
Towards an Express ive  Language  for 
P D E  Solvers 

Michael Thun6 and Krister/~hlander* 

Uppsala University, Dept. of Scientific Computing, P.O. Box 120, S-751 04 Uppsala, 
Sweden. E-mail: Michael.Thune@tdb.uu.se, Krister.Ahlander@tdb.uu.se 

Abs t rac t .  Many significant real-life applications, e.g., air-craft design 
and environmental modelling, involve simulations based on the numerical 
solution of systems of time-dependent partial differential equations. In 
general, the computational domain has a complicated geometry, and the 
computations demand high-performance computers. The present paper 
lays a foundation for an expressive notation for this kind of application. 
By an object-oriented analysis concepts are identified, that can be com- 
bined flexibly enough to allow a programmer to express real computa- 
tional problems (as opposed to model problems). The resulting concepts 
have been implemented as classes in C++. In a sense, this class library 
(referred to as Cogito/Solver) will specialize C++ into a language for 
the application domain under consideration. However, the aim is to use 
Cogito/Solver as a basis for higher-level interfaces. As a first attempt in 
this direction, an object-oriented database for Cogito/Solver objects has 
been implemented. Through an interface to this database, a program- 
mer can compose an executable object (a Numerical Experiment), from 
various smaller objects, related to the different Cogito/Solver concepts. 

Keywords :  scientific computing, object-oriented, parallel, composite grids 

1 I n t r o d u c t i o n  

The two main demands on a programming language are: expressiveness (of the 
source text)  and e]Jiciency (of the executable code). In scientific computing the 
latter is considered so important  that  Fortran remains the dominating language 
in the area, despite its low level of abstraction. The challenge is to design a new 
alternative, considerably more expressive than Fortran, but  with comparable 
efficiency. 

This can be regarded as the long-term goal of the Cogito project [14]. The  
focus is on an important  subfield of scientific computing: the numerical solution 
of systems of time-dependent partial differential equations. Such systems arise in 
many significant real-life applications, e.g., air-craft design and environmental  
modelling. In general, the computational domain has a complicated geometry 

* The work presented here was supported by a grant from TFR, the Swedish Research 
Council for Engineering Sciences. 



374 

(e.g., a complete air-craft [4]), and the computations demand high-performance 
computers. 

In this paper we will lay a foundation for an expressive notation for this kind 
of application. By an object-oriented analysis of the problem area in question, we 
identify concepts that can be combined flexibly enough to allow a programmer 
to express real computational problems (as opposed to model problems). 

The resulting concepts have been implemented as classes in C-t-+. In a sense, 
this class library (referred to as Cogito/Solver) will specialize C + +  into a lan- 
guage for our field of applications. However, we aim at using Cogito/Solver as 
a basis for higher-level interfaces. As a first attempt in this direction, we have 
implemented an object-oriented database for Cogito/Solver objects. Through an 
interface to this database, a programmer can compose an executable object (a 
Numerical Experiment), from various smaller objects, related to the different 
Cogito/Solver concepts. 

The present implementation is for problems in one space dimension. Itow- 
ever, the object-oriented analysis and design have been pursued for general prob- 
lems, and an implementation for problems in several space dimensions is being 
planned. 

What about efficiency? The Cogito project started with a consideration of 
efficiency issues. For this reason the Cogito software tools have been structured 
in three layers, with Cogito/Solver on the highest level of abstraction. The mid 
layer, Cogito/Grid, provides classes (implemented in Fortran) for so called com- 
posite computational grids (relevant for treating complicated geometries, in the 
context of finite difference methods), and corresponding grid functions (for the 
representation of data on composite grids). Cogito/Grid uses an SPMD approach 
to parallel programming, and code written on this level can be executed on a 
large number of platforms, serial, and parallel of MIMD type with distributed 
memory. The basis for this is the lowest level, Cogito/Parallel. It contains classes 
(implemented in Fortran) for message passing, data distribution, etc. Our results 
so far indicate that programs based on the two lower Cogito levels are compa- 
rable to plain Fortran code with respect to execution time and parallel sizeup 
[9]. 

The intention is that the next implementation of Cogito/Solver will be based 
on Cogito/Grid, which should make the resulting programs efficient. This will 
tie together all parts of the Cogito project, making it possible to realize an 
expressive and efficient alternative to Fortran. 

