
Towards an ML-Style Polymorphic
Type System for C*

Geoffrey Smith 1 and Dennis Volpano 2

1 School of Computer Science, Florida International University, Miami, FL 33199,
USA, emaih smithg~fiu.edu

Department of Computer Science, Naval Postgraduate School, Monterey, CA
93943, USA, email: volpano~cs.nps.navy.mil

A b s t r a c t . Advanced polymorphic type systems have come to play an
important role in the world of functional programming. But, curiously,
these type systems have so far had little impact upon widely-used imper-
ative programming languages like C and C++. We show that ML-style
polymorphism can be integrated smoothly into a dialect of C, which we
call Polymorphic C. It has the same pointer operations as C, includ-
ing the address-of operator &, the dereferencing operator , , and pointer
arithmetic. Our type system allows these operations in their full gen-
erality, so that programmers need not give up the flexibility of C to
gain the benefits of ML-style polymorphism. We prove a type soundness
theorem that gives a rigorous and useful characterization of well-typed
Polymorphic C programs in terms of what can go wrong when they are
evaluated.

1 I n t r o d u c t i o n

Much at tention has been given to developing sound polymorphic type systems for
languages with imperative features. Most notable is the large body of work sur-
rounding ML [GMW79, Tof90, LeW91, SML93, Wri95, VoS95]. However, none of
these efforts addresses the polymorphic typing of variables, arrays and pointers
(first-class references), which are essential ingredients of any traditional imper-
ative language. As a result, they cannot be directly applied to get ML-style
polymorphic extensions of widely-used languages like C and C + + .

This paper presents a provably-sound type system for a polymorphic dialect
of C, called Polymorphic C. It has the same pointer operations as C, including
the address-of operator &, the dereferencing operator , , and pointer arithmetic.
The type system allows these operations without any restrictions on them so
that programmers can enjoy C's pointer flexibility and yet have type security

* This material is based upon activities supported by the National Science Foundation
under Agreements No. CCR-9414421 and CCR-9400592. Any opinions, findings, and
conclusions or recommendations expressed in this publication are those of the authors
and do not necessarily reflect the views of the National Science Foundation.

342

and polymorphism as in ML. Our type system demonstrates tha t ML-style poly-
morphism can be brought cleanly and elegantly into the realm of traditional
imperative languages.

We establish a type soundness theorem that gives a rigorous and useful char-
acterization of well-typed Polymorphic C programs in terms of what can go
wrong when they are evaluated. Our approach uses a natural-style semantics
and a formulation of subject reduction based on Harper 's syntactic approach
[Har94]. It is simple and does not require a separate type semantics. We ex-
pect it to be useful in proving type soundness for a wide variety of imperative
languages having first-class pointers and mutable variables and arrays.

We begin with an overview of Polymorphic C in the next section. Then we
formally describe its syntax, type system, and semantics. Then, in Section 4 we
establish the soundness of the type system.

2 An Overview of Polymorphic C

Polymorphic C is intended to be as close to the core of Kernighan and Ritchie C
[KR78] as possible. In particular, it is stack-based with variables, pointers, and
arrays. Pointers are dereferenced explicitly u s i n g . , while variables are derefer-
enced implicitly. Furthermore, pointers are first-class values, but variables are
not. Polymorphic C has the same pointer operations as C. A well-typed Poly-
morphic C program in our system may still suffer from dangling reference and
illegal address errors. Our focus has not been on eliminating such pointer in-
securities, which would require weakening C's expressive power, but rather on
adding ML-style polymorphism to C, so that programmers can write polymor-
phic functions naturally and soundly as they would in Standard ML, rather than
by parameterizing functions on data sizes or by using pointers of type v o i d *.

Syntactically, Polymorphic C uses a flexible syntax similar to tha t of core-ML
of Damns and Milner [DAM82]. For example, here is a Polymorphic C function
that reverses the elements of an array:

let swap = ~x, y. l e t v a r t := *x in *x := *y; *y := t
in
let reverse = Aa, n. l e tva r i := 0 in

w h i l e i < n - 1 - i do
swap(a + i, a + n - 1 - i);
i : = i + 1

i n . . .

