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Abst rac t .  A fast color-based algorithm for recognizing colorful objects 
and colored textures is presented. Objects and textures are represented 
by jus t  six numbers .  Let r, g and b denote the 3 color bands of the 
image of an object (stretched out as vectors) then the color angular 
index comprises the 3 inter-band angles (one per pair of image vectors). 
The color edge angular index is calculated from the image's color edge 
map (the Laplacian of the color bands) in a similar way. These angles 
capture important low-order statistical information about the color and 
edge distributions and invariant to the spectral power distribution of 
the scene illuminant. The 6 illumination-invariant angles provide the 
basis for angular indexing into a database of objects or textures and 
has been tested on both Swain's database of color objects which were 
all taken under the same illuminant and Healey and Wang's database 
of color textures which were taken under several different illuminants. 
Color angular indexing yields excellent recognition rates for both data 
sets. 

1 I n t r o d u c t i o n  

Various authors[13, 12, 10] (beginning with Swain and Ballard[13]) have found 
that  the color distributions of multi-colored objects provide a good basis for 
object recognition. A color distribution, in the discrete case, is simply a three- 
dimensional histogram of the pixel values using one dimension for each color 
channel. For recognition, the color histogram of a test image is matched in some 
way (the matching strategy distinguishes the methods) against model histograms 
stored in the database. The closest model defines the identity of the image. Swain 
has shown that  excellent recognition is possible so long as objects are always 
presented in the same pose and the illumination color is held fixed. Varying 
either the pose or illumination color can cause the color distribution to shift so 
as to prevent recognition. 

Our goal is to develop a color-distribution-based descriptor that  is concise, ex- 
pressive and illuminant invariant. Swain and Ballard's histogram descriptors are 
expressive--they provide good recognition rates so long as the illuminant color 
is held fixed. However, they are not concise since each histogram is represented 
by the counts in 4096 bins. A descriptor requiring only a few parameters should 
speed up indexing performance and be useful in other more computationally 
intensive recognition algorithms (e.g. Murase and Nayar's [9] manifold method). 
Of course, we would prefer to decrease the match time without decreasing the 
match success. 
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Healey and Slater[4] have proposed a representation based on a small set of 
moments of color histograms[14]. They show that when illumination change is 
well described by a linear model (i.e., image colors change by a linear transform 
when the illumination changes) certain high-order distribution moments are illu- 
minant invariant. Unfortunately, in the presence of noise (even in small amounts) 
this high-order information is not very stable and as such their representation 
may not be very expressive. 

Requiring a full 3-by-3 linear model of illuminant change limits the kind of 
illuminant-invariant information that can be extracted from a color distribu- 
tion. However, the linear model is in fact over general since only a small subset 
of the possible linear transforms correspond to physically plausible illuminant 
changes[2]. In particular if, as is usually the case, the sensitivities of our camera 
are relatively narrow-band then the images of the same scene viewed under two 
different illuminants are related (without error) by 3 simple scale factors. Each 
color pixel value (ri, gi, bi) in the first color image becomes (c~ri,/3gi, 7bl) in the 
second (where ri, gi and bi denote the ith pixel in the red, green and blue im- 
age bands respectively and a, ~ and ~/are scalars). This means that the images 
differing only in terms of the scene illuminant are always related by a simple 
3-parameter diagonal matrix. 

Under a diagonal model of illuminant change, the 3 angles between the differ- 
ent bands of a color image provide a simple illuminant independent invariant. To 
see this think of each image band as a vector in a high-dimensional space. When 
the illumination changes each vector becomes longer or shorter but its orient- 
ation remains unchanged. As well as being invariant to illumination change we 
show that the color angles encode important low-order statistical information. 

Of course the camera sensors are not necessarily narrow-band and as such 
color angles might not be stable across a change in the illuminant. Nonetheless, 
good invariance can be attained if the angles are calculated with respect to a 
special sharpened color image. The sharpened color image, which exists for all 
sensor sets[2, 1], is created by taking linear combinations of the original color 
bands. 

