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A b s t r a c t .  In this paper we describe a method to perform Euclidean 
reconstruction with a perspective camera model. It incrementally per- 
forms reconstruction with a paraperspeetive camera in order to converge 
towards a perspective model. With respect to other methods that  com- 
pute shape and motion from a sequence of images with a calibrated 
perspective camera, this method converges in a few iterations, is com- 
putationally efficient, and does not suffer from the non linear nature of 
the problem. Moreover, the behaviour of the algorithm may be simply 
explained and analysed, which is an advantage over classical non lin- 
ear optimization approaches. With respect to 3-D reconstruction using 
an approximated camera model, our method solves for the sign (rever- 
sal) ambiguity in a very simple way and provides much more accurate 
reconstruction results. 

1 Introduct ion  and background 

The  p rob l em of c o m p u t i n g  3-D shape  and mo t ion  f rom a long sequence of im- 
ages has received a lot  of a t t en t ion  for the last  few years. Previous  approaches  
a t t e m p t i n g  to  solve this  p rob l em fM1 into several  categories,  whether  the  c a m e r a  
is ca l ib ra t ed  or not,  a n d / o r  whether  a pro jec t ive  or an affine mode l  is be ing  used. 
W i t h  a ca l ib ra t ed  c a m e r a  one may  compu te  Eucl idean  shape  up to  a scale fac tor  
using e i ther  a perspec t ive  mode l  [8], or a l inear  mode l  [9], [10], [6]. W i t h  an uneal -  
i b r a t ed  c a m e r a  the  recovered shape is defined up to a pro jec t ive  t r a n s f o r m a t i o n  
or up to an affine t r ans fo rma t ion  [4]. One can therefore address  the  p r o b l e m  of 
e i ther  Eucl idean ,  a n n e ,  or pro jec t ive  shape  recons t ruc t ion .  In this  p a p e r  we are 
in teres ted  in Euc l idean  shape  recons t ruc t ion  wi th  a ca l ib ra t ed  camera .  In t h a t  
case, one m a y  use ei ther  a perspect ive  c a m e r a  mode l  or an a n n e  a p p r o x i m a t i o n  

o r thog raph ic  pro jec t ion ,  weak perspect ive ,  or pa raper spee t ive .  
The  perspec t ive  mode l  has associa ted  wi th  it, in general ,  non l inear  recon- 

s t ruc t ion  techniques.  This  na tu ra l ly  leads to non- l inear  m i n i m i z a t i o n  m e t h o d s  
which require  some form of in i t i a l iza t ion  [8], [4]. If  the in i t ia l  "guess" is too  far- 
away f rom the  t rue  so lu t ion  then the min imiza t i o n  process is e i ther  very slow or 
i t  converges to a wrong solut ion.  Affine models  lead, in general ,  to l inear  resolu- 
t ion m e t h o d s  [9], [10], [6], bu t  the so lu t ion  is defined only up  to a sign (reversal)  
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ambiguity, i.e., there are two possible solutions. Moreover, an affine solution is 
just  an approximation of the true solution. 

One way to combine the perspective and affine models could be to use the 
linear (affine) solution in order to initialize the non-linear minimization process 
associated with perspective. However, there are several drawbacks with such 
an approach. First, such a resolution technique does not take into account the 
simple link that exists between the perspective model and its linear approxima- 
tions. Second, there is no mathematical  evidence that a non-linear least-squares 
minimization method is "well" initialized by a solution that  is obtained linearly. 
Third, there are two solutions associated with the affine model and it is not clear 
which one to choose. 

