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A b s t r a c t .  Advanced polymorphic type systems have come to play an 
important role in the world of functional programming. But, curiously, 
these type systems have so far had little impact upon widely-used imper- 
ative programming languages like C and C++. We show that ML-style 
polymorphism can be integrated smoothly into a dialect of C, which we 
call Polymorphic C. It has the same pointer operations as C, includ- 
ing the address-of operator &, the dereferencing operator , ,  and pointer 
arithmetic. Our type system allows these operations in their full gen- 
erality, so that programmers need not give up the flexibility of C to 
gain the benefits of ML-style polymorphism. We prove a type soundness 
theorem that gives a rigorous and useful characterization of well-typed 
Polymorphic C programs in terms of what can go wrong when they are 
evaluated. 

1 I n t r o d u c t i o n  

Much at tention has been given to developing sound polymorphic type systems for 
languages with imperative features. Most notable is the large body of work sur- 
rounding ML [GMW79, Tof90, LeW91, SML93, Wri95, VoS95]. However, none of 
these efforts addresses the polymorphic typing of variables, arrays and pointers 
(first-class references), which are essential ingredients of any traditional imper- 
ative language. As a result, they cannot be directly applied to get ML-style 
polymorphic extensions of widely-used languages like C and C + + .  

This paper presents a provably-sound type system for a polymorphic dialect 
of C, called Polymorphic C. It has the same pointer operations as C, including 
the address-of operator  &, the dereferencing operator  , ,  and pointer arithmetic. 
The type system allows these operations without any restrictions on them so 
that  programmers can enjoy C's pointer flexibility and yet have type security 
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and do not necessarily reflect the views of the National Science Foundation. 
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and polymorphism as in ML. Our type system demonstrates tha t  ML-style poly- 
morphism can be brought cleanly and elegantly into the realm of traditional 
imperative languages. 

We establish a type soundness theorem that  gives a rigorous and useful char- 
acterization of well-typed Polymorphic C programs in terms of what can go 
wrong when they are evaluated. Our approach uses a natural-style semantics 
and a formulation of subject reduction based on Harper 's  syntactic approach 
[Har94]. It  is simple and does not require a separate type semantics. We ex- 
pect it to be useful in proving type soundness for a wide variety of imperative 
languages having first-class pointers and mutable variables and arrays. 

We begin with an overview of Polymorphic C in the next section. Then we 
formally describe its syntax, type system, and semantics. Then, in Section 4 we 
establish the soundness of the type system. 

2 An Overview of Polymorphic C 

Polymorphic C is intended to be as close to the core of Kernighan and Ritchie C 
[KR78] as possible. In particular, it is stack-based with variables, pointers, and 
arrays. Pointers are dereferenced explicitly u s i n g . ,  while variables are derefer- 
enced implicitly. Furthermore, pointers are first-class values, but variables are 
not. Polymorphic C has the same pointer operations as C. A well-typed Poly- 
morphic C program in our system may still suffer from dangling reference and 
illegal address errors. Our focus has not been on eliminating such pointer in- 
securities, which would require weakening C's expressive power, but  rather on 
adding ML-style polymorphism to C, so that  programmers can write polymor- 
phic functions naturally and soundly as they would in Standard ML, rather  than 
by parameterizing functions on data  sizes or by using pointers of type v o i d  *. 

Syntactically, Polymorphic C uses a flexible syntax similar to tha t  of core-ML 
of Damns and Milner [DAM82]. For example, here is a Polymorphic C function 
that  reverses the elements of an array: 

let swap = ~x,  y. l e t v a r  t := *x in *x := *y; *y := t 
in 
let reverse = Aa, n. l e tva r  i := 0 in 

w h i l e i  < n -  1 - i  do  
swap(a + i, a + n - 1 - i); 
i : = i + 1  

i n . . .  

The  construct l e t va r  x := el in e2 binds x to a new cell initialized to the value 
of el; the scope of the binding is e 2 and the lifetime of the cell ends after e2 
is evaluated. Variable x is dereferenced implicitly. This is achieved via a typing 
rule that  says that  if e has type r vat ,  then it also has type r.  

As in C, the call to swap in reverse could equivalently be written as 

swap( a[i], * a[n - 1 - i ] )  
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and also as in C, array subscripting is syntactic sugar: el[e2] is equivalent to 
*(el +e2).  Arrays themselves are introduced by the construct l e t a r r  x[ex] in e2, 
which binds x to a pointer to an uninitialized array whose size is the value of 
el; the scope of x is e2, and the lifetime of the array ends after e2 is evaluated. 