Angular indexing using just the 3 color angles suffice if the object database is 
small but performance breaks down for larger databases. To bolster recognition 
we develop a second angle invariant called the color-edge angle. Each band of 
the input color image is filtered by a Laplacian of Gaussian mask to generate a 
color edge map. The inter-band angles calculated with respect to this edge map 
are once again illuminant invariant and encode important information about the 
color edge distribution which when combined with the original 3 color angles 
leads to excellent recognition rates. Swain and Ballard demonstrated the rich- 
ness of the color histogram representation for objects; and indexing on the 4096 
histogram bins, they achieved almost flawless recognition for a database of 66 
objects. Using color angular indexing, we attain very similar recognition rates 
indexing on only 6 angles. 

As a second comparison, we evaluated recognition using Healey and Wang's 
color texture data set. It consists of 10 colored textures viewed under 4 illumin- 
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ants, but we added images of the same textures viewed under 5 more orientations 
giving a grand total of 240 images. Indexing with the 6 combined angles delivers 
almost perfect recognition for the texture dataset. 

2 B a c k g r o u n d  

2.1 Color Image Formation 

The light reflected from a surface depends on the spectral properties of the sur- 
face reflectance and of the illumination incident on the surface. In the case of 
Lambertian surfaces, this light is simply the product of the spectral power distri- 
bution of the light source with the percent spectral reflectance of the surface. For 
the theoretical development, we henceforth assume that  most surfaces are Lam- 
bertian. Illumination, surface reflection and sensor function, combine together 
in forming a sensor response: 

= / w  S~' (A)E~' (A)nk P~ (A)dA (1) 

where A is the wavelength, Rk is the response function of the kth sensor class 
(r, g or b), E *' is the incident illumination and S ~' is the surface reflectance 
function at location x ~ on the surface which is projected onto location x on the 
sensor array. We assume the illumination does not vary spectrally over the scene, 
so the index x ~ from E()  0 can be dropped. 

In the sections which follow we denote an image by I. The content of the j t h  
color pixel in I is denoted (r~, g~, b~). we will assume that  there are M pixels in 
an image. 

2.2 Color Histograms 

Let H(I1) and H(12) be color histograms of the images 11 and 12. Hi,j,k(I1) is 
an integer recording the number of colors in /1  which fall in the ijkth bin. The 
mapping of color to bin is usually not 1-to-1 but rather color space is split into 
discrete regions. For example, Swain and Ballard[13] split each color channel into 
16 intervals giving 16 x 16 x 16 = 4096 bins in each histogram. 

To compare histograms H(I1) and H(I2) a similarity measure is computed. 
Swain calculates similarity of a pair of histograms as their common intersection: 

N N N 

Z Z Z min(Hi,j,k(I1 ), His,k(I2)) (2) 
i = 1  3"----1 k----1 

where N is the number of bins in each color dimension. While other methods of 
comparing histograms have been suggested, e.g. [10], they are all similar in the 
sense that  they consist of many bin-wise operations. There are several problems 
with similarity calculated in this way. First, each distribution is represented by 
a feature vector of N 3 dimensions (the number of bins in a histogram), and this 
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is quite large. The larger the feature space the slower the match. Secondly, it is 
unlikely that  all the information in a distribution will be useful in calculating 
a match. Lastly the color histogram depends on the color of the light. Moving 
from red to blue illumination causes the color distributions to shift and results 
in poor match success[3]. 

2.3 S t a t i s t i c a l  M o m e n t s  

If color distributions are described well by a small number of statistical features 
then comparing these features should suffice for determining distribution simil- 
arity. Suppose we must characterize the color distribution in an image I by one 
single color. A good candidate (and the obvious one) is the mean image color, 

M 
1 (3) 

j : l  

where M is the number of pixels in the image. The variance or spread of colors 
about the mean also captures a lot of information about the color distribution. 
The variance in the red channel a~ 2 (I) is defined as 

1 M 
cry(I) = --~ Z ( r ~  - pr(I ) )  2 (4) 

i=1  

The covariance arag(I)  between the red and green color channels is defined as 

M 

1 ~-'~(r[ - #~(I))(g [ - #a(I))  (5) araa(I  ) : - ~  
/=1  

Similarly, cr~ (I), c% 2 (I), a~cxb (I) and agcrb (I) can be defined. These variances and 
covariances are usually grouped together into a covariance matrix 5:(1): 

a2(I)  a, ag(I  ) a , a b ( I ) ]  
27(I) = arag(I)  ~r2(I) agob(I)| (6a) 

 rob(I)  g b(I) 3 
Suppose we represent an image I as an M • 3 matrix, where the ith row contains 
the ith rgb triplet. If the mean image color is the zero-vector, p ( I )  = (0, 0, 0) T, 
then Equation (6a) can be rewritten in matr ix notation: 

,U(I) = I T I  (6b) 

where T denotes matrix transpose. The covariance relationship given in Equa- 
tion (6b) will prove very useful in subsequent discussion. 

