) e y  + E ; N - I ( x )  ---- 0 (x e W(x))  (10) 

it is possible to compute the corrective terms c~, %, representing the additional 
term to be added to the integer values U N, V N. If the residual function Q~V-1 (x) 
of this fit is less than the residual fit QN(x) computed estimating the value of 
v N, we consider as the best estimate of the flow in x at the scale N - 1, the 
quantity described by: 

N-1 v N-1 = V N + c N-1 (11) aN-1 =_ U N + cx 

and we replace the value of the residual Q stored in memory with the new 
value QN-1.  In this way information coming from finer scales is used without 
introducing further error. The coarse to fine velocity propagation is not correct 
if a a pixel of the coarser scale correspond to a motion discontinuity. Near these 
points it is necessary to improve the quality of the estimation before computing 
the corrective terms, and use some special procedure for the flow correction (see 
Section 5). 

4 Discontinuities 
D e t e c t i o n  o f  d i s c o n t i n u i t i e s  - When a discontinuity occurs in the window 
(or close to a window) used for the estimation of v(x) ,  the result obtained is 
wrong for two reasons: firstly, the assumption of constant v inside the window 
fails; secondly, the derivative estimates obtained where the discontinuity is lo- 
cated inside a derivative mask are not reliable. Supposing to have eliminated the 
effects of the errors in derivative computation described before, we can identify 
the regions where a sharp motion discontinuity occurs, with the pixels where 
the the residual function Q(W(X))  presents high values. Q(W(X))  is, in this 
case, approximately zero when the whole window is inside a coherently moving 
region, nonzero when a discontinuity crosses the window and presents its direc- 
tional maxima where a discontinuity passes near the center o f  the window. We 
can roughly identify these maxima with the "motion edges". 

F l ow  f i l t e r i n g  n e a r  d i s con t inu i t i e s :  t h e  m u l t i - w i n d o w  a p p r o a c h  - The 
residual function can also be used to improve the flow accuracy near the discon- 
tinuities, by using a non linear filter. A similar approach has been successfully 
introduced by Bartolini et hi. [8]. Their algorithm is very simple: for each pixel 
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location x 9 windows containing the point and shifted as shown in Fig. 2 A are 
considered. The estimates obtained in the points x - m a s k  * i, y - masTr * j with 
i , j  = - 1 ,  0, 1 and the corresponding average squared residuals are considered 
(mask  is equal to half of the mask dimension). The correct flow estimated in 
x is considered to be the one obtained in the window with the lowest residual 
function. In this way a window containing the central point and with uniform 
motion inside is searched in the eight directions and the quality of the estimates 
is improved. 
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Fig. 2: A: The multi-window filter of Bartolini et al. It is assumed as velocity esti- 
mate in the central point the one obtained in the window centered in one of the nine 
points where the residual function is lower. B: Generalization of the residual filter: the 
minimum of the residual function is searched in a 3D (x,y,t) search space S including 
pixels where the flow estimate depends on the gray value in the central point. The best 
velocity estimate is the one ol~tained where the residual function is minimum. 

T h e  g e n e r a l i z e d  r e s i d u a l  f i l t e r  - This filtering procedure can be generalized 
with a search for the minimum value of the resi~tual on a set of points of the 
neighborhood of x corresponding to masks containing x or where the velocity 
estimate depends on E(x)  because of the extension of the derivative mask. It is 
important  to extend the search for continuity for our filter even in the temporal 
direction, to compensate for the effects of temporal  discontinuities of the motion. 
In our filter the search for the minimum of the residual function is performed in 
a search space S(x) of 9 x 9 x 3 pixels (the mask dimension used is 9 x 9 x 1). 
The filtered flow estimate v r i  (x) in the point x is therefore chosen as the one 
obtained in the point of S(x)  where the residual function is minimum. 

R e g u l a r i z a t i o n  p r e s e r v i n g  t h e  edges  - We introduced also a flow regular- 
izat]on preserving the sharp variations of the flow near the discontinuities. First 
the average vaog of the flow vectors over a set oi  points of the neighborhood of 
x is computed. This set is composed by pixels x '  where the residual function 
is smaller than a threshold and the difference between the computed flow v(x ' )  
and the output  of the residual filter v r / ( x )  is less than 1 p i z e l / f r a m e .  The reg- 
ularized estimate of vreg(z) is given by: v~g(z )  = (vrf  + rang)/2 