The type system of Polymorphic C assigns types of the form 7- vat  to vari- 
ables, and types of the form T ptr  to pointers, a Functions swap and reverse given 
above are polymorphic; swap has type 

V~.  a p tr  x ~ p tr  --~ 

while reverse has type 
V s .  a p tr  x int -+ unit  

Notice that  pointer and array types are unified as in C. Also, variable and pointer 
types are related by symmetric typing rules for & and *: if e : T var, then &e : 
T ptr ,  and if e : ~- ptr,  then *e : r var. Note that  dereferencing in Polymorphic 
C differs from derefereneing in Standard ML, where if e : T ref ,  then !e : r .  

Polymorphic C's types are stratified into three levels. There are the ordinary 
T (data types) and a (type schemes) type levels of Damas and Milner's system 
[DaM82], and a new level called phrase types containing a types and variable 
types of the form T vat .  This stratification enforces the "second-class" status of 
variables: for example, the return type of a function must be a data  type, so that  
one cannot write a function that  returns a variable. On the other hand, pointer 
types are included among the data  types, making pointers first-class values. 

Polymorphic C has been designed to ensure that  function calls can be im- 
plemented on a stack without the use of static links or displays. In traditional 
imperative languages, this property has been achieved by rigidly fixing the syn- 
tactic structure of programs. For example, in C, functions can only be defined 
at top level. But  such syntactic restrictions are often complex and unnecessarily 
restrictive. In contrast,  Polymorphic C adopts a completely free syntax, as in 
core-ML. The ability to implement Polymorphie C on a stack, without static 
links or displays, is achieved by imposing one key restriction on lambda abstrac- 
tions: the free identifiers o f  any lambda abstraction mus t  be declared at top level. 
Roughly speaking, a top-level declaration is one whose scope extends all the way 
to the end of the program. For example, in the program 

le t  f . . . .  in 
l e t va r  x : . . . .  in 
l e t a r r  a[...] in f ( . . . )  

the identifiers declared at top level are f ,  x, and a. Although they are severely 
restricted, Polymorphic C's anonymous lambda abstractions are convenient at 
times. For example, we can write map(An,  n + 1, [4,2,5]) without having to 
declare a named successor function. Nevertheless, one might prefer a different 
syntax for Polymorphic C; it should be noted that  there would be no obstacle 
to adopting a more C-like syntax. 

3 We use ptr rather than ref to avoid confusion with C++ and ML references. 
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2.1 The  Issue of  Type  Soundness  in Po lymorph ic  C 

Much effort has been spent trying to develop sound polymorphic type systems 
for imperative extensions of core-ML. Especially well-studied is the problem 
of typing Standard ML's first-class references [Tof90, LeW91, SML93, Wri95]. 
The problem is easier in a language with variables but no references, such as 
Edinburgh LCF ML, but subtle problems still arise [GMW79]. The key problem 
is that a variable can escape its scope via a lambda abstraction as in 

letvar stk := [] in ~v. stk := v :: stk 

In this case, the type system must not allow type variables that occur in the type 
of stk to be generalized. Different mechanisms have been proposed for dealing 
with this problem [GMW79, VOS95] 

In the context of Polymorphic C, however, we can adopt an especially simple 
approach. Because of the restriction on the free identifiers of lambda abstrac- 
tions, Polymorphic C does not allow a polymorphic value to be computed in an 
interesting way; for example, we cannot write curried functions. For this reason, 
we suffer essentially no loss of language expressiveness by limiting polymorphism 
to syntactic values, that is, identifiers, literals, and lambda abstractions [Tof90].4 

Limiting polymorphism to syntactic values ensures the soundness of poly- 
morphic generalizations, but pointers present new problems for type soundness. 
If one is not careful in formulating the semantics, then the subject reduction 
property may not hold. For example, if a program can dereference a pointer to 
a cell that has been deallocated and then reallocated, then the value obtained 
may have the wrong type. Our semantics is designed to catch all pointer errors. 

3 T h e  P o l y m o r p h i c  C L a n g u a g e  

The syntax of Polymorphic C is given below. For the sake of describing the type 
system, we need to distinguish a subset of the expressions, called Values, which 
are the syntactic values [Tof90, Wri95] of the language: 

(Expr) e ::= v I e(el,. . . ,e,~) I el := e2 I 

&e I *e I e l + e 2  I el[e2] I el;e2 I 
while el do e2 I 

if el then  e2 else e3 I 

let x = e l  ine2  I 

letvar x := el in e2 I 

le tarr  x[el] in e~ I 

(a, 1) 

(Values) v ::= x I c I XXl, . . . ,xn.e  I (a,O) 

4 In the context of a language with first-class functions, limiting polymorphism to 
syntactic values does limit the expressiveness of the language. But Wright argues 
that even then the loss of expressiveness is not a problem in practice [Wri95]. 