The mean color _~(I) is called the first-order moment of the distribution of 
image colors and the covariance matr ix ~U(I) is composed of the second or- 
der moments. Third and higher order moments can be calculated in an ana- 
logous manner. For example the third order moment of the r color channel is 
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s (I) = , I 2_~=z (r~ - #~(i))3. This moment captures the skew of the red re- 
sponse distribution and is measure of the degree of symmetry about the mean 
red response. The green and blue skews sg(I) and Sb(I) are similarly defined. In 
general the n th  order moments of a color distribution is defined as: 

M 
1 I _ ~ ( r l  - #~(I))~(g] - ~tg(I))~(b / - ftb(I)) "/ (7) 

where ~, f~, ~/> 0 and ~ +/3 + 7 = n. 
Roughly speaking low-order moments give a coarse description of the dis- 

tribution. More and more distribution details are unveiled as one progresses 
through the higher moments[Il l .  Two observations stem from this. First, for 
color-based object recognition low-order moments capture the most useful in- 
formation. For example, low-order moments are less effected by confounding 
processes such as image noise or highlights. 

Stricker and Orengo[12], have presented experimental evidence that  color 
distributions can be represented by low-order moments. They show that  the 
features tz(I), a2(I), a2(I), a2(I), s~(I), sg(I) and Sb(I) provide an effective 
index into a large image database. Unfortunately these low-order moments of 
color distributions are suitable for recognition only if objects are always viewed 
under the same colored light, A white piece of paper viewed under reddish and 
bluish lights have predominantly red and blue color distributions respectively. 
What  we really need is descriptors of the low-order information that  do not 
depend on the illuminant in this way. 

2.4 F in i t e  D i m e n s i o n a l  M o d e l s  

Both illuminant spectral power distribution functions and surface spectral re- 
flectance functions are described well by finite-dimensional models of low dimen- 
sion. A surface reflectance vector S(A) can be approximated as: 

ds 

(8) 
i : l  

where S~ (~) is a basis function and a_ is a ds-component column vector of weights. 
Similarly each illuminant can be written as: 

dE 

E(A) ~, Z E j ( A ) Q  (9) 
j----1 

where Ej ()~) is a basis function and e is a dE dimensional vector of weights. 
Given a finite-dimensional approximations to surface reflectance and illu- 

mination, the color response eqn. (1) can be rewritten as a matr ix equation. 
A Lighting Matrix A(c)[7] maps reflectances, defined by the a_ vector, onto a 
corresponding response vector: 

p = A(e)_a (10) 
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where A(e)ij = f~ Ri(A)E(A)Sj(,~)d,~. The lighting matrix depends on the illu- 
minant weighting vector _E to specify E(1)  via eqn. (9). If surface reflectances are 
3-dimensional then every A(~) is a 3 • 3 matrix. It follows that  response triples 
obtained under one light can be mapped to those of another by a 3 • 3 matrix. 

p_l = A(J)a_,  p2 = A(_e2)a =~ p_2 = A(_~2)[A(tl)]-lpl (11) 

Studies[6, 8] have shown that  a 3-dimensional model is quite reasonable. 
Thus it follows that  the color distributions of the same surfaces viewed under 
two illuminants are linearly related to a good approximation. 

2.5 I l l u m i n a n t  I n v a r i a n t  M o m e n t s  

Taubin and Cooper [14] have recently developed efficient algorithms for the com- 
putation of vectors of affine moment (or algebraic) invariants of functions. These 
vectors are invariant to affine transformations of the function which, as Healey 
and Slater observed, may make them a suitable illuminant-invariant representa- 
tion for color distributions. 

There are two steps in calculating Taubin and Cooper's invariants. First 
the distribution is manipulated such that  its statistics are standardized in some 
sense. Second, features which are independent of the position of the standardized 
distribution are extracted. 

