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Abs t rac t .  One of the most common assumptions for recovering object 
features in computer vision and rendering objects in computer graph- 
ics is that diffuse reflection from materials is Lambertian. This paper 
shows that there is significant deviation from Lambertian behavior in dif- 
fuse reflection from smooth surfaces not predicted by existing reflectance 
models, having an important bearing on any computer vision technique 
that may utilize reflectance models including shape-from-shading and 
binocular stereo. Contrary to prediction by Lambert's Law, diffuse re- 
flection from smooth surfaces is significantly viewpoint dependent, and 
there are prominent diffuse reflection maxima effects occurring on ob- 
jects when incident point source illumination is greater than 50 ~ relative 
to viewing including the range from 90 ~ to 180 ~ where the light source is 
behind the object with respect to viewing. Presented here is a diffuse re- 
flectance model, derived from first physical principles, utilizing results of 
radiative transfer theory for subsurface multiple scattering together with 
Fresnel attenuation and Snell refraction at a smooth air-dielectric surface 
boundary. A number of experimental results are presented demonstrating 
striking deviation from Larnbertian behavior predicted by the proposed 
diffuse reflectance model. 

1 I n t r o d u c t i o n  

A prevalent class of materials encountered both in common experience and in 
computer vision/robotics environments are inhomogeneous dielectrics which in- 
clude plastics, ceramics, and, rubber. In computer vision a widely used assump- 
t ion about diffuse reflection from materials is Lambert 's  law [13], namely the 
expression: 

1Lp cos ~dw 
7F 

where light is incident with radiance L, at incidence angle ~, and reflected 
through a small solid angle dv, and p is termed the diffuse albedo in the range 
[0, 1.0]. This reflectance model is typically instantiated into the implementation 
of a large number of algorithms such as shape-from-shading [9] and photometric- 
based binocular stereo [6], [19]. It is therefore important  for researchers in the 
computer vision community who utilize assumptions about  diffuse reflection to 
be aware of the conditions under which there is significant deviation from Lain- 
bert 's  law. 
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Almost all diffuse reflection from inhomogeneous dielectrics physically arises 
from subsurface multiple scattering of light caused by subsurface inhomogeneities 
in index of refraction. In this paper we model inhomogeneous dielectric material 
as a collection of scatterers contained in a uniform dielectric medium with in- 
dex of refraction different from that of air. An expression is derived for diffuse 
reflected radiance resulting from the process of incident light refracting into the 
dielectric medium across a smooth surface boundary, producing a subsurface 
diffuse intensity distribution from multiple internal scattering, and then refrac- 
tion of this subsurface diffuse intensity distribution back out into air. See Figure 
1. Also accounted for is the infinite progression of internal specular reflection 
at the air-dielectric boundary and sub-surface scattering. A common property 
of diffuse reflection from smooth inhomogeneous dielectric surfaces is that such 
reflection is azimuth independent with respect to viewing about the surface nor- 
mal, regardless of the fixed direction of incident light. We formally derive and 
empirically verify that for smooth inhomogeneous dielectric surfaces that exhibit 
such azimuth symmetric diffuse reflection, that 

eL x ( 1 -  F(r  n)) • cosr x ( 1 -  F ( s in - ' (  ), l /n) )dw (1) 

describes the reflected radiance into viewing angle, r (i.e., angle between viewing 
and the surface normal, also known as emitlance angle). The terms F(, ) refer to 
the Fresnel reflection coefficients [18], n, is the index of refraction of the dielectric 
medium, and, e, is the total diffuse albedo. We show that the total diffuse albedo, 
P, is directly related to both the single scattering albedo describing the proportion 
of energy reradiated upon each subsurface single scattering, and, the index of 
refraction n. An initial first order derivation of expression 1 was presented in 
[23], however without the accounting for higher order effects which is presented 
below. 
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Figure 1 Figure 2 