Most related work is very recent. Williams [15] proposes an object-oriented 
approach to unstructured-grid problems, in particular finite element methods. He 
adopts the view that his classes specialize C++  into a special purpose language, 
DIME++, for his class of applications. 

Other researchers, though not explicitly discussing language issues, aim at 
raising the level of abstraction in scientific computing. Lemke and Quinlan [8] 
describe a class library intended to be a basis for implementations of structured 
grids. Karpovich et al. [7] discuss an object-oriented approach to stencil algo- 
rithms. Compared to these efforts, we aim at a higher level of abstraction. 



375 

Lately, a research group at Los Alamos has undertaken an effort to implement 
higher-level classes on top of Quinlan's A++ [5]. Their work is closely related 
to our classes on the Cogito/Grid level. 

The work by Gropp and Smith [3] is similar to ours in spirit, but with focus 
mainly on tools for parallel iterative solution of linear systems. 

The POOMA framework [10] addresses the same general issues as Cogito, 
and with a similar approach, but with differences in details. They focus on 
scientific computing in general, whereas we restrict our attention to a specific 
(and important) class of problems. Moreover, the POOMA framwork has five 
layers, while Cogito has three. Our bottom two layers seem to correspond to the 
bottom four layers of POOMA. Finally, the layer discussed in the present paper, 
i.e. Cogito/Solver, has no apparent counterpart in POOMA. 

Fritzson et al. [2] have an interesting approach, combining symbolic alge- 
braic manipulations and numerical computations in the framework of an object- 
oriented environment, ObjectMath. So far, their emphasis has been on math- 
ematical modelling. Recently, a cooperation has been established between the 
ObjectMath and Cogito groups. 

2 Expressiveness 

Before presenting the details of our work, it is appropriate to give a more precise 
formulation of the task we set out to solve. We consider a particular application 
area, for which we aim at designing an expressive special purpose programming 
language (or, more generally, a problem solving environment). What do we mean 
by an "expressive" programming language? An expressive language will allow an 
application specialist to express computational problems in the application area 

- flexibly (e.g., not restricted to predefined numerical methods or mathemat- 
ical models) 

- generally (i.e., not restricted to model problems) 
- briefly (this is a condition where Fortran fails) 
- with concepts that belong to the application area, thus making the program 

text immediately meaningful to an application specialist (this is another 
condition where traditional Fortran programs fail2). 

This is not meant to be a definition of expressiveness. Rather, the intention is 
to point out some aspects of the concept, that we find essential. 

A further aspect of importance in our context is that an expressive description 
should be easy to modify, without complete reformulation. For example, changing 
or modifying the numerical method should only amount to a small and local 
modification of the program. This is not the case in traditional Fortran programs 
for our kind of application. Typically (and strongly simplified) the innermost 
loop of such a program has the following form: 

loop over all gr id  points (i, j, k) 

The situation is improved by Fortran 90, with its support for data abstraction. 



376 

%n+l ijk : = right-hand-side 

end loop 

Here, V.n~ 1 is the solution (in general an array of values) to be computed at 
s 3 

the grid point with indices ijk, and for discrete time tn+l. The formula for 
r i g h t - h a n d - s i d e  involves (a) coefficients coming from the PDE problem and 
(b) difference operators applied to (c) grid functions. In general, the coefficients 
may depend on (d) grid coordinates, (e) time, and (f) grid function values. 
The different components (a)-(f) are inseparably mixed in the loop-body. Thus, 
changing the numerical method will amount to modifying large parts of the 
program. Similarly, for changing the equations a major reformulation of the 
code will be necessary. 

To summarize: An expressive programming language for our kind of appli- 
cation should be based on concepts from this application area. However, in the 
description of the complete computational problem, these concepts tend to be 
inseparably linked to each other, and consequently the resulting programs are 
difficult to modify. 

For this reason, our approach to finding an expressive language is to analyze 
the application area from a conceptual point of view, i.e., to make an object- 
oriented analysis. Here, the goal is to find classes (concepts) such that all com- 
putations in the application domain can be expressed as interactions between 
instances of these classes. 

3 Analysis 

Presenting a complete object-oriented analysis is beyond the scope of this paper. 3 
Our aim is rather to comment on parts of the analysis, in order to motivate the 
object model presented at the end of this section. 