Standardizing the distribution's statistics is best understood by example. Let 
/1 and /2 be M x 3 matrices denoting the color images of some scene viewed 
under a pair of illuminants (the M rgb triplets in each image are placed in the 
rows of the matrices) where first the mean image color has been subtracted in 
both cases. Thus, p(I1) -- (0, 0, 0) T and ~__(I2) ---- (0, 0, 0) T. So long as reflectances 
are approximately 3-dimensional the two images are related by a 3 x 3 matrix 
M 

I2 ~ IIM (12) 

/1 and /2 are standardized by transforming them by the matrices O1 and O2 
such that  their column spaces are orthonormal, 

olz I o  = o  D2o2 = z (13) 

Since 1101 and 1202 are orthonormal they differ only by a rotation and represent 
the same color distributions with respect to different coordinate axes. Thus the 
basic shape of the distributions is the same. 

The second step in Taubin and Cooper's method is to extract  features from 
the standardized distributions I101 and I202 which are independent of the 
coordinate frame. The precise details of their method do not concern us- - i t  
suffices that  the invariants exist. However, we must ask whether these invariants 
are expressive; that  is, do they convey useful information? 

To explore this question let us examine the matrices in equation (13) more 
closely. From Equation (6b) it follows that: 
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F , ( I 1 0 1 ) -  o T I T I I O ~  --  Z (14) 
M M 

where Z denotes the identity matrix. That is the covariance matrix of all stand- 
ardized images is equal to the scaled identity matrix. This is always the ease 
regardless of the starting image statistics. Thus all the low-order statistics-- 
those which convey the most useful information about the distribution--have 
been lost through the need to discount the effect of the illuminant. It follows 
that only high order moments can be extracted from I101 and I202. As dis- 
cussed above, we expect that these will not suffice for reliable recognition and 
this prediction is borne out by experiment in section 4. 

3 D i s t r i b u t i o n s  a n g l e s  

While finite-dimensional models are a useful tool for investigating colors under 
a changing illuminant they do not tell the whole story. Indeed it turns out that 
a restricted subset of the possible linear transforms correspond to plausible illu- 
minant changes. This observation allows us to extract useful illuminant-invariant 
statistics from color distributions. 

Suppose that the sensor sensitivities of the color camera are delta functions, 
Rk()~) ---- (i(~-)~k). In this case, the camera responses p~ and qk generated by 
an arbitrary surface Sj (~) viewed under illuminants E1 (~) and E2 ()~) are: 

Pk = Sj(Ak)El(Ak)  , qk = Sj()~k)E2()~k) (15) 

It is immediate that 

E2 (Ak)_ (16) 
qk = El()~k)Pk 

Since (16) no longer involves the reflectance function Sj()~) the camera re- 
E2(),k) sponses induced by any surface are related by the same scaling factor EI(~)" 

Combining the scalings for each sensor class into a diagonal matrix, (16) can be 
expressed as: 

E2(Ak) 
q = Dp (Dkk -- EI(Ak) k =  1,2,3) (17) 

Thus for narrow-band sensors illuminant change is exactly modelled by a 
diagonal matrix and the full generality of a 3 x 3 linear model is not required. 

Let us consider the problem of extracting invariant features from a color 
distribution under a diagonal model of illuminant change. We follow the basic 
approach of Taubin and Cooper in that we first standardize the statistics of the 
color distribution and then extract the statistical features. Under the diagonal 
model Equation (17), the relationship between a pair of images can be rewritten 
as:  
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12 = I1D (18) 

where D is a diagonal matrix. By (18) the corresponding columns of I1 a n d / 2  
are vectors in the same direction but  of different length so the distributions can 
be standardized by normalizing the lengths of the columns of I1 and /2. We 
define a function N 0 for carrying out the column normalization: 

N(I1) = IIDN (19) 

where the ith diagonal entry of the diagonal matrix ~Y is equal to the reciporical 
of the length of the ith column of /1 .  