345 

Meta-variable x ranges over identifiers, c over literals (such as integer literals 
and un i t ) ,  and a over addresses. All free identifiers of every lambda abstraction 
must be declared at top level; this restriction can be precisely defined by an 
a t t r ibute  grammar. 

The  expressions (a, 1) and (a,0) are variables and pointers, respectively. 
These will not actually occur in user programs; they are included in the lan- 
guage solely for the purpose of simplifying the semantics, as will become clear in 
Section 3.2. Notice that  pointers are values, but variables are not; this reflects 
the fact that  variables are implicitly dereferenced, while pointers are not. 

The  + operator  here denotes only pointer arithmetic. In the full language, + 
would be overloaded to denote integer addition as well. 

A subtle difference between C and Polymorphic C is that  the formal parame- 
ters of a Polymorphic C function are constants rather than local variables. Hence 
the C function f (x)  ( b ) is equivalent to 

le t  f = )~x.letvar x := x in b in . . .  

in Polymorphic C. Also, Polymorphic C cannot directly express C's internal 
static variables. For example, the C declaration 

f ( x )  { s t a t i c  i n t  n = O; b } 

corresponds directly to the Polymorphic C expression 

le t  f = l e t va r  n := 0 in Ax. b in . . .  

but  this violates the restriction on lambda abstractions if n is free in b. Such 
functions must be transformed to eliminate static variables in favor of uniquely- 
renamed global variables: 

l e t v a r  n := 0 in le t  f---- Ax.b in . . .  

3.1 T h e  T y p e  S y s t e m  o f  P o l y m o r p h i c  C 

The types of Polymorphic C are stratified as follows. 

r ::--- a I int I unit I Tp t r  I T1 x . . . •  
a ::= V a . a  I T 
p ::---- a I Tvar  

(data types) 
(type schemes) 
(phrase types) 

Meta-variable a ranges over type variables. Compared to the type system of 
Standard ML, all type variables in Polymorphic C are imperative [Tof90]. 

The  rules of the type system are formulated as they are in Harper 's  system 
[Har94] and are given in Figure 1.5 It is a deductive proof system used to  assign 
types to expressions. Typing judgements have the form 

)~ ;~/ t- e : p 

5 For brevity, we have omitted typing rules for sequential composition, if, and while. 
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A; 3" b x : T var  

A ; 3 ' b X : T  

A;3" b ( ( i , j ) , O )  : r p t r  

A;3" b ( ( i , j ) ,  1) :  v v a r  

A; ~ V c : in t  

3"(x) = ~" var  

3"(x) > r 

A ( i )  = r 

a ( i )  = 

c is an integer l i teral 

A; 3' F u n i t  : un i t  

A; 3'[xl : n , . . .  ,x~ : r~] ~- e : r 
A;3" t-  A X l , . . . , X n . e  : "rl x . . .  X r n - ~  ~" 

A;3"Fe:7-1 X. , .XTn~r ,  
A;3' F ei : r i ,  l < i < n  
A;3' F e ( e l , . . . , e ~ )  : r  

A;3' ~- v : n ,  A;3'[x : Close~ ; , y (n ) ]  t- e : r2 
A;3' t- l e t  x = v  in  e :T2 

A;3"~-e l  : r l ,  A ; 3 " [ x : r l ] ~ - e 2  : r2  
A ;3" b le t  x = e l  i n e u : T 2  

A;7 I- el : ~'1, A;3"[x : vl  var] }- e2 : 7"2 
A; 7 i- l e t v a r  x := el in  e2 : T~ 