The object-oriented analysis begins with an identification of central concepts 
in the application domain (in our case: numerical solution of time-dependent 
partial differential equations). As a typical example, consider the simulation 
of airflow through an expansion pipe. Figure 1 shows simulated flow in a two- 
dimensional cross-section of the pipe. There are four plates in the pipe. 

The airflow is described by a set of partial differential equations (PDE). They 
are valid in the interior of the pipe. At the inlet, outlet, at the plates, and at the 
pipe walls, boundary conditions must be prescribed. Finally, initial conditions 
are needed, describing the airflow at the beginning of the simulation. 

The actual simulation is carried out by solving the mathematical problem 
numerically. We consider finite difference methods. Such methods are commonly 
used for the kind of applications we discuss here. In this context, the solution is 
approximated at discrete points, laid out so as to form a rectangular, structured 
grid. A complicated geometry can not be covered by a single rectangular grid. 

3 We have mainly used the OMT approach [11]. Moreover, we have considered use 
cases, according to Jacobssou [6]. Finally, our class diagrams have been drawn with 
the Rose tool, which supports Booch's method [1]. 



377 

Fig. 1. Simulation of airflow through an expansion pipe 

Consequently, it is common to use a composite grid, being a union of simple grids 
(see Figure 2, showing a composite grid covering the pipe in our example). The 
approximate solutions are represented as grid functions. A grid function takes 
on values only at the grid points. 

The process of solving a time-dependent partial differential equation can 
be summarized as follows: Knowing the state of the unknown(s) on the first 
time level, the wish is to obtain the state of the unknown(s) T seconds later. 
A numerical method reaches this goal by discretization in space and time. The 
derivatives are approximated by discrete so called difference operators, both in 
space and time. Referring to the choice of such operators, we will use the terms 
space discretization and ~ime discretization, respectively. First, we can discretize 
in space, handling space derivatives, and obtaining the right hand side in 

d 
~ u  :-" disere~;eSpace0perator(u) (1) 

This is an ordinary differential equation, to which a time diseretization is sub- 
sequently applied. 

To summarize the discussion so far, we have identified the following concepts 
from the application area: Partial differential equation, Boundary condition, Ini- 
tial condition, Grid, Composite grid, Grid function, Difference operator, Space 
discretization, Time discretization. These are candidates for being regarded as 
classes in our application domain. 

The continued analysis focusses on the dynamic interaction between objects 
of these classes. We consider first some informal use cases. They are expressed in 



378 

(~rid 
Grid 
Grid 

(]rid 
Grid 
Grid 

G r i d  
Grid 
Grid 

G.ri d 

I 

3 

5. 
6 
7 

2 t 3 

Fig. 2. The composite grid used in the simulation depicted in Figure 1 

terms of users interacting with a "system". The system may be a programming 
language, having our classes as built-in data  types. Another alternative is that  
the system is a problem solving environment, see w 4. 

We distinguish between two main user categories: 

- The problem oriented user who wants to solve some problem without earing 
about the numerical method. 

- The method oriented user who wants to develop a numerical method that  
can be applied to different problems. 

A typical use case initiated by a problem oriented user is sketched below: 

Use  Case  1 Solve a previously defined problem with the aid of previously 
defined space and time discretizations 

The problem oriented user chooses a problem (including boundary 
conditions and initial condition), a grid, a space discretization and a time 
diseretization. He or she decides which time step to use, and instructs the 
system to calculate the solution at time T seconds, storing intermediate 
results every, say, ten seconds. 

This use case is "ideal" in the sense that  no extra low-level programming needs 
to be done by the user. The ability to use the system without having to write low- 
level code is desirable to many problem-oriented users. It should for example be 
possible to experiment with different boundary conditions or t ime discretizations 
without the extra time for coding, compiling and verification of the code. Still, it 



379 

is difficult to foresee every kind of PDE problem when constructing the system. 
The next use case emphasizes that  a problem oriented user must be able to 
extend the system. 

U s e  Case  2 Solve a new kind of problem with the aid of previously 
defined discretizations 

The user realizes that  the problem he or she is interested in is not 
yet available as a predefined data type. He or she extends the system 
by implementing the problem so that  it fits within the system's frame- 
work, and then--af te r  compiling and linking--proceeds as in the use case 
above. 