The perspective projection can be modelled by a projective transforma- 
tion from the 3-D projective space to the 2-D projective plane. Weak perspec- 
tive and paraperspective are the most common affine approximations of per- 
spective. Weak perspective may well be viewed as a zero-order approximation: 
1/(1 + r ~ 1. Paraperspective is a first order approximation of full perspective: 
1/(1 + r ~ 1 - ~. Recently, in [3] a method has been proposed for determining 
the pose of a 3-D shape with respect to a single view by iteratively improving the 
pose computed with a weak perspective camera model to converge, at the limit, 
to a pose estimation using a perspective camera model. At our knowledge, the 
method cited above, i.e., [3] is among one of the first computational  paradigms 
that  link linear techniques (associated with affine camera models) with a perspec- 
tive model. In [5] an extension of this paradigm to paraperspective is proposed. 
The authors show that the iterative paraperspectwe pose algorithm has better 
convergence properties than the iterative weak perspective one. 

In this paper we describe a new Euclidean reconstruction method that makes 
use of affine reconstruction in an iterative manner such that  this iterative process 
converges, at the limit, to a set of 3-D Euclidean shape and motion parameters 
that  are consistent with a perspective model. The novelty of the method that  
we propose is twofold: (i) it extends the iterative pose determination algorithms 
described in [3] and in [5] to deal with the problem of shape and motion from 
multiple views and (ii) it is a generalization to perspective of the factorization 
methods [9], [6] and of the affine-invariant methods [10]. More precisely, the 
a]fine-iterative reconstruction method that  we propose here has a number of 
interesting features: 

- It solves the sign (or reversal) ambiguity that is inherent with affine recon- 
struction; 

- It is fast because it converges in a few iterations (3 to 5 iterations), each 
iteration involving simple linear algebra computations; 

- We show that  the quality of the Euclidean reconstruction obtained with our 
method is only weakly influenced by camera calibration errors; 

- It allows the use of either weak perspective [1] or paraperspective camera 
models (paraperspective in this paper) which are used iteratively, and 

- It can be combined with almost any affine shape and motion algorithm. In 
particular we show how our method can be combined with the factorization 
method [9], [6]. 
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2 C a m e r a  m o d e l s  

Let us consider a pin hole camera model. We denote by Pi  a 3-D point with 
Euclidean coordinates Xi, Y/, and Zi in a frame that  is at tached to the object - 
the object frame. The origin of this frame may well be the object point P0. An 
object point Pi projects onto the image in Pi with image coordinates ui and vi 

and we have (Pi is the vector ~ from point P0 to point P i ) :  

~ Vi ~ O~v Vc 0 
0 1 0  

jT ty Yi 

The first matr ix  describes the projective transformation between the 3-D 
camera  frame and the image plane. The second matr ix  describes the rigid trans- 
format ion (rotation and translation) between the object f rame and the camera  
frame. 

From now on we will be assmning that  the intrinsic camera parameters  are 
known and therefore we can compute camera  coordinates from image coordi- 
nates: x i  = (u i  - u c ) / a ,  and Yi = (v i  - v c ) / a ~  

In these equations a ,  and av are the vertical and horizontal scale factors 
and u~ and vc are the image coordinates of the intersection of the optical axis 
with the image plane. 

The relationship between object points and camera points can be written as: 

xi = (i "Pl + t x ) / ( k .  P i  + t z )  (1) 

Yi = (j" Pi  + t y ) / ( k  . P i  + tz)  (2) 

We divide both the numerator  and the denominator of eqs. (1) and (2) by 
tz. We introduce the following notations: 

- I = i / t z  is the first row of the rotation matr ix  scaled by the z-component of 
the translation vector; 

- J = j / t z  is the second row of the rotation matr ix  scaled by the z-component 
of the translation vector; 

- x o  = t .~ / t z  and Y0 = t y / t z  are the camera coordinates of P0 which is the 
projection of P0 - the origin of the object frame, and 

- We denote by ei the following ratio: 

ei = k .  P i / t z  (3) 

We may now rewrite the perspective equations as: 

x, = ( I . P i  + x o ) / ( l +  ei) (4) 
Yi = (J"  Pi  + y0)/(1 + el) (5) 