A; 3" b e l  : in t ,  A; 3"Ix : ~'1 ptr] F e2 : T2 

A; 3" ~- l e t a r r  x[ex] in  e2 : r2 

A; "7 t- e : r var  
A ; 3 " F e : r  

A; "7 I- e : r p t r  

A; '7 b *e : v v a r  

A; "7 }- e : r var  

A; 3' I- &e : T p t r  

A ; 3 " t - e l  : T v a r ,  A ; 3 " F e 2  : T  

A; 3" t-" el := e2 : T 

A; 3" }- e l  : ~" p t r ,  A; 3" }- e2 : i n t  

A; 3" I- e l  + e2 : T p t r  

A; 3" F e l  : 7 p t r ,  A; 3" F e2 : in t  

A; 3" b el [e2] : r var  

Fig .  1. Rules of the  T y p e  System 
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meaning that  expression e has type p, assuming that  7 prescribes phrase types for 
the free identifiers of e and A prescribes data  types for the variables and pointers 
in e. More precisely, meta-variable 7 ranges over identifier typings, which are 
finite functions mapping identifiers to phrase types; 7(x) is the phrase type 
assigned to x by 7 and 7Ix : p] is a modified identifier typing that  assigns phrase 
type p to x and assigns phrase type 7(x ')  to any identifier x'  other than x. 

Meta-variable )~ ranges over address typings, which are needed in typing the 
values produced by programs. One might expect that  addresses would just  be 
natural  numbers, but  tha t  would not allow the semantics to detect invalid pointer 
arithmetic. So instead an address is a pair of natural numbers (i, j )  where i is 
the segment number and j is the offset. Intuitively, we put  each variable or array 
into its own segment. Thus a simple variable has address (i, 0), and an n-element 
array has addresses 

(i, 0), (i, 1 ) , . . . ,  (i, n - 1) 

Pointer arithmetic involves only the offset of an address, and dereferencing 
nonexistent or dangling pointers is detected as a "segmentation fault". An ad- 
dress typing then is a finite function mapping segment numbers to da ta  types. 
The  reason it does not map addresses to data  types is that  nonexistent pointers 
can be produced as values of programs, and such pointers must therefore be 
typable if subject reduction is to hold. For example, the program 

l e t a r r  a[10] in a + 17 

is well typed and evaluates to ((0, 17), 0), a nonexistent pointer. The  notational 
conventions for address typings are similar to those for identifier typings. 

The generalization of a data  type T relative to A and 7, written Close~;~(r), 
is the type scheme V(~. T, where ~ is the set of all type variables occurring free 
in v but  not in ~ or in 7. We write A F e : T and Close)~(T) when 7 = 0. We 
say that  r '  is a generic instance of V6. T, written V(~. T > r ' ,  if there exists a 
substi tution S with domain 6 such that  ST = r ' .  We extend this definition to 
type schemes by saying that  a _> a '  if a _> v whenever a '  > r .  Finally, we say 
that  A; ~/F e : a if ~; 7 }- e : r whenever a > r .  

The  type system has the property that  the type of a value determines the 
f o rm of the value; also, an expression of type r vat  can have only two possible 
forms: 

L e m m a  1 ( C o r r e c t  F o r m ) .  Suppose )~ F v : r .  Then 

- i f  T is int,  then v is an integer literal, 
- i f  T is unit ,  then v is uni t ,  
- i f T  is r '  ptr ,  then v is of the form ( ( i , j ) ,O) ,  and 
- i f T  is T1 X . . .  • V~ --~ rn+l,  then v is of the form )~x l , . . .  , xn .e .  

Furthermore,  if  )~ F e : r var, then e is of  the form ( ( i , j ) ,  1) or of the f o rm  .e~. ~ 

Proof. Immediate from inspection of the typing rules. []  

Note that this assumes that array subscripting is syntactic sugar. 
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A consequence of the last part of this lemma is tha t  if A ~- e : T and e is not of the 
form ( ( i , j ) ,  1) or .e ' ,  then derivation of the typing judgement cannot end with 
rule (R-VAL). So the typing rules, for the most part,  remain syntax directed. The 
fact that  variables can have only two possible forms is exploited in our structured 
operational semantics, specifically within rules (REF) and (UPDATE). 

3.2 T h e  S e m a n t i c s  o f  P o l y m o r p h i c  C 

We give a structured operational semantics. A closed expression is evaluated 
relative to a memory #, which is a finite function from addresses to values. 
It  may also map an address to d e a d  or un in i t ,  indicating that  the cell with 
that  address has been deallocated or is uninitialized. The contents of an address 
a E dom(#) is the value/~(a), and we write #[a := v] for the memory that  assigns 
value v to address a, and value #(a ' )  to an address a' ~ a; #[a := v] is an update 
of # if a E dom(#) and an extension of # if a r dora(#). 

The evaluation rules are given in Figure 2. They allow us to derive judgements 
of the form 

# ~- e =~ v ,~  t 

which asserts tha t  evaluating closed expression e in memory # results in value v 
and new memory #~. 

