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A b s t r a c t .  Recent li terature [7, 10, 11, 9, 13, 17] provides a number of 
results regarding uniqueness aspects of motion fields and exact image 
displacements due to 3-D rigid motion. Here instead of the full motion 
field we consider only the direction of the motion field due to a rigid 
motion and ask what can we say about the three-dimensional motion 
information contained in it. This paper provides a geometric analysis of 
this question based solely on the fact that  the depth of the surfaces in 
view is positive (i.e. that  the surface in view is in front of the camera). 
With this analysis we thus offer a theoretical foundation for image con- 
straints employing only the sign of flow in various directions and provide 
a solid basis for their utilization in addressing 3D dynamic vision prob- 
lems. 
For two different rigid motions (with instantaneous translational and 
rotational velocities ( t l ,w l )  and (t2, w2)) to yield the same direction of 
the flow, the surfaces in view must satisfy certain inequality and equality 
constraints, called critical surface constraints. A complete description of 
image areas where the constraints cannot be satisfied is derived and it 
is shown that  if the imaging surface is a whole sphere, any two motions 
with different translation and rotation axes can be distinguished using 
only the direction of the flow. In the case where the imaging surface is 
a hemisphere or a plane, it is shown that  two motions could give rise 
to the same direction of the flow if ( t l  x t2) �9 (wl x w2) --- 0 and several 
additional constraints are satisfied. For this to occur, the surfaces in view 
must satisfy all the critical surface constraints; thus at some points only 
a single depth value is allowed. Similar results are obtained for the case 
of multiple motions. Consequently, directions of motion fields are hardly 
ever ambiguous. 

1 Introduction and Motivat ion 

T h e  basis  of the  m a j o r i t y  of visual  m o t i o n  s tudies  has  been the  m o t i o n  field, 
i.e., the  p ro jec t ion  of  the  veloci t ies  of 3D scene po in t s  on the image .  Class ica l  
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results on the uniqueness of motion fields [7, 10, 11] as well as displacement fields 
[9, 13, 17] have formed the foundation of most research on rigid motion analysis 
that  addressed the 3D motion problem by first approximating the motion field 
thr6ugh the optical flow and then interpreting the optical flow to obtain 3D 
motion and structure [15, 8, 16, 18, 14]. 

The difficulties involved in the estimation of optical flow have recently given 
rise to a small number of studies considering as input to the visual motion 
interpretation process some partial optical flow information. In particular the 
projection of the optical flow on the gradient direction, the so-called normal flow 
[6, 12], and the projections of the flow on different directions [1, 3, 4] have been 
utilized. In [3] constraints on the sign of the projection of the flow on various 
directions were presented. These constraints on the sign of the flow were derived 
using only the rigid motion model, with the only constraint on the scene being 
that the depth in view has to be positive at every poin t - - the  so-called "depth- 
positivity" constraint. In the sequel we are led naturally to the question of what 
these constraints, or more generally any constraint on the sign of the flow, can 
possibly tell us about three-dimensional motion and the structure of the scene 
in view. Thus we would like to investigate the amount of information in the 
sign of the projection of the flow. Since knowing the sign of the projection of 
a motion vector in all directions is equivalent to knowing the direction of the 
motion vector, our question amounts to studying the relationship between the  
directions of 2D motion vectors and 3D rigid motion. 

The 2D motion field on the imaging surface is the projection of the 3D motion 
field of the scene points moving relative to that  surface. We use a coordinate 
system O X Y Z  fixed to the camera. The center of projection is at the origin and 
the image is formed on a sphere with radius 1. A scene point R is projected onto 
an image point r = R/ ]RI ,  where ]R] is the norm of the vector It .  