Whenever the object is at some distance from the camera,  the ai are small 
compared to 1. We may therefore introduce the paraperspective model as a first 
order approximat ion of the perspective equations, Figure 1. Indeed, with the 
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P and ~ which are approximation: 1/(1 + ei) ~ 1 -  ei Vi, i E {1..,n} we obtain x i 
the coordinates of the paraperspective projection of Pi: 

i .  Pi k .  Pi P 
x i ~ ( I . P i + x o ) ( 1 - e i ) ~ I . P i + x o - x o e i -  tz + X o - X o  tz = x  i (6) 

where the term in 1/t~ was neglected. There is a similar expression for y~/. 
Finally, the paraperspective equations are: 

p i -  xo k . Pi (7) x i - x0 --- t--"-"~ 

j--Y0 k 
- Y~ = t - - - - T -  (8) 

3 R e c o n s t r u c t i o n  w i t h  a p e r s p e c t i v e  c a m e r a  

Let us consider again the perspective equations (4) and (5). These equations 
may be also written as (there is a similar expression for Yi): 

l k "  Pi  -- l i "  P i -  x 0 1 k  " Pi  
x i ( l  + e l )  -- xo - -  xO tz tz tz 

$ i  

These equations can be written more compactly as: 

(xi - Xo)(1 + ei) = Ip. Pi (9) 

(Yi - y0)(1 + r = Jp" Pi  (10) 

with: Ip i-*0 k and Jp j-y0 k Equations (9) and (10) can be interpreted tz  ---- tz  

in two different ways: (i) we can consider xi and Yi as the perspective projec- 
tion of Pi or (ii) we can consider xi(1 + si) - xosi and yi(1 + ei) - yos~ as the 
paraperspective projection of Pi. 

The basic idea of our method is to estimate values for r i nc remen ta l l y  such 
that  one can compute the paraperspective projections of the 3-D points from 
the perspective projections which are the true image measuremen t s .  Therefore, 
the perspective reconstruction problem is reduced to the problem of iterative 
paraperspective reconstruction. 

Let us consider now k views of the same scene points. We assume that  image- 
to-image correspondences have already been established. Equations (9) and (10) 
can be written as: 

sij = A j P i  (11) 

In this formula the subscript i stands for the i th point and the subscript j for 
the j t h  image. The 2-vector si j  is equal to: 

( ( x i j  - x0j)(1 + gij)"~ (12) 
= \ y0D(1 + / 

In these equations e~j (see eq. (3)) is defined for each point and for each 
image: 

e i j =  k j  . P i / t z j  (13) 
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Fig. 1. This figure shows the principle of projection with a paraperspective camera 
model. We consider the plane through /90 parallel to the image plane. A 3-D point P,: 
first projects onto this plane along the direction of FPo and then is projected onto 
the image along a line passing through F. Notice that the two vectors Ip and Jp are 
orthogonal to the direction of projection FPo (Ip only is depicted here). 

The reconstruction problem is now the problem of solving simultaneously 2 • 
n x k equations of the form of eq. (11). We introduce a method that  solves these 
equations by affine iterations. More precisely, this method can be summarized 
by the following algorithm: 

1. gi, i E {1...n} and gj,  j E {1...k} set: gij ---- 0 (initialisation); 
2. Update  the values of sij according with eq. (12) and using the newly com- 

puted values for eij; 
3. Perform an Euclidean reconstruction with a paraperspective camera; 
4. gi, i E {1...n} and gj,  j E {1...k} estimate new values for eij according with 

eq.(13); 
5. Check the values of eij: 

if V(i, j)  the values of gij just  est imated at this iteration are identical with 
the values estimated at the previous iteration, then stop; 

else go to step 2. 

The most important  step of this algorithm is step 4: est imate new values 
for gij. This computat ion can be made explicit if one considers into some more 
detail step 3 of the algorithm which can be further decomposed into: (i) Affine 
reconstruction and (ii) Euclidean reconstruction. 