T h i n n i n g  o f  t h e  r e s i d u a l  m a p  a n d  e d g e  d e t e c t i o n  - The final multi-scale 
residual map Q (x) identifies the presence of discontinuities, but its localization is 
poor because of the window size. It is possible, however, to obtain a thinning of 
this map during the residual filtering, by assuming as new residual value Q'(x)  at 
each pixel location the minimum value of the residual in the search space S(x).  
Motion discontinuities are still revealed because the size of the region around x 
where the flow estimate depends on E(x)  is larger than the size of the search 
space. Our algorithm for the detection of motion edges is therefore based on the 
search for local maxima along z -  and y -  directions of the map Q'(x),  larger 
than a defined threshold. 
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5 D e s c r i p t i o n  o f  t h e  c o m p l e t e  m u l t i  s c a l e  a l g o r i t h m  

The above analysis suggested us to design a multi-scale algorithm for the detec- 
tion of motion edge and flow estimate, consisting of the following steps: 

1. The image sequence is filtered and decomposed in a Gaussian pyramid. 
2. The optical flow is computed at the coarsest scale over 9 • 9 x 1 (subsampled) 

windows, rejecting equations obtained where spatial derivatives (computed 
with a 5 point mask) are below a threshold and rejecting estimates obtained 
where the determinant and the conditioning number of the matr ix  B T B  are 
less than the thresholds dT and CT and the residual function is above the 
threshold rT .  

3. The residual filter is applied to the flow. 
4. The regularizing filter is applied to the flow; 
5. Flow corrections are computed at the finer scale. If the residual function 

computed at the coarser scale had a high value, several corrective terms 
are computed shifting the derivatives not only of ( in t )v (x ,  y, t),  but also of 
( in t )v (x  + i, y + j, t q- k) with /, j, k = - 1 , 0 ,  1. The shift corresponding to 
the minimum value of the residual function at the finer scale is kept. 

6. The corrected flow at the finer scale is kept if its residual is lower than the 
one computed at the coarser scale, then the residual map Q is corrected with 
the new value. If the residual is higher, the flow computed at the coarser scale 
is still considered the best estimate. 

7. Filtering is applied to the corrected flow and the procedure is repeated until 
the finer scale is reached. 

8. When the highest resolution is reached, the thinned residual map is generated 
as described]n Section 4 and the motion edges are extracted from this map. 

6 E x p e r i m e n t a l  r e s u l t s  

We have tested our algorithms on calibrated sequences (with known true dis- 
placements). To evaluate the accuracy of the computed flows we used the an- 
gular distance between the computed v = (u, v) and the real v '  = (u', v') dis- 

placements, defined by Barron [4] as: d i s t ( v , v ' )  = arccos \x/(IVl+l)(W'l+l)] 

E n h a n c e m e n t  o f  flow a c c u r a c y  - The first series of experiments aimed at 
testing the proposed optical flow algorithm. We have measured the improvement 
in the flow accuracy on a synthetic sequence where a circle with radius equal to 
100 pixels translates with velocity (1,0.5), over a background translating with 
velocity (0 , -0 .5 ) ,  and on the Marbled Block sequence created by Michael Otte 
(Karlsruhe), a calibrated sequence where the camera is moved while the white 
block is translating (a reduced version of 256 x 256pixels) .  All the parameters 
are known, so the correct map of the image displacements is known. In the first 
case, using the single scale algorithm with 9 x 9 windows and gaussian smoothing 
with ~r = 1.5, the average angular distance was 4.59 ~ degrees (100% density). 
With the two scale algorithm (N=2) the distance was reduced to 3.97 ~ Intro- 
ducing the residual filter at each scale the distance became 3.52 ~ and adding the 
regularizing filter 2.92% For the marbled block sequences the average angular 
distance from the true displacements was 7.77 ~ (100% density) with the basic 
estimator, 7.45 ~ introducing the two scale decomposition, 6.65 ~ and 5.33 ~ with 
the residual filter and both the residual and regularizing filters. Another test 
has been done to demonstrate the possibility of speeding up the computat ion 
by window subsampling. Table 1 shows the average angular differences from the 
true motion of flows computed on the synthetic sequence of Fig. 4 in different 
cases. Reducing the number of equations by subsampling does not lead to a de- 
terioration of the flow. 
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Window dist std.dev, dens. 
9 • 9 (81 eqns) 2.63 ~ 6.71 ~ 82.6 
5 • 5 (25 eqns) 4.33 ~ 7.49 ~ 69.2 
9 • 9 sub. (25 eqns) 2.86 ~ 7 . 3 2  ~ 7 7 . 1  

9 • 9 sub. (9 eqns) 4.23 ~ 8.33 ~ 65.3 

Table  1: If the number of equations is re- 
duced by reducing the window size, the esti- 

i mate gets poorer, while subsampling a win- 
dow of the same size, the equations are re- 
duced with no relevant effects on flow accu- 
racy. 