1 
[~)N]ii-  I[I1]~1 (20) 

[]~ and []ij denote the i th column and ijth element of a matrix respectively. The 
normalized distributions of I1 a n d / 2  are equal: 

N(I1) = N(I2) (21) 

The covariance matrix of N(I1) equals: 

[N(I1)]TN(I1) 1 [ 1 Ma~ag Ma~ab] 
Z(N(I1))  

= ][MarabMarag Magabl M J[ (22) M = "M 1 gtTb 

Note the off-diagonal terms are non-zero, so under a diagonal model of illu- 
minant change the color distributions can be standardized while preserving 3 of 
the 6 second-order moments, namely the covariances drag, arab and agab. This 
contrasts favourably with standardization under a linear model of illuminant 
where all second-order moments are lost. Note the covariances will not be the 
same as those defined for the pre-standardized distribution i.e. the covariance 
terms in (22) are not equal to those in (6a). 

Consider the geometric meaning of the covariance terms. The ijth entry in 
MZ(N(I1)) equals the dot-product of the i and j t h  th columns of N(I1). Because 
each column of N(I1) is unit length it follows that  each dot-product equals the 
cosine of the angle between the i and j t h  columns. The cosine function is non- 
linear which is inappropriate for indexing. Thus we calculate the inverse cosine 
of the covariance terms in (24) effectively linearizing the feature giving us the 
angles of a color distribution. 

r = cos-l([M~(Y(I1)]~j) (i # j) (23) 

A distribution is represented by its three angles r r and 
r The 3-tuple of the 3 distribution angles for a color distribution I is 
denoted r  The distance between distributions I and J is calculated by: 

I1_r - r  (24) 
where F denotes the Frobenius norm; that  is, the distance between distributions 
is calculated as the root-mean square error between the respective vectors of 
color angles. 
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3.1 Relaxing the Narrow-band assumption 

If the camera sensors are not narrow-band then the analysis (15) through (17) 
does not hold and a single diagonal matrix will not relate sensor responses across 
a change in illumination. However, Finlayson et al.[2, 1] have shown that  in this 
case a generalized diagonal matrix can be used instead. A generalized diagonal 
matrix is defined as T:DT -1, where T is fixed and T~ varies with illumination. 
Under the generalized scheme, images under different illuminants are related by 

11 ~ 12TT~T - I  (25) 

The relationship in (25) holds exactly if illumination and refiectances are 
well described by 2- and 3-dimensional linear models[2]. Because 2-3 conditions 
roughly hold in practice the generalized diagonal relationship describes illumin- 
ant change for all sensor sets. Equation (25) can be rewritten making the role of 
the diagonal matr ix explicit: 

IIT ~ I2T~  (26) 

It follows that  the angles r are approximately illuminant-invariant 
features of color distributions. Since the cameras used in the experiments repor- 
ted later do in fact have quite narrow-band sensor sensor sensitivities, T is set 
to the identity matrix. 

3.2 Color-edge distribution angles 

Let us define a color edge map as an image convolved with a Laplacian of Gans- 
sian filter in which the usual two-dimensional filter is replicated for each of the 
three image bands. Denoting the convolution filter V2G the edge map of the 
image I is written as V2G * I where * represents convolution. Where, as before 
• 2 G ,  I can be thought of as an M x 3 matrix. Because convolution is a lin- 
ear operator the edge maps of the same scene viewed under two illuminants are 
related by a diagonal matrix: 

V 2 G * I 2  -- V2G*I I :D  (27) 

It follows that  the angles r encode second-order moment inform- 
ation about the color-edge distribution and are illuminant invariant. If color and 
color-edge distribution angles encode distinct information then we can expect 
that  used together they will out perform recognition using either alone. 

3.3 Properties of  distribution angles 

Distribution angles (either of colors or color edges) do not depend on the spa- 
tial characteristics of an image. In particular they do not depend on the order  
of the rows in /1 or V2G * /1 .  That  this is so is clear from the definition of 
a moment in Equation (7) since a moment is a sum of terms, with each term 
calculated on a per-pixel basis. Distribution angles are also independent of scale 
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since N(I1) = N( I l k )  for any non-zero k. Because distribution angles are inde- 
pendent of image spatial characteristics and image scale, we can expect angular 
indexing to recognize an object in different contexts such as when it is placed at 
different viewing distances or is rotated about the optical axis. 