Particularly useful to object feature extraction in computer vision, our ex- 
pression 1 for diffuse reflection allows precise characterization of the conditions 
under which the Lambertian model breaks down for inhomogeneous dielectrics 
and where our more accurate model should be used. We show that Lambert's 
law is valid for smooth dielectrics to within 5% only as long as both angle of 
incidence, r and viewing angle, r are simultaneously less than 50 ~ This means 
that for applications in computer vision there are a large number of situations 
in which Lambert's law is significantly in error for smooth surfaces- near the 
occluding contour of objects under any illumination condition; for illuminations 
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incident at greater than 50 ~ relative to viewing there will be significant errors 
both near the occluding contour and over a large portion of object area bounded 
on one side by the shadow boundary with respect to illumination; for multiple 
images of a smooth dielectric object there will be significant viewpoint depen- 
dence of diffuse reflection for most object-viewpoint situations. Existing diffuse 
reflectance models for smooth surfaces do not account for these errors. In addi- 
tion to experimentally verifying the viewpoint dependence of diffuse reflection, 
we show how the diffuse reflection maximum occurring between an occluding 
contour and the shadow boundary for a smooth dielectric illuminated by a point 
light source is accurately predicted because of this viewpoint dependence. For 
illumination incident at 90 ~ and greater relative to viewing, a diffuse reflection 
maximum is not even predicted by existing models having dependence only on 
angle of incidence, when in fact this maximum is very prominent. Furthermore, 
diffuse reflection is empirically observed to be very small in the immediate vicin- 
ity of an occluding contour for all illumination conditions, an observation that 
is not supported by existing models, and yet accounted for by expression 1. 

A number of papers from the optics community have studied reflectance and 
transmission of light from diffuse scattering within dielectric media [12], [14], 
[16], [1], [5]. Some of these papers have presented theories for both reflectance 
and transmission for arbitrary optical thicknesses of scattering media, using col- 
limated or diffuse light sources. In relation to the optics literature, this paper 
studies the specific case of diffuse reflectance from a semi-infinite, plane-parallel, 
inhomogeneous dielectric, which is most relevant to diffuse reflection observed 
in computer vision (and computer graphics). We assume that individual scat- 
tering of light from inhomogeneities within the dielectric medium is isotropic. 
The assumption that the scatterers are isotropic stems from the observed physi- 
cal characteristic of common smooth dielectric surfaces that diffuse reflectance is 
independent of azimuth about the surface normal with respect to viewing. Chan- 
drasekhar [3], whose derivation we utilize for the subsurface scattering distribu- 
tion, shows that azimuth symmetric distributions arise from multiple scattering 
only when individual scatterers produce an isotropic distribution. 

It should be emphasized that non-Lambertian diffuse reflection discussed in 
this paper is distinct from the specular component arising purely from surface 
interface reflection, such as described in the works by Torrance and Sparrow 
[21], and, Beckmann and Spizzichino [2]. Only very recently has there been con- 
sideration of non-Lambertian diffuse reflection within the vision and graphics 
community. Healey derives an expression for diffuse reflection based on Reich- 
man's model for the semi-infinite case of opaque dielectrics [8], [7] applying this to 
geometry insensitive color segmentation. Tagare and deFigueiredo [20] propose 
as part of their multiple lobed reflectance model for machine vision a functional 
approximation to the Chandrasekhar diffuse reflection Law [3] for application to 
photometric stereo. While we also use the Chandrasekhar diffuse reflection law 
for diffuse subsurface scattering, it is not nearly accurate for materials without 
consideration of various dielectric-air boundary effects. Oren and Nayar [15] have 
proposed a diffuse reflection model for very rough dielectric surfaces assuming a 
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statistical distribution of Lambertian reflecting facets along with masking, shad- 
owing, and, interefleetion. The mechanism of using roughness elements that are 
assumed to be Lambertian however implies that in the limit as surface rough- 
hess gets smaller and smaller, that smooth surfaces therefore have Lambertian 
behavior- a phenomenon shown to be largely not true. In the Conclusion section, 
suggestions are made on how to possibly combine these two models to produce 
a unified model that accurately predicts diffuse reflection throughout the entire 
range of very rough to smooth surfaces. 