Q u a n t i t a t i v e  c o m p a r i s o n  w i t h  o t h e r  t e c h n i q u e s  - We have c o m p a r e d  the  
average angu la r  differences between our  flows and the co r re spond ing  t rue  dis- 
p l acemen t s  on some tes t  sequences.  The  T rans l a t i ng  Tree and  Diverging  Tree 
sequences,  c rea ted  by Dav id  Fleet ,  are syn the t i c  sequences s i m u l a t i n g  the t rans-  
l a t ion  pe rpend i cu l a r  and  para l le l  to  the  op t ica l  axis  of  the  c a m e r a  of  a s l an ted  
p l a n a r  surface.  In these sequences no m o t i o n  d i scont inu i t ies  are  present ,  bu t  the  
presence of  large mo t ions  (..~ 2 p i x e l / f r a m e )  shows the  u t i l i t y  of  the  mul t i - sca le  
approach :  the  accuracy  of  our  resul ts  is s a t i s f ac to ry  c o m p a r e d  wi th  the  values 
r epo r t ed  in[4, 10, 11] (Table  2). The  "Yosemi te  Valley" sequence (Fig.  3 A),  cre- 
a t ed  by Lynn  Q u a m ,  is a chal lenging tes t  for op t i ca l  flow a lgo r i t hms ,  because  i t  
presents  large d i sp lacements ,  occlusions and regions wi th  poo r  tex ture .  The  flow 
o b t a i n e d  wi th  our  a l g o r i t h m  (Fig.  3 B) is more  accu ra t e  t han  those  ob t a ined  
wi th  o ther  techniques (Table  2). 

Algorithm Translating Tree 
ang.d, std.dev, dens. 

Horn & Schunck 38.72 ~ 27.67 ~ 100 
Heeger 4.53 ~ 2.41 ~ 57.8 
Anandan 4.54 ~ 2.98 ~ 100 
Lucas & Kanade 0.66 ~ 0.67 ~ 39.8 
Fleet & Jepson 0 . 3 2  ~ 0.38 ~ 74.5 
Weber & Malik D.49 ~ 0.35 ~ 96.8 
Xu 1.89 ~ 4.23 ~ 95.7 
Our Impl.(raw) 9.51 ~ 0.46 ~ 95.0 
Our Impl.(reg.) 0.25 ~ 0.23 ~ 95.0 

Diverging Tree Yosemite 
ang.d, std. dev. dens. ang.d, std.dev, dens. 
12.02 ~ 11.72 ~ 100 32.43 ~ 30.28 ~ 100 
4.49 ~ 3.10 ~ 74.2 10.51 ~ 12.11 ~ 15.2 
7.64 ~ 4.96 ~ 100 15.84 ~ 13.46 ~ 100 
1.94 ~ 2.06 ~ 48.2 4.10 ~ 9.58 ~ 35.1 
0.99 ~ 0.78 ~ 61.0 4.25 ~ 11.34 ~ 34.1 
3.18 ~ 2.50 ~ 88.6 4 . 3 1  ~ 8.66 ~ 64.2 
4.11 ~ 6.56 ~ 93.7 9.93 ~ 11.03 ~ 99.8 
3.97 ~ 2.60 ~ 95.0 4.01 ~ 7 . 1 2  ~ 70.9 
2.07 ~ 1.37 ~ 95.0 2.82 ~ 6.98 ~ 70.9 

T a b l e  2: Quantitative comparison of the flow accuracy obtained on the sequences 
Translating Tree, Divering Tree and Yosemite with our algorithm and with other tech- 
niques. 

D e ~ e c t i o n  o f  m o t i o n  e d g e s  - The  final series of  e x p e r i m e n t s  a i m e d  at  detect -  
ing m o t i o n  edges t h rough  the search for the  d i rec t iona!  m a x i m a  o f  the  th inned  
res idual  funct ion .  Fig.  4 A shows the  res idual  funct ion  o b t a i n e d  f rom the  compu-  
t a t i o n  of  the  single - scale flow on the  syn the t i c  sequence descr ibed  before.  High 
values  of  the  res idual  func t ion  do not  cor respond  only  to  m o t i o n  d iscont inui t ies  
due to the  error  in der iva t ives  c o m p u t a t i o n .  W i t h  the  mul t i - sca le  approach ,  the  
res idual  m a p  c lear ly  presents  i ts  h ighest  values near  the  d i scont inu i t i es  (Fig.  4 
B).  A p p l y i n g  the res idual  funct ion  t h inn ing  as descr ibed  in Sect ion 5, a clear  
loca l i za t ion  of  the  bounda r i e s  of  the  mov ing  region is found  (Fig.  4 C).  T h e  
" m o t i o n  edges" ex t r ac t ed  f rom this  m a p  are f inal ly s u p e r i m p o s e d  to  the  or ig inal  
image  in Fig.  4 D showing thei r  p r o x i m i t y  to  the  t rue  bounda r i e s  of  the  moving  
region.  In  the  case of  the  M a r b l e d  B l o c k  sequence,  i t  is much  more  difficult to 
e s t i m a t e  the  pos i t ion  of  the  m o t i o n  boundar ies ,  because  flow differences between 
different  ob jec t s  are not  so relevant .  T h e  refined res idual  m a p  o b t a i n e d  f rom the  
reduced 2_56 • 256 sequence wi th  our  mul t i - sca le  a l g o r i t h m  xs shown in Fig.  4E. 
In spi te  of  the  difficulties,  the  bounda r i e s  of  the  neares t  co lumn  and  of  the  mar -  
b led  block are c lear ly  revealed (Fig.  4 F) .  
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Fig.  3: Results obtained on the Yosemite Valley sequence. A: Sequence image with the 
true motion superimposed. B: Optical flow computed with our algorithm. 