Suppose the observer is moving rigidly with instantaneous translation t = 
(U, V, W) and instantaneous rotation w = ( a,  ~, 7). The well-known equation for 
the motion field at point r is 

1 1 
= v t r ( r )  + V r o t ( r )  = r ) r  - -  t )  - • r = - -  • ( t  • - -  • r 

I~1 I~1 

The first term Vtr(r) corresponds to the translational component which depends 
on the depth Z = ]RI, the distance of R to the center of projection. The direction 
of Vtr(r) is along great circles (longitudes) pointing away from the Focus of 
Expansion (t) and towards the Focus of Contraction ( - t ) .  The second term 
Vrot(r) corresponds to the rotational component which is independent of depth. 
Its direction is along latitudes around the axis of rotation (counterclockwise 
around ~ and clockwise around - w ) .  

As can be seen, even from exact optical flow, without additional constraints 
there is an ambiguity in the computation of shape and translation. It is not 
possible to disentangle the effects of t and ]R], and thus we can only derive the 
direction of translation. If we only consider the sign of optical flow, in addition 
we are also restricted in the computation of the rotational parameters. If we 
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multiply w by a positive constant, leave t fixed, but multiply ~ 1  by the same 

positive constant, the sign of the flow is not affected. Thus from the direction of 
the flow we can at most compute the axis of rotation and, as discussed before, 
the axis of translation. 

Hereafter, for the sake of brevity, we will refer to the motion field also as 
the flow field or simply flow, and to the direction of the motion field as the 
directional flow field or simply directional flow. 

In this paper, by pursuing a theoretical investigation of the amount  of in- 
formation present in directional flow fields, we demonstrate the power of the 
qualitative image measurements already used empirically, and justify their uti- 
lization in global constraints for three-dimensional dynamic vision problems. We 
study here the theoretical question, investigating uniqueness issues in a noise- 
free flow field. In practical situations, of course, inaccurate estimation of image 
displacement directions might influence the result of 3D motion estimation, but 
this is not the issue we are concerned with here. 

The organization of this paper is as follows: In Sect. 2 we develop the pre- 
liminaries: Given two rigid motions, we study what the constraints are on the 
surfaces in view for the two motion fields to have the same direction at every 
point. In Sect. 3, using these constraints, we study conditions under which two 
rigid flow fields could have the same direction at every point on a hemisphere. In 
Sect. 4, we investigate the ambiguity of multiple motions. Section 5 summarizes 
the results. 

2 C r i t i c a l  S u r f a c e  C o n s t r a i n t s  

Let us assume that  two different rigid motions ( t t , w l )  and (t2,w2) yield the 
same directional flow at every point in the image. To simplify the explanations, 
we assume t l  • t2 ~ 0 and wl • w2 ~ 0. The special cases are dealt with in 
Sect. 3.3. 

Since from the direction of flow we can only recover the directions of the 
translation and rotation axes, we assume all four vectors t l ,  t2, wl and w2 to be 
of unit length. Let Z~(r) and Z2(r) be the functions, mapping points r on the 
image into the real numbers, that represent the depths of the surfaces in view 
corresponding to the two motions. In the future we will refer to Zt and Z2 as 
the two depth maps. We assume that the two depths are positive, and allow Z1 
or Z2 to be infinitely large. Thus we assume 1/Z1 > 0 and 1/Z2 > O. 

2.1 N o t a t i o n  

We denote f~(r)  = [wt w2r], f t ( r )  = [ t t t 2 r ] ,  and gq(r )  = (wi • r ) .  ( t j  • r), 
where [abel = (a • b) �9 c denotes the triple product of vectors a, b and c. 

These functions have a simple geometric meaning. Function f~ (r) is zero for 
points r lying on a geodesic passing through wl and w2. The geodesic is the 
locus of points r where Vrot~(r), the rotational component of the first motion, 
is parallel to vrot2 (r), the rotational component of the second motion. Similarly, 
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the geodesic passing through t l  and t~ is the locus of points where f t ( r )  = 0 
and Vtrl (r) is parallel to Vtr2 (It'). 