Apart from analysis of reflected intensity distributions for diffuse reflection, 
Sharer [17] proposed a dichromatic color reflectance model for diffuse and spec- 
ular components, and Wolff [22] proposed a polarization reflectance model in- 
volving the diffuse reflection component for inhomogeneous dielectrics. 

2 The Physics Of Diffuse Reflection From Multiple 
Scattering 
The analysis of diffuse reflection in this paper begins with the theory of radia- 
tive transfer developed by Chandrasekhar [3] for multiple scattering of incident 
light upon stellar and planetary atmospheres. The important problem of diffuse 
reflection and transmission from plane parallel atmospheres in astrophysics has 
a number of similarities with diffuse reflection from inhomogeneous dielectric 
materials. Incident light strikes gaseous molecules within an atmosphere where- 
upon some of the light is absorbed, and some of the light is scattered with an 
assumed intensity distribution respective to each individual molecule. Similarly, 
particles forming discontinuities in refractive index within a dielectric absorb 
and scatter light that has penetrated the surface boundary, and this process can 
be quantified using radiative transfer theory. 

The fundamentals of single scattering theory were established by Lord Rayleigh 
for particles smaller than the wavelength of incident light and by Mie for spheri- 
cal particles of arbitrary size [10], [11]. It is commonly assumed that the scattered 
light produced by a single small particle has an axial symmetric scattered en- 
ergy distribution about the incident direction of light. The angular distribution 
of the scattered radiation is described by a phase function P(cosO) where 0 is 
the scattering angle of deflection away from the direction of the incident light. 
See Figure 2. The function P(cosO)/47r represents the proportion of incident 
light energy flux that is scattered into a given direction per unit solid angle. The 
proportion of total light energy flux that is reradiated (i.e., scattered) is given 
by: 

f~ e(cos0) ~ = p < 1 (2 / 
ni~ sphere 4r  - ' 

and p is referred to as the single scattering albedo. In nonconservative cases when 
p < 1 some energy is absorbed by the particle. The single scattering albedo is 
commonly wavelength dependent which accounts for the colored appearance of 
many dielectrics when illuminated by white light. 

Materials for which P(cos/9) is independent of/9 allow a tractable physical 
analysis. Chandrasekhar's theory [3] would imply that for these materials the 
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diffuse reflection distribution is symmetric about the surface's azimuth. Such ma- 
terials include many Common materials like plastics, ceramics, rubber, opaque 
glasses and smooth glossy paints. The details of Chandrasekhar's diffuse reflec- 
tion law are explained in [24]. 

3 Diffuse  Ref lec t ion  F r o m  S m o o t h  Die lec t r i cs  
Chandrasekhar's theory can be adapted so as to account for diffuse reflection 
from smooth inhomogeneous dielectric materials made up of particle inhomo- 
geneities embedded in a medium with uniform index of refraction different from 
that of air. Once adapted the theory permits useful expressions that quantify 
the process of diffuse reflection from such materials. These expressions are sum- 
marized in this section, with the full technical derivations and details described 
in [24]. 