U s e  o f  s h a p e  m o d e l s  - The  motion edges extracted with our  technique are 
close to the boundar ies  of  the moving regions, bu t  are inevi tably irreguIar and 
incomplete  due to the texture properties and to errors. In order  to refine the 
detect ion of these boundaries  it is therefore necessary .to in t roduce other  infor- 
ma t ion  and other  processing. If  templates  of  the moving objects  are known, a 
possible solution is a parametr ic  fit t ing of  the model  th rough  the detected edges 
(Fig. 5 A,B). 

7 Conclusions 
Our  work shows tha t  mot ion  edges can be extracted and the qual i ty  of  the optical 
flow es t imat ion  can be improved  wi thout  the in t roduct ion of  complex techniques. 
In a similar way also mot ion  discontinuities can be satisfactori ly revealed. 

References  
1. B.K.P.Horn & B.G.Schunck, "Determining optical flow," Art. Int. 17, 185-203 

(1981). 
2. B. Lucas and T. Kanade, "An iterative image registration technique with an ap- 

plication to stereo vision" Proc. DARPA Image Und. Workshop 121-130 (1981). 
3. M. Campani and A. Verri, "Motion analysis from first order properties of optical 

flow," CVGIP - Image Understanding 56~ 1:90-107 (1992). 
4. J.L. Barron, D.J. Fleet and S.S. Beauchemin, "Performance of optical flow tech- 

niques" Int. J. Comp. Vision 12, 1:43-77 (1994). 
5. M. Otte and H.H. Nagel, "Optical flow estimation: advances and comparisons" 

Proc. Third E CCV, 14, 51-60 (1994). 
6. H. H. Nagel, ' Optical Flow Estimation and the Interaction Between Measurement 

Errors at Adjacent Pixel Positions" Int. J. Comp. Vision 15:3, 271-288 (1995). 
7. E.De Micheli, S.Uras & V.Torre, "The accuracy of the computation of optical flow 

and of the recovery of motion parameters," IEEE Trans. PAMI 15, 5:434-447 
(1993). 

8. F.Bartolini, V.Cappellini, C.Colombo, A.Mecocci, "Multiwindow least-square ap- 
proach to the estimation of optical flow with discontinuities" Opt. Eng., 32, 6: 
1250-1256, (1993). 

9. R. Battiti, E. Amaldi and C. Koch, "Computing Optical Flow Across Multiple 
Scales: An Adaptive Coarse to Fine Strategy", Int. J. Comp. Vision 6:2, 133-145 
(1991). 

10. 3. Weber and J. Malik "Robust Computation of Optical Flow in a Multi-Scale 
Differential Framework" Int. J. Comp. Vision 14, 1:67-81 (1995). 

11. S. u "Motion d O tical F1 w i  o ' " bot V " " "" ' X an p o n R lslon Lmkopmg Studies in Science 
and Technology - Thesis No. 442 (1994). 



160 

Fig. 4: Extraction of "motion edges". A: Residual function obtained from the single- 
scale flow computation on a synthetic with the marbled block texture. A central circle 
and the background are differently translating. B: Residual function obtained from the 
multi-scale algorithm on the same sequence. C: "Thinned" residual map. D: "Motion 
edges" superimposed to the image. E: Thinned multi-scale residual map obtained on 
the 256 • 256 Marbled Block sequence. F: "Motion edges" superimposed to the image. 

Fig. 5: A: Precise detection of the moving circle obtained from the search for the best 
circumference approximating the edges of Fig. 4D. Circles with radius between 20 and 
80 pixels, with at least half of the points close to an edge and with a local maximum 
in the number of points close to edges were extracted. The parameters of the circle 
(center in 130, 129, radius 50 pixels) were correctly estimated. B: Improved detection 
of the boundaries obtained from the search for the nearly vertical segments of at least 
15 pixels better approximating the edges of 4F. 