The extendibility of the system is important  for the method oriented user as well. 
The  following use case would be typical for the method oriented user. Here, the 
system will be an excellent tool in the verification process, since a number of 
test cases would be found in the problem library. 

Use  Case  3 Develop and verify a new kind of space discretization 
The method oriented user develops a new kind of, say, space dis- 

cretization. He or she extends the system with this feature, taking ad- 
vantage of components that  the system offers, such as components for 
handling the boundary conditions. After compiling and linking, the user 
verifies the new method using an existing time discretization and a num- 
ber of test problems with known solutions. 

In view of these use cases, we point at a number of issues to be considered 
in the continued analysis. 

1. The reusability of different components is important,  especially in the second 
and third use cases, when the system is extended. In this context, reusability 
implies that  the definition of a new component (not previously in the library; 
for example: a new PDE problem) can be achieved by writing only a few 
lines of low-level (e.g., plain C + + )  code, describing the new features of the 
component as compared to its ancestors in the inheritance hierarchy. 

2. Numerical methods for PDE problems assume that  the equations are stated 
in a suitable form. Basically, there are two kinds of formulations of the PDE: 
conservative or non-conservative. Conservative equations express conserva- 
tion of a quantity and are of importance in physics. Although a conservative 
equation can always be restated in non-conservative form, some numerical 
methods are developped especially for problems on conservative form. How 
shall the description of the different kinds of problems and methods be struc- 
tured? 

3. There are different kinds of boundary conditions which need different treat- 
ment. Sometimes the handling of the given boundary condition affects not 
only the system's static structure, but the complete algorithm. Also, it is 
common that  the given boundary conditions taken from the mathematical  
model are not sufficient for getting a stable method. So called numerical 



3 8 0  

boundary conditions must be added to the equations and consequently han- 
dled by the system in a convenient way. 

4. Sometimes is it desirable to use one space discretization in one part of the 
domain and another space discretization in another part. How shall this be 
achieved? 

5. As indicated in all the use cases, it must be easy to connect the differ- 
ent components. In particular, it should be straightforward to exchange one 
component (for example a boundary condition) without changing any of the 
other components. 

6. Use Case 3 emphasizes the question of how different numerical experiments 
shall be compared. The system must allow for a flexible description of how 
and when to store intermediate results for subsequent post-processing. 

In order to address these and similar questions, we propose the following 
object model (see Figure 3). The key classes are: Grid, Grid Function, PDE 
Problem, Space Handler, Time Handler, and Numerical Experiment. Note that 
difference operators are not considered as classes. In our model, they occur as 
operations on class Grid Function. This class is not shown in Figure 3, since it 
is not visible to the user to the same extent as the other key classes. 

/ Numerical-"~ / Grid "~ / / / , Experiment / 

t / 

/ 

/ irme"/~ ,Y..Space" 5 " ~  POE-~ 
(,./Handler ~r (. rlandler { (,.. I-'roblem ir 

Fig. 3. Key classes of the proposed object model. Notation according to Booch. Solid 
lines denote associations between classes. Solid balls symbolize aggregates. 

Grid and Grid Function are relatively transparent to the user of Cogito/Solver 
However, both classes are key components with which to build new parts of the 
system (Issue 1). 



381 

PDE Problem is a composite class, consisting of Boundary Conditions and 
Initial Condition, and responsible for describing the equations. Since the system 
must support both conservative and non-conservative problems (Issue 2), two 
heirs are introduced (Figure 4). These classes are abstract base classes, so con- 
crete problems will be heirs to either Non Conservative Problem or Conservative 
Problem. Each heir defines only the partial differential equation. In this way, the 
object model yields an extendible design. The Space Handler (Figure 5) is also 

/ B~C--,i 
( Description 

" ...... " ,"  E ?  ( ,DI ! N an 

,,/ PDE ""~ 
" Problem ~ f'. 