The first-order expression for diffuse reflection [23] quantifies reflection caused 
by light that penetrates into the material surface, scatters amongst sub-surface 
particle inhomogeneities, and then refraction back out into air. See Figure 1. 
This expression is given by: 

~IL x [1 - r ( r  n)] x cosr x [1 - f(-~, l ln ) ]dw,  

for light incident at radiance L through solid angle do;. The functions, F(, ), are 
the Fresnel reflection coefficients [18] as functions of specular angle (external 
angle of incidence r for the first F(, ), and internal angle of incidence r for 
the second F(, )), and, index of refraction (n for light incident on the dielectric 
interface from air external to the dielectric for the first F(, ), and 1/n for light 
incident on the dielectric interface internal to the dielectric for the second F(, )). 
The internal angle r is related to the angle of emittance, r using Shell's Law, 

= sin-l(sin~) The term 
x n / "  

PHp(-fiinc)Hp('firel) ~ sin2r ~ sin2r 
#1 = 4rn2 -~ine +-Pre! , P'ine = 1 - -  Pre/ = 1 n2 ~ n 2 

using the Chandrasekhar H-function is termed the first-order diffuse albedo as 
it represents the scaling of diffuse reflection magnitude. An Nth order approxi- 
mation to the Chandrasekhar H-function [3] can be expressed; 

N 
1 I-Ii=l(p + pi) 

np( ) - 
I L ( 1  + ' 

defined in terms of the positive zeros, Pi, of the even Legendre polynomial of 
order 2N, and the positive roots, ~a, of the associated characteristic equation; 

N 
_ai_p 

1 = ~--~ 1 _ _ ~  . 
j = l  

Upon refraction from inside the dielectric into air at the dielectric internee, 
there can be significant specular reflection back into the dielectric. This produces 
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additional sub-surface scattering resulting in a second refraction back out into 
air, in turn resulting in specular reflection back into the dielectric, and so on. 
The contribution of Nth order diffuse reflection resulting from light that has 
been internally specularly reflected at the dielectric interface N - 1 times and 
subsurface diffusely scattered N times (the first subsurface diffuse scattering 
before the first internal reflection) is given by: 

where 

with 

@IL x [ 1 -  F( r  n)] x cosr x K N-1 • [ 1 -  F(r  1/n)]dw, 

K= [./2 i F(r I /n)  Ca(cosr 1 sin2 r . . . .  ' ' "  -n~ )zlr smr ar , 
J O  

Cp(x,y) = P L X yHp 
4~" x +  (x)Hp(y),  

The total amount of diffuse reflection is obtained by summing all Nth  order 
contributions resulting in the expression: 

#L x [1 - F(r  n)] x cos r x [1 - F(r 1/n)]do) (3) 

Table 
ASSUMPTION 

Isotropic Single Scattering 

Uniform Distribution 
of Scattering Particles 

Smooth Surface 
Unpolarized Incident Light 

Pl is constant 

K is constant 

below: 

COMMENTS 
Azimuth independent diffuse reflection 
distribution 
Plane parallel uniformity of particles 
embedded in dielectric medium of 
uniform index of refraction. 
Able to apply Chandrasekhar theory. 
Able to use Fresnel Coefficients, F(,  ) 
Can be generalized to any incident 
polarization state using combination 
of FII and F• terms 
Very nearly true for all geometries to 
within 3% 
Very nearly true due to near isotropy 
of Cp(, ) for significant single scattering 
albedo, p 

TABLE I 

co 

K~-I t~ = ~_~ t~l x - -  1 - K '  ( 4 )  
i - -1  

and ~ is termed the total diffuse aibedo. What is important to note is that the 
total diffuse albedo can be expressed purely in terms of physical parameters, of 
the dielectric. 

The assumptions made in the derivation of expression 3 are summarized in 
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4 Experimental  Results  

Figure 3 shows an experimental goniometer apparatus that we built to measure 
diffuse reflected radiance from an optically smooth piece of white magnesium 
oxide ceramic, for different combinations of angles of incidence and emittance in 
the plane horizontal to the floor. 