We write [e~/x]e to denote the capture-avoiding substitution of e ~ for all free 
occurrences of x in e. Note the use of substitution in rules (APPLY), (BIND), 
(BINDVAR), and (BINDARR). It allows US to avoid environments and closures in 
the semantics, so that  the result of evaluating a Polymorphic C expression is 
just  another expression in Polymorphic C. This is made possible by the flexible 
syntax of the language and the fact that  all expressions are closed, including 
lambda abstractions. 

4 S e m a n t i c  S o u n d n e s s  

In this section, we establish the soundness of our type system. We begin by 
using the framework of Harper [Har94] to show subject reduction, which basically 
asserts tha t  if F- e : 7- and t- e =~ v, #' ,  then t- v : T. But since e can allocate 
addresses and they can occur in v, the conclusion must actually be that  there 
exists an address typing A ~ such that  ,V t- v : r and such that  #~ : A ~. The latter 
condition asserts that  A ~ is consistent with #~. More precisely, we say # : A if 

1. dom( ) = {i I (i, 0) e and 
2. for all ( i , j ) ,  A F- # ( ( i , j ) )  : A(i) if #( ( i , j ) )  is a value. 

Note that  A must give a type to uninitialized and dead addresses of #, but  the 
type can be anything. 

Before giving the subject reduction theorem, we require a number of lem- 
maN that  establish some useful properties of the type system. We begin with a 
fundamental type substitution lemma: 
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(VAL) 

(CONTENTS) 

(DEREF) 

(REF) 

(OFFSET) 

(APPLY) 

(UPDATE) 

(BIND) 

(BINDVAR) 

(BINDARR) 

p b v = ~ v , #  

a E dom(iz) and #(a)  = v 
# b (a, 1) ~ v , #  

# I- e ~ (a, 0), # '  
a E dom(#') and # ' (a )  = v 
ju I-- *e ~ v, p '  

p b &(a,  1) ~ ( a , 0 ) , #  

~- e =~ (a, 0), t~' 
F ~ �9 e ~ (a,O)i~' 

# t- el =*" ( ( i , j ) , O ) , # l  
#1 l- e~ ~ n, ~' (n an integer) 
p t- el + e2 =~ ((i, j + n), 0), # '  

�9 . , X n . e  ,~1 
#1 t- el ~ Vl,#2 

~n F- en ::~ Vn,~-Ln+l 
~,~+1 ~" [vl , . . .  , v , J z l , . . .  ,x,]e' =~ v,~' 
I~ t" e (e l , . . .  , e , )  ~ v ,# '  

i~ l- e ::* v ,# '  
a E dom(lz') and #'(a) ~ d e a d  
p b  (a, 1 ) : = e : : : ~ v ,  lz'[a:=v] 

I- el =* (a ,O) ,# l  
Pl ['- e2 =~ v, #2 
a E dora(#2) and #2(a)  ~ d e a d  
p l -  *el := e2 =*. v,#2[a :'-': v] 

/.t I-" el  =*. vl ,  #1 
#1 ~- [v! /x]e2 ~ V2,~2 
p t- l e t  x = el in  e2 =~ vz, tt2 

p t- ex =~ Vl, #1 
(i,O) r dom(tq) 
#1[(i,0) :---- Vl] 1" [((i,0), 1)Ix]e2 ~ v2 ,~2  

p t- l e t v a r  x :=  el in  e2 =~ V2,P2[(i,O) := d e a d ]  

p t- el ~ n, Pl (n a positive integer) 
(i,O) r dom(#l) 
#1[(i ,0), . . . ,  ( i , n -  1):= unini t , . . . ,  uninit] b 

[((i, o), o)/xle2 ~ v2, ~2 
# ~- l e t a r r  x[el] in  e2 ~ .... 

v2, #2[(i, 0 ) , . . . ,  (i, n - 1) := d e a d , . . . ,  d e a d ]  

F ig .  2. T h e  Evaluat ion Rules 
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L e m m a  2 ( T y p e  S u b s t i t u t i o n ) .  I f  A; 7 t- e : ~-, then for  any substi tution S ,  
SA; S~/F e : ST,  and the latter typing has a derivation no longer than the former.  

L e m m a  3 ( S u p e r f l u o u s n e s s ) .  Suppose that A;'y F- e : T. I f  i r dom(A),  then 
A[i : r '] ;  ~/~- e : r ,  and i f x  r dom(^/), then A; ~/[x :p] F- e : T. 