/ Co_nservative-'5 / Non'Cons'" ~, ~j . . . . .  " 
(' Problem /("  Problem / 

I ~ J ~._~'~ 

/ Initial -'1 
Condition / 

t 
I 

Fig. 4, Class PDE Problem with heirs. Notation according to Booch. Arrows denote 
inheritance. 

a composite object, consisting of Space Discretizations and Boundary Handlers. 
The Boundary Handlers are components whose purpose is to handle Boundary 
Conditions (Issue 3). To address Issue 4 above, the Space Handler object may 
contain several space discretizations. The class Space Discretization is an ab- 
stract base class, and its heirs are Conservative and Non Conservative Space 
Discretizations. Their heirs are concrete classes representing the different space 
discretizations. 

A similar discussion as for the Space Handler motivates the introduction 
of the class Time Handler, consisting of one or several Time Discretizations. 
Time Discretization is an abstract base class, with concrete inheritors such as 
RungeKutta. (The distinction between conservative and non-conservative prob- 
lem is transparent to the Time Discretization classes. No extra heirs need to be 
introduced.) 

The Numerical Experiment can be looked upon as being a control object. Its 
key responsibilities are to connect the correct objects in the correct way (Issue 
5), and to control the outputs from the experiment. Thus, it provides means for 
comparing different experiments (Issue 6). 



382 

/ Space ""~ 
/ Handler / 
L ( 

; . . . . . .  - . . z "  \ 
i Space ~ y --, 

/ Discretization / / BC j t, -., ~1 ( "~ Handler ~/ 

\ ,..---J L , J ' ~  

/ ::--~.. t - - ,  / Conservative-~ . . . .  " " -  / .on ~ons , , o, . - -~=.^ , ,'.'.".- -- ,'Neuu~dann- ) 
Space O sc /' ~176 f " I; ': 

,., I ".- ! '~ . . "  c 

Fig. 5. Class Space Handler as an aggregate. Notation according to Booch. 

The inheritance structure in the proposed object model makes it straight- 
forward to extend the system with new solution methods, PDE problems, etc. 
In the scenario below, we demonstrate that the model in addition decouples the 
components, so that, e.g., the time handler can be replaced, while all other com- 
ponents are kept unchanged. This makes program modification easy. The key is 
an appropriate division of responsibilities between the classes, as is high-lighted 
in the scenario. 

Scenario The calculation of the solution on the next store-time level 
The Numerical Experiment (i.e. an object of the Numerical Experi- 

ment class), asks the Time Handler to advance until the next store-time 
level. The order propagates to the Time Diseretization objects. Each 
Time Discretization will advance one step at a time, requiring the Space 
Handler to calculate the right hand side of the semi-discretized equation 
(1). The process of calculating the right hand side will depend on the 
mathematical formulation of the PDE Problem, and on the chosen Space 
Discretizations. The Space Handler asks its Space Discretization objects 
to compute discrete derivatives, and calls upon the PDE problem for sup- 
plying the problem dependent information. When the right hand side has 
been calculated the control is returned to the Time Discretization. 

The boundary conditions shall also be applied, and the Time Handler 
is responsible for when this should happen, since the order of doing this 
depends on the time diseretization method. But the responsibility for 
how this should be done lies with the Space Handler, since these caleu- 



383 

lations depend on the space discretization method. The Space Handler 
delegates the task to the Boundary Handlers, which get the necessary 
information from Boundary Condition objects. 

When the Time Handler has reached the store-time level, it returns 
the control to the Numerical Experiment which stores the solution, for 
subsequent post-processing. 

4 T o w a r d s  a S p e c i a l  P u r p o s e  P r o g r a m m i n g  L a n g u a g e  

To see the consequences of the results above, consider the situation in compu- 
tational fluid dynamics, where the Navier-Stokes equations constitute an im- 
portant mathematical model. Typically, CFD specialists say that they have a 
"Navier-Stokes solver". By this, they mean a huge Fortran program which con- 
tains the mathematical model, boundary conditions, grids, grid functions, and 
specifications of the numerical method to be used. The expression "Navier- 
Stokes solver" reflects that all the components of the program are inseparably 
linked to each other, making it difficult to replace one component without rewrit- 
ing major parts of the code. Moreover, the initial construction of such a program 
is a significant task. 

Within the framework of Cogito/Solver, the Navier-Stokes equations in con- 
servative form would be a subclass of Conservative Problem. To create a new 
"Navier-Stokes solver", the programmer would simply create a new object of 
this class, and connect it to other objects, e.g., boundary condition descriptors, 
space handlers, etc. Given a library of predefined classes, a ready-to-run pro- 
gram could easily be composed. Subsequent modification would be equivalent to 
replacing some object by another object of the same class. 