Figures 3 and 4 show experimental results for diffuse reflection from an op- 
tically smooth piece of white magnesium oxide ceramic. The magnesium oxide 
ceramic was measured with a stylus profilometer to have a variation in height 
profile no greater than half the wavelength of green light. The measurements 
were taken with a Panasonic CCD linear camera mounted at the end of a go- 
niometer arm with the sample mounted at the center. Using a Brewster angle 
technique [4] the index of refraction of the ceramic was determined to be n = 1.7. 
Our diffuse reflectance model enables the empirical measurement of the single 
scattering albedo, p, by empirically determining the ratio of the strengths of 
the specular and diffuse components of reflection at known angles of incidence 
and emittance. The ratio of the specular to the diffuse reflection component 
was measured very near normal incidence and emittance and compared with the 
ratio: 

F(O,n) 
$(I - F(0, n))(1 - F(0, I/n))dw' 

where the total diffuse albedo ~ is given by expression 4, and dw is the solid angle 
in steradians subtended by the illuminating light source. The value of ~ can be 
derived from this, and in turn, p can be computed by observing the graphed 
relationship between p and ~ in Figure 5. The empirically determined specular 
to diffuse ratio is accounted for by a single scattering albedo, p, just above 0.95 
which is very energy conserving. 

Optically Smooth White Ceramic 
Emittaace ~ ffi 0* 

/ /s~.  P,~-d Mud-, 
~/ Da*bed- Lambe:~i~ Model 

Optically Smooth White Cera~ic 
Aa~_~le of lacldcaceffi 0 e 

Im~,~ce, , ~ ~ ~ ~  I h~g~ c 

Duhed- Lambertt~ Model 

2'0 2'o ~'0 *.0 s'o 6'~ ~.0 .'0 ~o -!o -io" ~'o ~-'o-~e-~o-~o-io-~o o re 
Angle of Incideace Angle of E:mitt~ace 

Figure  3 F igure  4 

In Figures 3 and 4 dashed curves represent predicted Lambertian diffuse 
reflection, solid curves represent the diffuse reflection law of expression 3 with 
single scattering albedo p = 0.95 and index of refraction n = 1.7 (it makes little 
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difference for 1.0 ~_ p ~ 0.9, 1.4 > n ~_ 2.0 with respect to the shape of the 
diffuse reflection curve). The proposed diffuse reflection law, expression 3, never 
d e v i a t e s  m o r e  t h a n  3% from the empirical data while there exist large deviations 
from Lambertian behavior. The results show that the Lambertian model can be 
assumed to within about 5% accuracy if angle of incidence and angle of emittance 
are simultaneously no larger t h a n  50  ~ . Outside of this constraint range large 
d e v i a t i o n s  s tar t  to  occur .  

~eo=e t i~ .~ l  D i f f u s e  ~ Carem 
o.4, 

i 
O.3S 

i 0.3 
O.25 

0.Z Dielect~ia Medlml n=l.7 

a o . l s  

0"05 I 

o o~6 o'.7 o:,  o'., 

Single Scattering A1bedo 

FiEure 5: Graph of ~ versus p usin E expression (4). 

Figure 6 shows an ordinary scene where the Lambertian model strikingly 
breaks down altogether and yet is explained with high accuracy by the proposed 
diffuse reflection model in this paper. A ceramic coffee cup of cylindrical body 
shape is illuminated from the left side by an approximate point source. Starting 
from the left occluding contour going right the angle of incidence starts at 0 ~ and 
increases. The Lambertian model predicts that image intensities should decrease 
going to the right. The image intensities in fact increase to a maximum intensity 
at about 65 ~ surface orientation and then begin to slowly decrease. The reason is 
because, r = 90 ~ - r that is the emittance angle starts at 90 ~ at the occluding 
contour and decreases going right. Looking at the graph in Figure 6a diffuse 
reflected radiance increases sharply as angle of emittance decreases from 90 ~ At 
about surface orientation 65 ~ (r = 25 ~ r = 65 ~ the decrease of diffuse reflected 
radiance with respect to increasing angle of incidence starts to overtake the in- 
crease of diffuse reflected radiance with respect to decreasing angle of emittance, 
and a maximum occurs. (Note the graph in Figure 6a is only for the diffuse 
component and does not include measurement of the specular component which 
occurs at relative orientation 45 ~ in the picture of the cup.) According to Figure 
6a the qualitative shape of the true diffuse reflected radiance curve (solid) is en- 
tirely different (e.g., its not even monotonic) from that for the Lambertian model 
(dashed). The deviation from the Lambertian model is also very high for frontal 
surface orientations where the angle of incidence is large. This non-Lambertian 
behavior of diffuse reflection occurs for a large range of lighting configurations 
as can be seen in Figure 6c with light source incident at 60 ~ relative to viewing 
(the diffuse reflection maximum occurs at about -50 ~ as predicted by the pro- 
posed model instead of -60 ~ as predicted by the Lambertian model, and note 