The construct l e t va r x := el in e2 binds x to a new cell initialized to the value
of el; the scope of the binding is e 2 and the lifetime of the cell ends after e2
is evaluated. Variable x is dereferenced implicitly. This is achieved via a typing
rule that says that if e has type r vat , then it also has type r.

As in C, the call to swap in reverse could equivalently be written as

swap(a[i], * a[n - 1 - i])

343

and also as in C, array subscripting is syntactic sugar: el[e2] is equivalent to
*(el +e2). Arrays themselves are introduced by the construct l e t a r r x[ex] in e2,
which binds x to a pointer to an uninitialized array whose size is the value of
el; the scope of x is e2, and the lifetime of the array ends after e2 is evaluated.

The type system of Polymorphic C assigns types of the form 7- vat to vari-
ables, and types of the form T ptr to pointers, a Functions swap and reverse given
above are polymorphic; swap has type

V~. a p tr x ~ p tr --~

while reverse has type
V s . a p tr x int -+ unit

Notice that pointer and array types are unified as in C. Also, variable and pointer
types are related by symmetric typing rules for & and *: if e : T var, then &e :
T ptr , and if e : ~- ptr, then *e : r var. Note that dereferencing in Polymorphic
C differs from derefereneing in Standard ML, where if e : T ref , then !e : r .

Polymorphic C's types are stratified into three levels. There are the ordinary
T (data types) and a (type schemes) type levels of Damas and Milner's system
[DaM82], and a new level called phrase types containing a types and variable
types of the form T vat . This stratification enforces the "second-class" status of
variables: for example, the return type of a function must be a data type, so that
one cannot write a function that returns a variable. On the other hand, pointer
types are included among the data types, making pointers first-class values.

Polymorphic C has been designed to ensure that function calls can be im-
plemented on a stack without the use of static links or displays. In traditional
imperative languages, this property has been achieved by rigidly fixing the syn-
tactic structure of programs. For example, in C, functions can only be defined
at top level. But such syntactic restrictions are often complex and unnecessarily
restrictive. In contrast, Polymorphic C adopts a completely free syntax, as in
core-ML. The ability to implement Polymorphie C on a stack, without static
links or displays, is achieved by imposing one key restriction on lambda abstrac-
tions: the free identifiers o f any lambda abstraction mus t be declared at top level.
Roughly speaking, a top-level declaration is one whose scope extends all the way
to the end of the program. For example, in the program

le t f in
l e t va r x : in
l e t a r r a[...] in f (. . .)

the identifiers declared at top level are f , x, and a. Although they are severely
restricted, Polymorphic C's anonymous lambda abstractions are convenient at
times. For example, we can write map(An, n + 1, [4,2,5]) without having to
declare a named successor function. Nevertheless, one might prefer a different
syntax for Polymorphic C; it should be noted that there would be no obstacle
to adopting a more C-like syntax.

3 We use ptr rather than ref to avoid confusion with C++ and ML references.

344

2.1 The Issue of Type Soundness in Po lymorph ic C

Much effort has been spent trying to develop sound polymorphic type systems
for imperative extensions of core-ML. Especially well-studied is the problem
of typing Standard ML's first-class references [Tof90, LeW91, SML93, Wri95].
The problem is easier in a language with variables but no references, such as
Edinburgh LCF ML, but subtle problems still arise [GMW79]. The key problem
is that a variable can escape its scope via a lambda abstraction as in

letvar stk := [] in ~v. stk := v :: stk

In this case, the type system must not allow type variables that occur in the type
of stk to be generalized. Different mechanisms have been proposed for dealing
with this problem [GMW79, VOS95]

In the context of Polymorphic C, however, we can adopt an especially simple
approach. Because of the restriction on the free identifiers of lambda abstrac-
tions, Polymorphic C does not allow a polymorphic value to be computed in an
interesting way; for example, we cannot write curried functions. For this reason,
we suffer essentially no loss of language expressiveness by limiting polymorphism
to syntactic values, that is, identifiers, literals, and lambda abstractions [Tof90].4

Limiting polymorphism to syntactic values ensures the soundness of poly-
morphic generalizations, but pointers present new problems for type soundness.
If one is not careful in formulating the semantics, then the subject reduction
property may not hold. For example, if a program can dereference a pointer to
a cell that has been deallocated and then reallocated, then the value obtained
may have the wrong type. Our semantics is designed to catch all pointer errors.