Equation gq (r) = 0 defines a second order contour consisting of two closed 
curves on the sphere, the so-called zero motion contour of motion ( t j ,  wi) (see 
Fig. 1). It is the locus of points where Vrot, (r) is parallel to Vtr j (I'), and therefore 
the locus of points where the flow due to the motion ( t j ,wi )  could be zero. 
Throughout  the paper the functions f i(r) ,  gij (r) and the curves defined by their 
zero crossings will play very important  roles. 

(a) (b) (c) 

Fig. 1. The zero motion contour (the locus of points r where i" could be zero) consists 
of two closed curves on the sphere. Three possible configurations are (a) (w. t) > 0, 
(b) ( ~ - t )  = o, a . d  (c) ( ~ .  t)  < O. 

To simplify the notation we will usually drop r and write only fl and gq 
where the index i in fi can take values t and w. By simple vector manipulation, 
we can prove a useful relationship between fi and gij 

gllg22 = f t f w  + g12921 (1) 

2.2 C o n d i t i o n s  fo r  Ambiguity 

The two motions can give rise to the same directional flow fields if at any point r 
there exists # > 0 such that  

1 
(r • ( t l  • r ) )  - ,~1 • ~ = ~ ( - ~ ( ~  • ( t2  • ~))  - ,~2 • ~) (2) 

Z1 

Projecting the vector equation (2) on directions t2 • r and r • (w2 • r) and 
using # > 0, we obtain two constraints for ZI: 

sgn(~-~ft -4- g12) = sgn(g22) (3) 

1 1 
sgn(~-i g21 - f~) = sgn(~-~2 g2~ ) (4) 
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where sgn(.) denotes the sign function. 
We define sl = -g12/ft  and s t = f~/g21. At any point, fi and  gij are 

constant, so (3) and (4) provide simple constraints on l /Z1. We call them the 
sl-constraint and the st-constraint respectively. 

We see that  the depth Z1 has a relationship to the surfaces 1 / s l ( r )  and 
1 / s t ( r  ). To express the surfaces in scene coordinates R, we substitute in the 
above equations Z ( r ) r  = R and obtain 

and 

( t l  • t 2 ) .  rt  + (~x • R ) .  (t2 • R)  = 0 

( ~  • r t ) .  ( t l  • rt)  - ( (~1  • ~ ) .  r t )r t  ~ = 0 

(~) 
(6) 

Thus Z1 is constrained by a second order surface through (5) and by a third 
order surface through (6). At some points it has to be inside the first surface and 
at some points it has to be outside the first surface. In addition, at some points 
it has to be inside the second surface and at some points it has to be outside 
the second surface. Figure 2 provides a pictorial description of the two surfaces 
constraining Z1. 

Fig. 2. Two rigid motions (tl, 031), (t2, w~) constrain the possible depth Za of the first 
surface by a second and a third order surface. The particular surfaces shown in the 
coordinate system of the imaging sphere, projected stereographica]ly, correspond to 
the motion configuration of Fig. 3. 

We can repeat the above derivation for the depth map Z2. Projecting (2) on 
vectors t l  x r and r x (Wl x r), we obtain 

sgn(gm) = sgn ( -  1 Zf~ + 9~) (7) 
1 1 

sgn(~-i gm) = s g n ( ~ g 1 2  + f~) (8) 

We define s2 = g21/ft, s~ = -f~/g12. Equations (7) and (8) provide con- 
straints on l/Z2, and we thus call them the s2-constraint and the s~-constraint. 
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2.3 Interpretat ion of  Surface Constraints 

At each point we have a sl-constraint  (depending on signs of f t ,  912, and g22), 
a st-constraint  (depending on signs of g21, f~,  and g22), and an additional con- 
straint 1/Z1 > O. If  the constraints cannot be satisfied, the two flows at this 
point cannot have the same direction and we say that  we have a contradictory 
point. 