The problem of affine reconstruction is the problem of determining both 
Aj and Pi ,  for all j and for all i. It  is well known that  affine reconstruction 
determines shape and motion up to a 3-D affine transformation.  Indeed, for any 
3x3 invertible matr ix  T we have: AjPi = A jTT-1P i .  In order to convert affine 
shape and motion into Euclidean shape and motion one needs to consider some 
Euclidean constraints associated either with the motion of the camera or with the 
shape being viewed by the camera. Since we deal here with a calibrated camera,  
we may  well use rigid motion constraints in conjunction with paraperspective 
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[6]. See [7] for the case of an uncalibrated affine camera. Therefore, step 3 of 
the algorithm provides both Euclidean shape (P1.. .Pn) and Euclidean motion. 
Based on the parameters of the Euclidean shape and motion thus computed one 
can estimate gij for all i and for all j using eq. (13) - step 4. 

The above algorithm can be easily interpreted as follows. The first iteration 
of the algorithm performs a 3-D reconstruction using the initial image measure- 
ments and a paraperspective camera model. This first reconstruction allows an 
estimation of values for the r which in turn allow the image vectors sij to be 
modified (step 2 of the algorithm). The s~j's are modified according to eq. (12) 
such that  they better fit the approximated camera model being used. 

The next iterations of the algorithm perform a 3-D reconstruction using 
(i) image vectors that are incrementally modified and (ii) a paraperspective cam- 
era model. 

At convergence, the equations (11) are equivalent with the perspective equa- 
tions (9), (10). In other terms, this algorithm solves for Euclidean reconstruc- 
tion with a perspective camera by iterations of Euclidean reconstruction with a 
paraperspeetive camera. Therefore, before we proceed further in order to under- 
stand some important  features of this iterative algorithm, it is necessary to have 
insights into the problem of Euclidean reconstruction with a paraperspective 
camera. 

The iterative algorithm outlined in this paper is best illustrated on Figure 2. 
At the first iteration, the algorithm considers the true perspective projections 
of Pi and at tempts to reconstruct the 3-D points as if they were projected in 
the image using paraperspective. At the second iteration the algorithm considers 
modified image point positions. At the last iteration, the image point positions 
were modified such that  they fit the paraperspective projections. 

first iteration ..... 
second iteration )- . . . . . .  /' 

paraperspectwe last iteration ~_.~ ....... '~d, ] 
~ .  ~ ~rojection ~ PO 

~ t  modified ,, 
cen!er of I optical axis 
projection J. 

image plane 

Fig.  2. The iterative algorithm described in this section modifies the projection of a 
3-D point from true perspective to paraperspective (see text). 

4 R e c o n s t r u c t i o n  w i t h  a p a r a p e r s p e c t i v e  c a m e r a  

In this section we develop step 3 of the algorithm outlined in the previous section. 
Methods that  use a linear camera model provide a 3-D affine reconstruction if 
at least 2 views of 4 non-coplanar points are available and if the motion is not a 
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pure translation. However, 3 views are necessary in order to convert this affine 
reconstruction into an Euclidean one. While the affine-invariant method allows 
a more direct analysis of the problem, [10] the factorization method is more 
convenient from a practical point of view. 

The factorization method,  [9] computes shape and motion simultaneously by 
performing a singular value decomposition of the 2k x n matr ix  c~ which is formed 
by concatenating eq. (11) for all i and j: ~ = AS = OIS02.  Affine shape and 
motion,  i.e., the 2k x 3 mat r ix  A and the 3 x n mat r ix  S, can be computed only 

" if the rank of the measurement matr ix  c~ is equal to 3. 
The rank of c~ is equal to the rank of the n x n diagonal mat r ix  K. Even if 

the rank condition stated above is satisfied, the rank of Z may be greater than 3 
because of numerical instability due to noise. Tomasi ~ Kanade [9] suggested 
to solve the rank problem by truncating the matr ix  S such that  only the 3 
largest diagonal values are considered. They claim that  this truncation amounts  
to removing noise present in the measurement  matrix.  Therefore, one can write 

/Dr y: , / r  / the singular value decomposition of the measurement  matr ix  as cr = "~'1~ '~'2 + 
O,, r ' , cv ,  where S '  is a 3 x 3 diagonal matr ix  containing the 3 largest diagonal 1 ":~ t~'2 

terms of S.  
Finally, affine shape and affine motion are given by S = (~ ' )~/20~ and 

A = 

4.1 F r o m  aff ine  to  E u c l i d e a n  

Obviously, the factorization method described above does not provide a unique 
decomposition of the measurement matr ix  cr. The method that  we describe here 
for recovering Euclidean shape and motion with a paraperspective camera  is an 
alternative approach to the method described in [6]. 