48 

the extreme drop in grey values going towards the occluding contour), and in 
Figure 6d with light source incident at 120 ~ relative to viewing. For light incident 
at 90 ~ or greater, Lambert's model as well as other existing diffuse reflectance 
models predict a monotonic diffuse reflection distribution which is empirically 
significantly incorrect. 
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(d) 

Note in Figure 6 that the leftmost portion of the cup visually looks relatively 
bright. It is however hard to tell from the photograph that instead of the bright~ 
ness values at the occluding contour going crisply from the brightest value down 
to zero like a step-edge as predicted by Lambert's Law, that in fact the occluding 
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contour edge is "blurred" over a region the size of about 10% of the radius of 
the cup. This is precisely predicted by our diffuse reflectance model. Figure 6b 
shows  the brightness profile predicted by our diffuse reflection model graphed 
spatially across a cylinder in pixel units where the center of the cylinder is at 0 
on the horizontal axis and the occluding contour is at -400 on the horizontal 
axis, The experimental data in Figure 6b is consistent with this profile. (Note 
that Lambert's law predicts a linear diffuse reflection profile across an image in 
this case.) Due to foreshortening, the maximum brightness value occurring at 
65 ~ relative surface orientation is about 10% of the radius of the cylinder away 
from the occluding contour. Between the point at which the brightness maxi- 
mum occurs and the occluding contour, the brightness decreases to zero. While 
the brightness at the occluding contour is zero, due to the steepness of the profile 
shown in Figure 6b, the immediate vicinity of the occluding contour still has a 
relatively bright visual appearance. This is however instead of a step-edge be- 
tween the occluding contour and the background. Thus occluding contour edge 
profiles for oblique lighting have the appearance of being blurred, and signifi- 
cantly displaced toward the interior of the object. With the same camera used 
to measure the profile in Figure 6b we have observed empirical step-edge profiles 
of a bright strip against a dark background that are localized to within about 
2 or 3 pixels. Hence this effect at occluding contours from diffuse reflection for 
oblique lighting can be distinguished from typical lens blurring of step-edges as 
long as 10% of the radius of curvature near the occluding contour in pixel units 
is significantly larger than 2 or 3 pixels. Precise quantitative knowledge from 
our model of the brightness profile of occluding contour edges may aid in better 
determination of where the occluding contour is located in an image. The larger 
the cylinder radius (i.e., in general the larger the radius of curvature at the oc- 
cluding contour) the more blurred and displaced will be the occluding contour 
edge defined by the profile of brightness values. 

Figure 7a shows a real image of a white billiard ball illuminated by two point 
light sources orthogonal to viewing, one from the left side and one from the right 
side. Figure 7b shows a computer graphics rendering of a sphere illuminated 
by the same configuration of 2 point light sources assuming Lambert's diffuse 
reflectance law, while Figure 7c shows the same computer graphics rendering of 
a sphere using the diffuse reflectance law proposed in this paper. While both 
shadow boundaries with respect to the left and right light sources coincide along 
the vertically oriented great circle at the front of the sphere, there appears to 
be a "shadow band" of darker (i.e., smaller) intensity values about this shadow 
boundary due to the high fall off of diffuse reflectance at high angles of incidence 
near 90 ~ . Observe that realistically this "shadow band" is in fact significantly 
wider in Figure 7a than predicted by the Lambert Law in Figure 7b, but more 
accurately predicted by the proposed diffuse reflectance law in Figure 7c. 