The existence of a solution for l /Z1 depends also on the sign of Sl - st .  
Using (1), we can write sl - st  = - ( g l l  g22)/( f t  g21). So  w e  see  tha t  sgn(sl - s t )  
can change only at points where at least one of f i ,  gij is zero. 

At points where 922 = 0 we have the s l-constraint  1/Z1 = s l ,  the s t -  
constraint 1/Z1 -~ s ~1, and also sl = st;  thus at these points there is a unique 
value of Z1 satisfying the constraints. 

The analysis for Z2 yields the same results. In summary,  the curves f i ( r )  = 0 
and gij(r)  = 0 separate the sphere into a number of areas. Each of the areas is 
either contradictory (i.e., containing only contradictory points), or ambiguous 
(i.e., containing points where the two motion vectors can have the same direc- 
tion). Two different rigid motions can produce ambiguous directions of flow if 
the image contains only points from ambiguous areas. There are also two scene 
surfaces constraining depth Z1 and two surfaces constraining depth Z2. If  the 
depths do not satisfy the constraints, the two flows are not ambiguous. 

(a) (b) (c) 

Fig. 3. (a) Separation of the sphere through curves f / =  0 and gij = 0. 
(b), (c) Contradictory areas for both halves of the sphere. 

2.4 Contradictory Points  

Since we are interested in contradictory areas, we investigate only a general case, 
i.e. assume fi # 0 and gij # 0. Special cases are discussed separately. 

If 1/Z1 < sl < 0, or 1/Z1 < s t < 0, there is no solution for Z1. This happens 
under conditions C1 and C2: 

sgn(f t )  = sgn(g12) = -sgn(g22) (9) 
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sgn(f~)  ---- --sgn(g21) ---- sgn(g22) 

The similar conditions (73 and C4 for Z2 are 

sgn(f t )  = -sgn(g21) = sgn(g11) 

sgn(f~) = sgn(g12) = -sgn(g11) 

(lO) 

(11) 
(12) 

We call these four constraints (C1-C4) Contradictory Point conditions, or CP- 
conditions for short. We can show that  a point (where fi 7 s 0 and gij r 0) is 
contradictory if and only if at least one of the four conditions is satisfied. 

2.5 A n t i p o d a l  Pairs  o f  P o i n t s  

Let us now consider point r and its antipodal point - r  such that  f i ( r )  r 0 and 
gij(r) ~ O. Clearly, f i ( - r )  = - f i ( r ) ,  but gij(-r) = gii(r).  

Both point r and point - r  are ambiguous only if the CP-conditions are not 
satisfied. This occurs when 

sgn(gll(r))=sgn(g12(r))=sgn(g21(r)) =sgn(g22(r))  (13) 

Let the imaging surface be a whole sphere. The two motions are different, 
thus there always exist areas on the sphere where condition (13) is not satisfied. 
Since for any point the image contains also its antipodal point, clearly some 
areas in the image are contradictory. 

3 T h e  G e o m e t r y  o f  t h e  D e p t h - P o s i t i v i t y  C o n s t r a i n t  

In the previous section we have shown that  any two rigid motions can be dis- 
tinguished using directional flow if the image is a whole sphere. From now on, 
we assume that  the image is a half of the sphere. Let the image hemisphere be 
bounded by equator q and let no be a unit vector normal to the plane of q such 
that  point no lies in the image. 

3.1 H a l f  S p h e r e  I m a g e :  T h e  G e n e r a l  Case  

Let us assume that  (wl • 0)2)" ( t l  • t2) ~ 0. We show that  under this condition 
the two rigid motions cannot produce motion fields with the same direction 
everywhere in the image. 

We project point 0) 1 on the geodesic n connecting t l  and t2 to obtain point 
r l  = ( t l  • t2) • (0)1 • ( t l  • t2)). It  can be shown that  point ra is always 
contradictory and also one of the areas around r l  is contradictory, because (12) 
or (11) is satisfied. 