L e m m a  4 ( S u b s t i t u t i o n ) .  I f  A; 7 t- v : cr and A; 7Ix : a] }- e : r ,  then A; 7 }- 
[v/x]e : r.  Also if  A;~/t- (a, 1) : T var and A;~/[x : r var] f- e : T ~, then A;~/ F 
[(a, 1)/x]e: r'. 

T h e  preceding lemma does not  hold for a rb i t ra ry  expression subst i tut ion.  

L e m m a  5 (V- in t ro ) .  I f  A; ~/F e : v and a l  , . . . , a,~ do not occur free in A or in 
% then A;^/F- e : V a l , . . .  , a n .  T. 

We can now give the subject  reduct ion theorem: 

Theorem6 (Subject Reduction). I f #  f- e ~ v , # ' ,  A ~- e : r ,  and  # : A, then 
there exists A' such that A C_ A', #~ : A ~, and A' [- v : T. 

Pro@ By induct ion on the s t ruc ture  of the derivat ion of # ~- e ~ v, tt'. Here we 
jus t  show the (BINDVAR) and (BIND) cases. 

(BINDVAR). The  evaluation must  end with 

# F- el =~ vl,  ~1 
( i ,0)  r d o m ( # l )  
]~1 [(i, 0) :---~ Vl] ~- [((i, 0), 1)/x]e2 => v2, #2 
# t- l e t v a r  x := el in  e2 :=~ v2,tt2[(i ,0) :-- d e a d ]  

while the typing must  end with (LETVAR): 

A]-'el :T1 
A; Ix : n var] t- e2 : "r2 
A t- l e t v a r  x := el in  e~ : 75 

and # : A. By  induction,  there  exists A1 such tha t  A C_ A1, #1 : A1, and A1 t- Vl : 
T1. Since #1 : A1 and ( i ,0)  • dora(#1), also i r dora(A1). So A1 C AI[i : Vl]. By 
rule (VAR), 

Al[i :  T1] }- ( ( i ,0) ,  1) : T1 var 

and by L e m m a  3, 
A,[i:  r l l ; [x : n var] 

So we can apply  Lemma  4 to get 

AI[i:  TI]F [((i ,O), l) /x]e2:7"2 

Also, #1[(i ,0)  := Vy] : AI[i : Vl]. So by a second use of induction,  there  exists A' 
such tha t  A 1 [i : T1] C_ A I, ~t 2 : A I, and A' F v2 : 7"2. 

It  only remains to  show tha t  #2[(i ,0)  := d e a d ]  : A'. But  this follows imme- 
diately from #2 : A'. 
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Remark. What  would go wrong if we simply removed the deallocated address 
(i, 0) from the domain of the final memory, rather than marking it d e a d ?  Well, 
with the current definition of # : A, we would then be forced to remove i from 
the final address typing. But then ~2 - i : A I - i would fail, if there were any 
dangling pointers ( ( i , j ) ,  0) in the range of #2 - i. If, instead, we allowed A I to 
retain the typing for i, then the next time that  (i, 0) were allocated we would 
have to change the typing for i, rather than extend the address typing. 

(BIND). If el is a value vl, then the evaluation must end with 

# [-" Vl =~ v l , #  

i - l e t  x = v l  i n e 2 ~ v 2 , p '  

while the typing must end with (LET-VAL): 

A F v l  : r l  
;~; [x : C l o s e , ( n ) ]  ~- e2 : r2 
A t - l e t  x = v l  i n e 2 : r 2  

and # : A. By Lemma 5, A }- vl : Close~(Tl), and so by Lemma 4, A b [vt/x]e2 : 
T2. So by induction, there exists A I such that  A c_ A I, #1 : AI, and A~ b v2 : v2. 

The case when el is not a value is similar, but  Lemma 5 is not required, and 
induction is used twice. []  

The subject reduction property does not by itself ensure that  a type system is 
sensible. For example, a type system that  assigns every type to every expression 
trivially satisfies the subject reduction property, even though such a type system 
is useless. The main limitation of subject reduction is that  it only applies to well- 
typed expressions that  evaluate successfully. Really we would like to be able say 
something about  what happens when we attempt to evaluate an arbi t rary well- 
typed expression. 

One approach to strengthening subject reduction (used by Gunter  [Gun92], 
for example) is to augment the evaluation rules with rules specifying that  cer- 
tain expressions evaluate to a special value, T y p e E r r o r ,  which has no type. 
For example, an a t tempt  to dereference a value other than a pointer would 
evaluate to T y p e E r r o r .  Then, by showing that  subject reduction holds for the 
augmented evaluation rules, we get that  a well-typed expression cannot evalu- 
ate to T y p e E r r o r .  Hence any of the errors that  lead to T y p e E r r o r  cannot 
occur in the evaluation of a well-typed expression. Aside from the drawback of 
requiring us to augment the evaluation rules, this approach does not give us as 
much information as we would like. It tells us that  certain bad things will not 
happen during the evaluation of well-typed expression, but  says nothing about  
what other bad things can happen. 