One has to determine now Euclidean shape and motion by combining the 
affine reconstruction method just described and the Euclidean constraints avail- 
able with the camera model being used. As already mentioned, one has to de- 
termine a 3x3 invertible matr ix  T such that  the affine shape S becomes Eu- 
clidean: ( P l  . . . P n )  = T -1 (S1 . . . S n )  and the affine motion becomes rigid: 

( R 1 . . .  Rk)T = ( A 1 . . .  Ak)T T. Indeed, in order to avoid confusion we denote 
by ,q and A affine shape and affine motion and by P and R Euclidean shape and 
rigid motion. The matrices Rj are given by: 

( Ip, "~ 
Rj = \ / 

The Euclidean constraints allowing the computat ion of T are the following [6]: 

I[Ipj[12/(1 + x02j) = IIJp~[12/(1 + y2oj) 

a n d  

Ipj .Jpj = x0jY0j//2 (llIpjll2/(1 + x02j) + IIJpjll2/(1 + ygj)) 
We denote by aj  and bj  the row vectors of matr ix  Aj. Using the constraints 
above, for k images one obtains 2k constraints for the matr ix  T: 

aTTTTaj/(1 + x~j) - bTTTTbj / (1  + y02j) = 0 (14) 
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These constraints are homogeneous and non linear in the coefficients of T. In 
order to avoid the trivial null solution the scale factor must be fixed in advance. 
For example, one may choose Ilxp, II' = 1 + x02, or IlJp, I]' = 1 + y02x. Hence we 
obtain one additional constraint such as: 

a TTTal = 1 + X o, (16) 
These constraints are non linear in the coefficients of T. With the substitution 

O = T T T  equations (14), (15), and (16) become linear and there are 6 unknowns 
because, by definition, Q is a 3x3 symmetric positive matrix. Since we have 
2k + 1 independent equations and 6 unknowns, at least 3 views are necessary 
to estimate Q. Finally T can be derived from Q using a factorization of Q. As 
it will be explained later in section 5 there is an ambiguity associated with the 
factorization of the symmetric semi-definite positive matrix Q and this ambiguity 
is the origin of the reversal ambiguity associated with any affine camera model. 

Next we determine the parameters of the Euclidean motion by taking ex- 
plicitly into account the paraperspective camera model. The method presented 
below is an alternative to the method proposed in [6] and it is equivalent to the 
problem of computing pose with a paraperspective camera [5]. 

First we determine the translation vector. From the formulae above we have: 

t , j  = 1/2 ( ( i X  + x02j)/(Nlpj]])+ ( t l  + y02j)/([IJpj[l>) 

and txj = xojtzj~ tyj = y%tzj.  
Second, we derive the three orthogonal unit vectors ij, j j ,  and kj as follows. 

Ip and 3p may be written as: 

ij = tzj Ipj + x0~ kj (17) 

j j  = tzj Jpj + Y0j k5 (18) 

The third vector, k j  is the cross-product of these two v e c t o r s  k j  = ij • j j .  
Let's, for convenience, drop the subscript j .  We obtain for k: 

k = t~ Ip • Jp + tzyo Ip • k - tzXo Jp • k 

Let S(v) be the skew-symmetric matrix associated with a 3-vector v, and/3•  
be the identity matrix. The previous expression can now be written as follows: 

(13• - t z y o  S(I~) + tzXo,~(Jp))  k = t~ Ip • J~ (19) 

This equation allows us to compute k, provided that  the linear system above 
has full rank. Indeed, one may notice that the 3• matrix B is of the form: (1 