3 T h e P o l y m o r p h i c C L a n g u a g e

The syntax of Polymorphic C is given below. For the sake of describing the type
system, we need to distinguish a subset of the expressions, called Values, which
are the syntactic values [Tof90, Wri95] of the language:

(Expr) e ::= v I e(el,. . . ,e,~) I el := e2 I

&e I *e I e l + e 2 I el[e2] I el;e2 I
while el do e2 I

if el then e2 else e3 I

let x = e l ine2 I

letvar x := el in e2 I

le tarr x[el] in e~ I

(a, 1)

(Values) v ::= x I c I XXl, . . . ,xn.e I (a,O)

4 In the context of a language with first-class functions, limiting polymorphism to
syntactic values does limit the expressiveness of the language. But Wright argues
that even then the loss of expressiveness is not a problem in practice [Wri95].

345

Meta-variable x ranges over identifiers, c over literals (such as integer literals
and un i t) , and a over addresses. All free identifiers of every lambda abstraction
must be declared at top level; this restriction can be precisely defined by an
a t t r ibute grammar.

The expressions (a, 1) and (a,0) are variables and pointers, respectively.
These will not actually occur in user programs; they are included in the lan-
guage solely for the purpose of simplifying the semantics, as will become clear in
Section 3.2. Notice that pointers are values, but variables are not; this reflects
the fact that variables are implicitly dereferenced, while pointers are not.

The + operator here denotes only pointer arithmetic. In the full language, +
would be overloaded to denote integer addition as well.

A subtle difference between C and Polymorphic C is that the formal parame-
ters of a Polymorphic C function are constants rather than local variables. Hence
the C function f (x) (b) is equivalent to

le t f =)~x.letvar x := x in b in . . .

in Polymorphic C. Also, Polymorphic C cannot directly express C's internal
static variables. For example, the C declaration

f (x) { s t a t i c i n t n = O; b }

corresponds directly to the Polymorphic C expression

le t f = l e t va r n := 0 in Ax. b in . . .

but this violates the restriction on lambda abstractions if n is free in b. Such
functions must be transformed to eliminate static variables in favor of uniquely-
renamed global variables:

l e t v a r n := 0 in le t f---- Ax.b in . . .

3.1 T h e T y p e S y s t e m o f P o l y m o r p h i c C

The types of Polymorphic C are stratified as follows.

r ::--- a I int I unit I Tp t r I T1 x . . . •
a ::= V a . a I T
p ::---- a I Tvar

(data types)
(type schemes)
(phrase types)

Meta-variable a ranges over type variables. Compared to the type system of
Standard ML, all type variables in Polymorphic C are imperative [Tof90].

The rules of the type system are formulated as they are in Harper 's system
[Har94] and are given in Figure 1.5 It is a deductive proof system used to assign
types to expressions. Typing judgements have the form

)~ ;~/ t- e : p

5 For brevity, we have omitted typing rules for sequential composition, if, and while.

(VAR-ID)

(IDP.NT)

(PTR)

(VAR)

(LIT)

("r

(~-ELIM)

(LET-VAL)

(LET-ORD)

(LETVAR)

(LETARR)

(R-VAL)

(L-VAL)

(ADDRESS)

(ASSIGN)

(ARITH)

(SUBSCRIPT)

346

A; 3" b x : T var

A ; 3 ' b X : T

A;3" b ((i , j) , O) : r p t r

A;3" b ((i , j) , 1) : v v a r

A; ~ V c : in t

3"(x) = ~" var

3"(x) > r

A (i) = r

a (i) =

c is an integer l i teral

A; 3' F u n i t : un i t

A; 3'[xl : n , . . . ,x~ : r~] ~- e : r
A;3" t- A X l , . . . , X n . e : "rl x . . . X r n - ~ ~"