Just  as we projected 0)1 on geodesic n connecting t l  and t2 to obtain r l ,  we 
project 0)~ on n to obtain r2, and we project t l  and t2 on geodesic l, connecting 
0)1 and r to obtain r3 and r4 (see Fig. 3). Again, each of r i  (and one of its 
neighboring areas) is contradictory, since one of the CP-constraints must  be 
valid. 
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3.2 H a l f  S p h e r e  Image :  T h e  A m b i g u o u s  Case  

We now consider the case ( t l  x t2) �9 (wl x w2) = 0. However, we still assume 
t l  x t2 r 0 and wl x w2 r 0. Then contour ft  = 0 is perpendicular to f~ = 0, 
and r l  = r2 : r3 = r 4 .  

The motions can be ambiguous only if contours gij do not intersect the 
equator q (because of (13)). We obtain a condition 

l = [tjwin0] 2 - 4 (w~-n0) ( t j .  n0)(w~, t j )  < 0. (14) 

By considering M1 the possible sign combinations for terms f~ and g~j around 
r l ,  it can be verified that  the motions are contradictory unless 

sgn ( t l ,  no) = sgn(t2,  no) (15) 

sgn(r no) ---- sgn(~2" no) (16) 

sgn(((Wl • w2) • (el x t2))" no) ---- sgn(t l  �9 no) sgn(wl-  no) (17) 

In summary, two rigid motions can be ambiguous on one hemisphere if vector 
( t l  x t2) is perpendicular to vector (o~1 x w2) and all conditions (14), (15), (16), 
and (17) are satisfied. In addition, as shown in Sect. 2, the two surfaces in view 
are constrained by a second and a third order surface. Figure 4 gives an example 
of such a contradictory configuration. 

i 

0 

-i 

-2 -2 -k 0 • 

(a) (b) 

Fig. 4. Both halves of the sphere showing two rigid motions for which there do not 
exist contradictory areas in one hemisphere. (a) Hemisphere containing only ambiguous 
areas. (b) Contradictory areas on the other hemisphere. 

3.3 Special Cases  

For the special cases it can be shown that  if t l  • = 0 or wl xw2 = 0, ambiguity 
cannot occur. A detailed analysis is given in [2]. 
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4 A m b i g u i t y  of More  than Two  M o t i o n s  

In [2], the analysis has been extended to multiple 3-D motions. Considering 
three rigid motions, conditions similar to the CP-conditions have been developed. 
Checking their validity at the intersections of the various zero-motion contours 
and geodesics through the points ti  and wi, it has been shown that  three or 
more rigid motions (ti, ~oi) could give rise to the same directional flow only if all 
the ti lie on a geodesic n and all the "~i lie on a geodesic 1 perpendicular to n .  

Also, all the zero-motion contours gii  = 0 must  intersect in the same points. For 
an illustration see Fig. 5. 

(a) (b) 

Fig. 5. Two possible configurations of multiple ambiguous motions. (a) All the zero 
motion contours are tangent at point r12. (b) All the zero motion contours cross at 
one point p :fi r12. There can be an additional ambiguous motion with a degenerate 
zero-motion contour containing only point p. 

5 Conclus ions  

In this paper  we have analyzed the amount  of information inherent in the direc- 
tions of rigid flow fields. We have shown that  in almost all cases there is enough 
information to determine up to a multiplicative constant both the 3D-rotat ional  
and 3D-translational motion from a hemispherical image. Ambiguities can result 
only if the surfaces in view satisfy certain inequality and equality constraints. 
Furthermore,  for two 3D motions to be compatible the two translation vectors 
must lie on a geodesic perpendicular to the geodesic through the two rotat ion 
vectors. With  this analysis we have also shown that  visual motion analysis does 
not necessarily require the intermediate computat ion of optical flow or exact 
correspondence. Instead, many dynamic vision problems might be solved with 
the use of more qualitative (and thus robust) flow estimates if appropriate  global 
constraints are found. 
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