B = - c  1 
b - a  

Its determinant is strictly positive and therefore, B has full rank and one can 
easily determine kj using eq. (19) and ij and j j  using eqs. (17) and (18). As a 
consequence, it is possible to compute the rigid motion between each camera 
position and the 3-D scene, i.e., ij, j j ,  kj,  txi, tyj, and tzj and to estimate eij 
for each image and for each point (eq. (13)). 
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5 Solving the reversal ambiguity 

The algori thm outlined in Section 3 solves for Euclidean reconstruction with a 
perspective camera by iterations of an Euclidean reconstruction method  with 
a paraperspective camera. In this section we show how this iterative algori thm 
has to be modified in order to solve the reversal ambiguity problem which is 
inherent with any affine camera model. Indeed, let us consider again the affine 
shape and motion recovery method outlined in the previous section. A key step 
of this method consists of computing a t ransformation T that  converts affine 
structure into Euclidean structure. This t ransformation must  be computed  by 
decomposition of a symmetr ic  semi-definite positive mat r ix  Q: Q = T T  T.  There 
are at least two ways to determine T: 

1. Q can be written as Q = O D O  T, where O is an orthogonal mat r ix  containing 
the eigenvectors of Q and D is a diagonal matr ix  containing the eigenvalues 
of Q. Since the eigenvalues of a symmetr ic  semi-definite positive mat r ix  are 
all real and positive, one may write Q as: Q = ( O D t / 2 ) ( O D U 2 ) T  = K K  r .  

2. Alternatively one may use the Cholesky decomposition of Q: Q = L L  T where 
L is a lower triangular matrix.  

Let H be a non singular matr ix  such that  L = K H  and we have: 

Q = L L  T = K H H T K  T = I { K  T (20) 

We conclude that  H is necessarily an orthogonal matrix.  The orthogonali ty of 
H is also claimed in [11] but without any formal proof. Therefore H represents 
either a rotation or a mirror t ransformation (its determinant is either +1 or - 1 )  
and there are two classes of shapes that  are possible: 

a direct shape which is defined up to a rotation and 
- a reverse shape which is obtained from the direct shape by applying a mirror 

t ranstbrmation.  

Since shape is defined up to rotation and without loss of generality we choose 
tlhe mirror  t ransformation to be - I  where I is the identity matrix.  Therefore 
the affine shape and motion equation can be written as: o- = A S  = ( - A ) ( - S ) .  
Because of this reversal ambiguity, there are two solutions for the Eli'S at each 
iteration of the reconstruction algorithm described above. 

The vectors kj are computed using eq. (19). This equation may use either 
Ip and Jp (the first solution) or - I  v and -Jp (the second solution). Therefore 

1 2 we obtain two distinct solutions, that  is, kj  and kj .  The two solutions for eij 

correspond to k~ and Pi  and to k~ and - P i :  e~ f f=  -t-k~ '~. P i / t z j .  
At each iteration of the perspective reconstruction algorithm two values for 

eij  are thus estimated. Therefore, after N iterations there will be 2 N possible 
solutions. All these solutions are not, however, necessarily consistent with the 
image da ta  and a simple verification technique allows to check this consistency 
and to avoid the explosion of the number of solutions. Finally, a unique solution 
is obtained. 

The first iteration of the algorithm makes available two solutions - a "posi- 
tive" shape S and a "negative" shape ( - S )  - that  are both considered. At the 
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' 1st iteration 

1 \ 1 

s,N,, 6 
Fig. 3. A strategy for selecting a unique solution 

2nd iteration 

' Nth iteration 

J 
( s e e  t e x t ) .  

next iterations of the algorithm two shapes are maintained: one shape consis- 
tent with S and another shape consistent with - S .  Therefore, at convergence, 
one obtains two solutions, each one of these solutions being consistent with one 
or the other of the initial shapes. Finally, the solution that  best fits the image 
data  is selected as the unique solution. This solution selection process is best 
illustrated on Figure 3. 