A;3"Fe:7-1 X. , .XTn~r ,
A;3' F ei : r i , l < i < n
A;3' F e (e l , . . . , e ~) : r

A;3' ~- v : n , A;3'[x : Close~ ; , y (n)] t- e : r2
A;3' t- l e t x = v in e :T2

A;3"~-e l : r l , A ; 3 " [x : r l] ~ - e 2 : r2
A ;3" b le t x = e l i n e u : T 2

A;7 I- el : ~'1, A;3"[x : vl var] }- e2 : 7"2
A; 7 i- l e t v a r x := el in e2 : T~

A; 3" b e l : in t , A; 3"Ix : ~'1 ptr] F e2 : T2

A; 3" ~- l e t a r r x[ex] in e2 : r2

A; "7 t- e : r var
A ; 3 " F e : r

A; "7 I- e : r p t r

A; '7 b *e : v v a r

A; "7 }- e : r var

A; 3' I- &e : T p t r

A ; 3 " t - e l : T v a r , A ; 3 " F e 2 : T

A; 3" t-" el := e2 : T

A; 3" }- e l : ~" p t r , A; 3" }- e2 : i n t

A; 3" I- e l + e2 : T p t r

A; 3" F e l : 7 p t r , A; 3" F e2 : in t

A; 3" b el [e2] : r var

Fig . 1. Rules of the T y p e System

347

meaning that expression e has type p, assuming that 7 prescribes phrase types for
the free identifiers of e and A prescribes data types for the variables and pointers
in e. More precisely, meta-variable 7 ranges over identifier typings, which are
finite functions mapping identifiers to phrase types; 7(x) is the phrase type
assigned to x by 7 and 7Ix : p] is a modified identifier typing that assigns phrase
type p to x and assigns phrase type 7(x ') to any identifier x' other than x.

Meta-variable)~ ranges over address typings, which are needed in typing the
values produced by programs. One might expect that addresses would just be
natural numbers, but tha t would not allow the semantics to detect invalid pointer
arithmetic. So instead an address is a pair of natural numbers (i, j) where i is
the segment number and j is the offset. Intuitively, we put each variable or array
into its own segment. Thus a simple variable has address (i, 0), and an n-element
array has addresses

(i, 0), (i, 1) , . . . , (i, n - 1)

Pointer arithmetic involves only the offset of an address, and dereferencing
nonexistent or dangling pointers is detected as a "segmentation fault". An ad-
dress typing then is a finite function mapping segment numbers to da ta types.
The reason it does not map addresses to data types is that nonexistent pointers
can be produced as values of programs, and such pointers must therefore be
typable if subject reduction is to hold. For example, the program

l e t a r r a[10] in a + 17

is well typed and evaluates to ((0, 17), 0), a nonexistent pointer. The notational
conventions for address typings are similar to those for identifier typings.

The generalization of a data type T relative to A and 7, written Close~;~(r),
is the type scheme V(~. T, where ~ is the set of all type variables occurring free
in v but not in ~ or in 7. We write A F e : T and Close)~(T) when 7 = 0. We
say that r ' is a generic instance of V6. T, written V(~. T > r ' , if there exists a
substi tution S with domain 6 such that ST = r ' . We extend this definition to
type schemes by saying that a _> a ' if a _> v whenever a ' > r . Finally, we say
that A; ~/F e : a if ~; 7 }- e : r whenever a > r .

The type system has the property that the type of a value determines the
f o rm of the value; also, an expression of type r vat can have only two possible
forms:

L e m m a 1 (C o r r e c t F o r m) . Suppose)~ F v : r . Then

- i f T is int, then v is an integer literal,
- i f T is unit , then v is uni t ,
- i f T is r ' ptr , then v is of the form ((i , j) ,O) , and
- i f T is T1 X . . . • V~ --~ rn+l, then v is of the form)~x l , . . . , xn .e .