From this point of view, Cogito/Solver provides C + +  with data types (classes) 
specializing it into a language for our particular class of applications. 

As an example, we show the following program for the solution of a one- 
dimensional PDE problem similar to the (two-dimensional) Shallow-Water equa- 
tions, which is a common model for flow in shallow water. The example is exe- 
cutable, using the present pilot implementation of Cogito/Solver. 

int main() 
{ 

// Declare the main objects. 

NumExp myExp; 
NonConsProblem *problem = new ShallowWater(); // An heir to NonConsProblem 

SpaceHandler theSH; 
TimeHandler timehandler; 
const int N = I00; // Grid point indices from 0 to N 
Grid gridl(O.O, 1.0, 0, N); // This is a simple class Grid used for 

// the pilot implementation. 

// Prepare the problem. 
// "ShallowWater_*" are previously declared functions, used to 



384 

/ /  initate initial conditions and boundary conditions. 

FcnInitCond ic( ShallowWater_IC); 
BCDirichlet bcleft(O,I,ShallowWater_BC); // Same BC function 
BCDirichlet bcright(l,l,ShallouWater_BC); // at both boundaries 
problem->use( &ic); 
problem->add( &bcleft); 
problem->add( &bcright); 

// Set up the space handler. 

SpaceDisc * interiorSD ffi new Dzero; 
SpaceDisc * boundarySDl ffi nev Dplus; 
SpaceDisc * boundarySD2 = new Dminus; 
DirichletHandler bchd; 
NeumannHandler bchn; 

theSH.add( interiorSD ); 
theSH.add( boundarySDl ); 
theSH.add( boundarySD2 ); 
theSH.add( &bchd ); 
theSH.add( &bchn ); 

// Set up the time handler. 

double dt = 0.4/N ; // Set time step. 
TimeDisc * timedisc = nee RungeKutta(dt); 
timehandler.add( timedisc ); 

// Prepare the experiment. 

myExp.use( &grid); 
myExp.use( problem); 
myExp.use( &theSH); 
myExp.use( &timehandler); 

/ /  Run u n t i l  time 1.0, and s to re  so lu t ion  on f i l e !  

myExp.solveUntil(1.O,"exShallo~.m"); 

r e tu rn  0; 
} 

This new language is expressive from all the aspects discussed in w 2. However, 
the user who wants the flexibility, e.g., to use a boundary condition, which is not 
in the library, would have to do some coding in plain C + + ,  in order to define a 
new subclass. This is not a completely satisfactory solution. 

Consequently, we aim at raising the level of abstraction further. What  we 
have in mind is a problem solving environment rather than a language. This 
environment should contain: 



385 

1. High-level interfaces for specifying concrete inheritors to abstract classes. 
(This way, defining, e.g., a new boundary condition will be straightforward.) 
These interfaces will assumedly have different forms for different classes. 
As an example, there could be a special interface for describing difference 
operators, and another interface for describing differential equations. These 
various interfaces would generate code for the new C ++  subclasses. 

2. An interface for creating new instances of existing classes, for storing such 
instances in an object data base, and for combining stored objects into com- 
plete numerical experiments. 

The second goal has in principle been accomplished. The objects on the 
Cogito/Solver level were made persistent using the object data base TPS, Texas 
Persistent Store [12]. A menu driven interface called Cogito WorkBench, was 
implemented on top of the Cogito/Solver layer, and the user can combine and 
execute different objects flexibly [13]. He or she can choose between combining 
existing classes in new ways, and can also create new objects. Use Case 1 from 
the previous section is completely supported by Cogito Workbench. 

In order to change boundary conditions at run-time, the possibility of inter- 
preting simple C + +  functions with one argument (time) was introduced. Even 
though these interpreting functions do not slow down the execution time signif- 
icantly, it is also possible to generate C++  code from these functions. In this 
way, a step towards the first goal was taken. 

5 C o n c l u s i o n s  

We have proposed an object model for applications involving numerical solu- 
tion of time-dependent partial differential equations. The classes of the object 
model, and the division of responsibilities between them, form a foundation for 
an expressive programming language for this application domain. We have im- 
plemented the object model in C++.  The resulting class library, Cogito/Solver, 
will specialize C + +  into a language for our field of applications. However, we aim 
at a higher level of abstraction, having in mind a problem solving environment 
rather than a language. Cogito Workbench (and the related object-oriented data 
base) as described in the previous section, is a first step towards this goal. 