6 Experimental  results and discussion 
In this section we describe two types of experiments: (i) experiments with syn- 
thetic data which allow us to study both the accuracy of the 3-D reconstruction 
and the behaviour of the iterative algorithm, and (ii) experiments with real data. 

Let us consider some synthetic data. We designate by D the distance between 
the center of these data  and the camera center of projection divided by the 
size of the data's diameter - D is therefore a relative distance. Hence, D is 
approximatively equal to 1/~--~- where ~ is the average value of ~ij for all i 
and j .  For a fixed value of D we consider 10 camera motions, each motion 
being composed of 15 images. Each such motion is farther characterized by a 
translation vector and a rotation axis and angle. The directions of the translation 
vector and rotation axis are randomly chosen. The angle of rotation between 
two images is equal to 2 ~ Moreover, the image data  obtained by projecting 
this object onto the image plane is perturbed by adding Gaussian noise with a 
standard deviation equal to 1. 

The accuracy of the reconstruction is measured by the difference between the 
theoretical 3-D points and the reconstructed 3-D points. We compute the mean 
and the maximum values of these differences over all motions at a fixed relative 
distance D. Figure 4 summarizes the results. 

Finally, we consider one experiment performed with real images: A sequence 
of 13 images of a wood piece with 10 tracked points (figure 5); In all these 
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F ig .  4. The behaviour of the factorization method (small squares) is compared with 
the behaviour of the iterative method described in this paper  (small triangles) as a 
function of the relative distance between the object and the camera (see text).  The 
left side shows the mean value of the distance between object points and reconstructed 
points and the right side shows the maximum value of this distance. 

expe r imen t s  the c a m e r a  center  was fixed to uc = v~ = 256 and the  hor izon ta l  
and  ver t ica l  scale factors  were fixed to c~ = 1500 and c~v = 1000. 

In th is  pape r  we descr ibed a m e t h o d  for solving the Euc l idean  reconst ruc-  
t ion p rob l em with  a perspec t ive  camera  by inc remen ta l ly  pe r fo rming  Euc l idean  
recons t ruc t ion  wi th  a pa rape r spec t ive  c a m e r a  model .  T h e  m e t h o d  converges,  on 
an average,  in 5 i te ra t ions ,  is c o m p u t a t i o n a l l y  efficient, and it p roduces  accura te  
resul ts  even in the  presence of image  noise a n d / o r  c a m e r a  ca l ib ra t i on  errors.  
The  m e t h o d  m a y  well be viewed as a genera l iza t ion  to perspec t ive  of  shape  and 
mo t ion  c o m p u t a t i o n  using fac tor iza t ion  a n d / o r  aff ine- invar iant  me thods .  I t  is 
well known tha t  wi th  a l inear  c a m e r a  model ,  shape and mo t ion  can be recovered 
only  up to a sign (reversal)  ambigui ty .  The  m e t h o d  t ha t  we propose  in this  pape r  
solves for this  a m b i g u i t y  and  produces  a unique so lu t ion  even if the  c a m e r a  is 
at  some d is tance  f rom the scene. 

A l t h o u g h  the expe r imen ta l  results  show tha t  there  are l i t t le  convergence 
prob lems ,  we have been unable  to s tudy  the convergence of  the  a l g o r i t h m  f rom 
a theore t ica l  po in t  of view. We s tud ied  its convergence based on some numer ica l  
and  p rac t i ca l  cons idera t ions  which allow one to de t e rmine  in advance  the  o p t i m a l  
e x p e r i m e n t a l  se tup  under  which convergence can be gua ran t eed  [2]. In the  fu ture  
we p lan  to s tudy  more  tho rough ly  the  convergence of this  t ype  of Mgor i thms.  
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F |g .  5. This figure shows one image (a) out of a sequence of 13 images where only 
10 points were tracked and reconstructed. The first row (b) and (c) shows the result 
of reconstruction using the factorization method with a paraperspective model, while 
the second row (d), (e), and (f) shows the result of reconstruction with the iterative 
method and a perspective model. In this example the iterative algorithm converged in 
4 iterations. 
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