4 R e s u l t s  

The invariants described in section 3 were used as cues for object recognition. 
They were tested on two published sets of color images[5, 13]. Results are presen- 
ted for color angle invariants, color-edge angle invariants and their combina- 
tion. Three existing distribution-based techniques--color indexing, color con- 
stant color indexing and Healey and Slater's moment approach--are  applied to 
the same data  sets for comparison. 

4.1 S w a i n ' s  D a t a b a s e  

Swain's model database consists of 66 images of objects. However, because ratio 
invariants are ill-defined for images containing saturated pixels, eleven of the 
images with saturated pixels were pruned from the data  set leaving 55 images. 
The same whitish illumination was used for all objects. A set of an additional 24 
images of the same objects but viewed in different poses and with small amounts 
of deformation (e.g. a rumpled T-shirt) is then used to test the recognition 
algorithm. The test images are shown (in black and white) in Figure 1. The 
recognition rankings for color indexing, color constant color indexing (denoted 
CCCI in Tables 1 and 2), and Healey and Slater's moment-based method are 
tabulated along with that  of color angular indexing in Table 1. Rank is defined 
to be the position of the correct match in the sorted list of match values. Thus, a 
match rank of 1 indicates correct recognition, a rank of 2 means that  the correct 
answer was the second best and so on. 

Fig. 1. 24 of Swain~s images. Fig. 2. Healey's texture images. 
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Algorithm Rankings 
1 2 3 >  

Color angles 16 5 2 1 
Edge angles 17 3 3 1 
Color and edge angles 21 2 1 0 
Color Indexing 23 1 0 0 
CCCI 22 2 0 0 
Henley's moments 7 7 3 7 

Table 1. Object database performance. 

Algorithm Rankings 
1 2 3 > ~  

Color angles 124 45 29 32 
Edge angles 222 8 0 0 
Color and edge angles 224 6 0 0 
Color indexing 74 21 27 108 
CCCI 120 37 21 52 
Henley's moments 121 40 20 49 

Table 2. Texture database performance. 

It is evident that Healey and Slater's higher-order moments based approach 
delivers poor performance. Note that 7 objects are matched with a greater than 
3 rank. The color distribution angles and edge angles, used independently, give 
reasonable performance with 16 and 17 objects recognized correctly in each 
case. The combination of both, however, performs very well, comparable with 
the almost flawless recognition provided by color indexing and color constant 
color indexing. However, the latter two methods represent objects using a 4096 
element feature vector (histogram bin counts). 

4.2 Hea ley  and Wang's  t ex ture  database  

Will color angular indexing successfully recognize the colored textures in Healey 
and Wang's texture data set[5]? This model data set contains ten images of 
natural textures viewed under white light; they are shown in (black and white) 
Figure 2. In addition to the model base set of 10 images, 30 other images were 
taken of the same textures but through 3 separate colored filters placed in front 
of the camera. This is equivalent to placing the filters in front of the illuminant 
so it models illumination change. The filters used had narrow pass bands in 
the blue, green and red regions of the spectrum. Such filters represent quite 
extreme illuminants and provide a stringent test for the illuminant invariance of 
the angular index. 

Each of the 40 images (10 model and 30 test) was then rotated by 30 ~ 45 ~ 
60 ~ 90 ~ and 110 ~ resulting in 240 images in total. Note the angle invariants 
of rotated textures are not trivially invariant because they are calculated with 
respect to a square image window so there is a windowing effect. The total test 
database consists of 230 images: the 30 test images in all 6 orientations and the 
model base in 5 orientations (all orientations except 0~ Results for the various 
algorithms are shown in Table 2. 

Once again, recognition rates for color angle distributions alone are poor 
with almost half the textures not being recognized. Color angular indexing with 
the color and edge angle distributions yields the best results, with all but six 
of the textures being correctly identified. Note also that, color edge angles by 
themselves deliver excellent recognition. All the other methods, color indexing, 
color constant color indexing and Healey and Slater's moment based method, 
perform very poorly. 
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5 C o n c l u s i o n  

We have described a new color-based approach to object recognition called color 
angular indexing in which objects are represented by just 6 features: three color 
distribution angles and three color-edge distribution angles. Our experiments 
with real images on data bases of several hundred images show that  colour 
angular indexing provides excellent recognition rates for a wide variety of objects 
and textures even under modest change in orientation and substantial change in 
illumination conditions. 
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