We now present a different approach leading to a type soundness theorem 
that  characterizes precisely everything that  may go wrong when we a t t empt  
to evaluate a well-typed expression. First, we note that  a successful evaluation 
always produces a value: 
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L e m m a 7 .  If  p t- e ~ v ,#  ~, then v is a value and #~ is a memory. 

Roughly speaking, the combination of the subject reduction theorem and the 
correct forms lemma (Lemma 1) allows us to characterize the forms of expres- 
sions that  will be encountered during the evaluation of a well-typed expression. 
This will allow us to characterize what can go wrong during the evaluation. 

To get a handle on the "progress" of an at tempted evaluation, it is helpful to 
recast the evaluation rules as a recursive evaluation function, eval. For example, 
the (UPDATE) rules correspond to the clauses 

eval(#, (a, 1) := e) = 
le t  (v, #') = eval(#, e) in 

i f  a E dora(#') a n d  #'(a)  r d e a d  t h e n  
: =  v]) 

else 
fail; 

eval(IJ, *el := e2) = 
le t  ((a,0),iZl) = eval(#,el) in 
le t  (v,#2) = eval(#l,e2) in 

i f  a e dora(p2) a n d  #2(a) ~t d e a d  t h e n  
: =  

else 
fail; 

Introducing eval allows us to talk about type soundness in terms of what happens 
when eval is called on a well-typed program. 

Def in i t ion  8. A call eval(#, e) is well typed iff there exist A and r such that  
p : A  and A F - e : v .  

D e f i n i t i o n  9. An activation of eval aborts directly if the activation itself aborts. 
Note that  an activation does not abort  directly if it makes a recursive call tha t  
aborts or does not terminate. 

We can now show the key result for type soundness: 

T h e o r e m  10. Suppose that an activation eval(l~, e) is well typed. Then every 
recursive call made by the activation is well typed. Furthermore, if the activation 
aborts directly, it aborts due to one of the following errors: 

El .  An attempt to read or write to a dead address ( i , j ) .  
E2. An attempt to read or write to a nonexistent address ( i , j ) .  Address (i,O) 

always will exist, so the problem is that the offset j is invalid. 
E3. An attempt to read an uninitialized address ( i , j ) .  
E4. An attempt to declare an array of size less than or equal to O. 
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Proof. We just consider all possible forms of expression e. Here we just  give the 
case el := e2; the other cases are quite similar. 

If evaI(#, el := e2) is well typed, then there exist A and r such tha t  # : A and 
A b el := e2 : r .  The latter typing must be by (ASSIGN): 

A J- e l  : T var 
A F e 2 : r  
A I - e l : = e 2 : r  

By Lemma 1, el must be of the form ( ( i , j ) ,  1) or else of the form *e~. So, 
simplifying notation a bit, we are left with two cases: (a, 1) := e and *el := e~. 
Note that  there is a clause of eval that  applies to each of these. We consider the 
two cases in turn. 

If the activation is eval(#, (a, 1) := e), where/~ : A and A [- (a, 1) := e : r ,  
then the typing must end with (ASSIGN): 

A b (a, 1) : r var 
A b e : r  
A F (a, 1) := e : r 

So by (VAR), A(i) ---- T, where a = ( i , j ) .  
Also, the recursive call evaI(#, e) is well typed. If this call fails to return,  

then the parent activation evaI(l~, Ca, 1) := e) doesn't  abort  directly. If the call 
succeeds, then by Lemma 7 it returns a value v and a memory #' ,  so the pat tern-  
match ' le t  (v, #') = eval(#, e)' doesn't  abort.  

By the subject reduction theorem, there exists ,V such that  A c_ A', # '  : A t, 
and A t ~- v : r .  Hence At(i) = r ,  and so (i, 0) e dom(#t).  

So the only way for the activation eval(#, ( a, 1) := e) to abort  directly is if 
( i , j )  f[ dom(#')  or # ' ( ( i , j ) )  = dead .  And since (i,0) �9 dom(~t),  we know that  
if the first case holds, the error is in the offset j .  