Expressiveness is not sufficient. In scientific computing, the efficiency of the 
executable code is crucial. To this end, we plan to reimplement Cogito/Solver on 
the basis of Cogito/Grid, which is a layer of classes (implemented in Fortran) sup- 
porting an SPMD approach to parallel programming of finite difference methods 
on composite grids. Cogito/Grid and its underlying layer Cogito/Parallel have 
been designed with efficiency issues in focus. 

The aim is to continue work along two lines. One is to to develop the problem 
solving environment further. The second is to generalize Cogito/Solver, which in 
the present pilot implementation only handles problems in one space dimension. 
The object-oriented design has been pursued for multidimensional problems, and 
the next implementation will include these features. Moreover, the proposed 



386 

design is intended to be adequate for composite grids. The structure of the 
classes will remain the same, and the changes will be local to the PDE Problem 
related classes, the Space Handler related classes, and of course the Grid and the 
Grid Function. Since the lower level layers of Cogito are already able to handle 
multi-dimensional problems and composite grids, the new implementation of 
Cogito/Solver, based on the lower layers, should be straightforward. 

Acknowledgement 

We thank Ola Strandberg for his work on Cogito Workbench. 

References  

1. G. Booch, Object-Oriented Analysis and Design with Applications, Ben- 
jamin/Cummings, 1994. Object-Oriented Analysis and Design with Applications, 

2. P. Fritzson et al., Industrial Application of Object-Oriented Mathematical Modeling 
and Computer Algebra in Mechanical Analysis. In Proceedings of the 7:th Inter- 
national Conference on Technology of Object-Oriented Languages and Systems: 
TOOLS EUROPE'92, Prentice-Hall. 

3. W. Gropp, B. Smith, Scalable, extensible, and portable numerical libraries. In Pro- 
ceedings of the Scalable Parallel Libraries Conference, pp. 87-93, IEEE, 1994. 

4. J. H~user et al., Parallel computing in aerospace using multi-block grids. Part 1: 
Applications to grid generation. Concurrency, 4 (1992), pp. 357-376. 

5. W. D. Henshaw et al., Private communication. 
6. I. Jacobsson et al., Object-Oriented Software Engineering--A Use Case Driven 

Approach, Addison-Wesley, 1994. 
7. J. F. Karpovich et al., A parallel object-oriented ]ramework for stencil algorithms. 

In Proceedings of the Second International Symposium on High-Performance Dis- 
tributed Computing, pp. 34-41, 1993. 

8. M. Lemke, D. Quinlan, P-I--I-, a parallel C-I--I- array class library Jor archi-tecture- 
independent development of structured grid applications. ACM SIGPLAN Notes, 
28 (1993), pp. 21-23. 

9. J. Rantakokko, Object-oriented software tools for composite-grid methods on par- 
allel computers. Report 165, Dept. of Scientific Computing, Uppsala University, 
Uppsala, 1995. 

10. J. V. W. Reynders et al., POOMA: a framework for scientific simulation on paral- 
lel architectures. 
Available on Internet, http://www.a~l.lanl.gov/PoomaFramework/ 

11. J. Rumbaugh et al., Object-Oriented Modeling and Design, Prentice-Hall, Engle- 
wood Cliffs, N J, 1991. 

12. V. Singhal, S. Kakka~l, P. R. Wilson, Texas: An efficient, portable persisitent store. 
Dept. of Computer Sciences, Univ. Texas at Austin, Austin, Texas. 

13. O. Strandberg, Persistent objects in Coaito. Internal Report No. 95-11, Dept. of 
Scientific Computing, Uppsala University, Uppsala, 1995. 

14. M. Thun~, Object-oriented software tools ]or parallel PDE solvers. Invited paper at 
the International Conference on Parallel Algorithms (ICPA '95), Wuhan University, 
October 16-19, 1995. 

15. R. D. Williams, DIME-I--I-: A language for parallel PDE solvers. Report CCSF-29- 
92, CCSF, Caltech, Pasadena, 1993. 