Figures 8a, 8b, and 8c show grey level representations of isophote curves (i.e., 
image curves with equal intensity) corresponding respectively to Figures 7a, 7b, 
7c. Lambert's Law predicts for this configuration of light sources illuminating 
a sphere that equal reflected radiance occurs for points forming concentric cir- 
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Figure 7 (Starting at top and going counterclockwise, 7a, 7b, 7c) 

Figure 8 (Starting at top and going counterclockwise, 8a, 8b, 8c) 
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cles on the sphere about the left-most and right-most occluding contour points. 
These concentric circles of equal reflected radiance orthographically project onto 
straight isophote lines as depicted in Figure 8b, with maximum diffuse reflectance 
occurring at the left-most and right-most occluding contour points where the an- 
gle of incidence is zero. Figure 8a which is an actual depiction of the isophotes 
of Figure 7a shows that in fact lines of equal image intensity severely curve near 
the occluding contour of the sphere. Maximum diffuse reflection occurs at the 
center of the closed elliptical isophotes near the left-most and right-most oc- 
cluding contours while diffuse reflection at the occluding contours is nearly zero, 
illustrating a 2-dimensional version of the effect depicted in Figure 6a. Figure 
8c shows the isophotes rendered using the diffuse reflectance model proposed 
in this paper which are remarkably similar to the actual isophotes in Figure 8a 
(except for the isophotes perturbed by the specularities). Comparing Figures 8a, 
8b, 8c shows very clearly how our diffuse reflectance model accurately predicts 
reflectance features that are significantly deviant from Lambertian behavior. 

5 C o n c l u s i o n  
The primary result of this paper is a simple closed form expression, (equation 3 
and equation 4), derived from first physical principles which accurately char- 
acterizes diffuse reflection from smooth dielectric surfaces exhibiting azimuth 
independent diffuse reflection about the surface normal with respect to view- 
ing. In computer vision and computer graphics the Lambert diffuse reflection 
law has been almost always assumed for diffuse reflecting dielectric surfaces. 
Our diffuse reflection model shows that Lambert's Law is a good approximation 
across illuminated smooth dielectric objects when the angle of incidence and 
angle of emittance are simultaneously less than 50 ~ at each object point- and 
that there are significant deviations from Lambertian behavior for illumination- 
object-viewer geometries outside of this range. For oblique lighting of objects 
some strikingly non-Lambertian effects have been demonstrated that occur for 
common smooth dielectric surfaces, that are very accurately explained by this 
new diffuse reflectance model. An improved algorithm for the stereo matching of 
intensities is described in [26] accounting for this behavior. Our proposed diffuse 
reflection model has the added feature that it explains the physical origin of 
diffuse albedo, e, (equation 4), which is typically an ad hoc scaling coefficient. 
This can be used to explain the relative strengths of the specular and diffuse 
reflection components from smooth inhomogeneous dielectric surfaces purely in 
terms of the physical parameters of the surface itself as shown in [25]. 

The proposed model for diffuse reflectance from smooth surfaces gives sig- 
nificant insight into generalizing a diffuse reflection model for different levels 
of roughness. In particular, modeling the local geometry of rough surfaces as 
a collection of smooth microfacets each having the diffuse reflectance property 
proposed in this paper (in lieu of the Lambertian model used in [15]) makes 
the limiting case of diffuse reflection as surface roughness goes towards zero ac- 
curate, while simultaneously having the large potential of accurately predicting 
diffuse reflection from intermediate ranges of surface roughness. If closed form 
expressions for diffuse reflection can be obtained from such a model, this would 
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be applicable to the entire range of rough to smooth surfaces and would be a 
further significant advancement. 
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