If the activation is eval(#, *el := e2), where # : A and A ~- *el := e2 : T, then 
the typing must end with (L-VAL) followed by (ASSIGN): 

A ~ el : r ptr  
A F . e l  : r var 
A b e 2 : r  
Al-*e l  : --e2:7" 

So the recursive call evalClz, el) is well typed. If this call fails to return,  then the 
parent  activation eval(#, *el := e2) doesn't  abort  directly. If the call succeeds, 
then by Lemma 7 it returns a value vl and a memory/~1. 

By the subject reduction theorem, there exists A1 such that  A c_ A1, #1 : A1, 
and A1 ~ Vl : T ptr. So by the Correct Form lemma, Vl is of the form ( ( i , j ) ,0 )  
hence the pat tern-match ' let  (( a, 0), #1) = eval(#, el) '  doesn't  abort .  Also, by 
(PTR), A1 (i) -- T. 

By the Superfluousness Lemma, A1 b e2 : v, so the recursive call eval(#l ,  e:) 
is also well typed. If this call fails to return, then the parent activation doesn' t  
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get stuck. If it succeeds, then it returns a value v and a memory #2, so the 
pat tern-match ' le t  (v, #2) = eval(#l, e2)' doesn't  abort.  By the subject reduction 
theorem, there exists ~ such that  ~1 C A~, #2 : ~ ,  and A~ t- v : r .  Hence A~(i) = T, 
and so (i, 0) E dom(l~2). 

So the only way for the activation eval(#, *el := e2) to abort  directly is if 
( i , j )  ~ dora(#2) or #2((i , j))  = dead .  And since (i,0) E dora(#2), we know that  
if the first case holds, the error is in the offset j .  []  

C o r o l l a r y  11 ( T y p e  S o u n d n e s s ) .  IrA }- e : r and ~ : )~, then eval(#, e) either 

1. succeeds (producing a value of type r), or 
2. fails to halt, or 
3. aborts due to one of the errors El ,  E2, E3, or E4. 

Proof. Any call must either succeed, fail to halt, or abort.  
If the call aborts, then one of its recursive activations must abort  directly. 

Now this activation must have been reached by a finite path of recursive calls 
from the root call eval(#, e). Since the root call is well typed, by Theorem 10 
all the calls on the path are well typed. So the activation that  aborts directly is 
well typed. Hence by Theorem 10 it aborts due to one of the errors E1-E4.  [] 

5 Discuss ion 

The semantics specifies that  an implementation is under no obligation to preserve 
the contents of variables beyond their scope, which in turn justifies a stack-based 
implementation. Further, there is no need for static links since all functions 
in Polymorphic C are closed with respect to top-level declarations. It is also 
interesting to note that  in light of this closure property, there would be no need 
to specify in the semantics that  a variable dies at the end of its scope if there 
were no & operator.  The variable would simply be unreachable in this case. 

To maintain subject reduction, the semantics also ensures that  any program 
with pointer errors does not produce a value. This requires a number of mecha- 
nisms, for example, keeping track of cells that  have been deallocated, that  we do 
not expect to see in any realistic implementation of the semantics. We believe 
that  an implementation, for the sake of efficiency, should be able to do whatever 
it likes on programs that  do not yield values, and hence are in error, accord- 
ing to the semantics. For example, the semantics does not prescribe a value for 
dereferencing a dangling pointer. So it would be acceptable, upon an a t tempt  
to dereference such a pointer, for an implementation to merely return the last 
value stored there, as in C, rather than detect an error. 

Given that  a real implementation would not catch pointer errors, what then is 
the practical significance of our type soundness theorem? Two things can be said. 
First, the theorem gives a characterization of the source of er rors- - i t  tells us that  
when a program crashes with a "Segmentation fault--core dumped" message, 
what causes the crash is one of the errors E l -E 4  and not, for example, an invalid 
polymorphic generalization. Second, by directly implementing our semantics, one 
can get a robust "debugging" implementation that  flags all pointer errors. 
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6 Conclus ion 

Advanced polymorphic type systems have come to play a central role in the 
world of functional programming, but so far have had little impact on traditional 
imperative programming. We assert that an ML-style polymorphic type system 
can be applied fruitfully to a "real-world" language like C, bringing to it both 
the expressiveness of polymorphism as well as a rigorous characterization of the 
behavior of well-typed programs. 

Future work on Polymorphic C includes the development of a type inference 
algorithm (preliminary work indicates that this can be done straightforwardly), 
the development of an efficient implementation (perhaps using the work of [Le92, 
ShA95, HAM95]), and extending the language to include other features of C, 
especially structures. 
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