Furthermore, if)~ F e : r var, then e is of the form ((i , j) , 1) or of the f o rm .e~. ~

Proof. Immediate from inspection of the typing rules. []

Note that this assumes that array subscripting is syntactic sugar.

348

A consequence of the last part of this lemma is tha t if A ~- e : T and e is not of the
form ((i , j) , 1) or .e ' , then derivation of the typing judgement cannot end with
rule (R-VAL). So the typing rules, for the most part, remain syntax directed. The
fact that variables can have only two possible forms is exploited in our structured
operational semantics, specifically within rules (REF) and (UPDATE).

3.2 T h e S e m a n t i c s o f P o l y m o r p h i c C

We give a structured operational semantics. A closed expression is evaluated
relative to a memory #, which is a finite function from addresses to values.
It may also map an address to d e a d or un in i t , indicating that the cell with
that address has been deallocated or is uninitialized. The contents of an address
a E dom(#) is the value/~(a), and we write #[a := v] for the memory that assigns
value v to address a, and value #(a ') to an address a' ~ a; #[a := v] is an update
of # if a E dom(#) and an extension of # if a r dora(#).

The evaluation rules are given in Figure 2. They allow us to derive judgements
of the form

~- e =~ v ,~ t

which asserts tha t evaluating closed expression e in memory # results in value v
and new memory #~.

We write [e~/x]e to denote the capture-avoiding substitution of e ~ for all free
occurrences of x in e. Note the use of substitution in rules (APPLY), (BIND),
(BINDVAR), and (BINDARR). It allows US to avoid environments and closures in
the semantics, so that the result of evaluating a Polymorphic C expression is
just another expression in Polymorphic C. This is made possible by the flexible
syntax of the language and the fact that all expressions are closed, including
lambda abstractions.

4 S e m a n t i c S o u n d n e s s

In this section, we establish the soundness of our type system. We begin by
using the framework of Harper [Har94] to show subject reduction, which basically
asserts tha t if F- e : 7- and t- e =~ v, #' , then t- v : T. But since e can allocate
addresses and they can occur in v, the conclusion must actually be that there
exists an address typing A ~ such that ,V t- v : r and such that #~ : A ~. The latter
condition asserts that A ~ is consistent with #~. More precisely, we say # : A if

1. dom() = {i I (i, 0) e and
2. for all (i , j) , A F- # ((i , j)) : A(i) if #((i , j)) is a value.

Note that A must give a type to uninitialized and dead addresses of #, but the
type can be anything.

Before giving the subject reduction theorem, we require a number of lem-
maN that establish some useful properties of the type system. We begin with a
fundamental type substitution lemma:

349

(VAL)

(CONTENTS)

(DEREF)

(REF)

(OFFSET)

(APPLY)

(UPDATE)

(BIND)

(BINDVAR)

(BINDARR)

p b v = ~ v , #

a E dom(iz) and #(a) = v
b (a, 1) ~ v , #

I- e ~ (a, 0), # '
a E dom(#') and # ' (a) = v
ju I-- *e ~ v, p '

p b &(a, 1) ~ (a , 0) , #

~- e =~ (a, 0), t~'
F ~ �9 e ~ (a,O)i~'

t- el =*" ((i , j) , O) , # l
#1 l- e~ ~ n, ~' (n an integer)
p t- el + e2 =~ ((i, j + n), 0), # '

�9 . , X n . e ,~1
#1 t- el ~ Vl,#2

~n F- en ::~ Vn,~-Ln+l
~,~+1 ~" [vl , . . . , v , J z l , . . . ,x,]e' =~ v,~'
I~ t" e (e l , . . . , e ,) ~ v ,# '

i~ l- e ::* v ,# '
a E dom(lz') and #'(a) ~ d e a d
p b (a, 1) : = e : : : ~ v , lz'[a:=v]

I- el =* (a ,O) ,# l
Pl ['- e2 =~ v, #2
a E dora(#2) and #2(a) ~ d e a d
p l - *el := e2 =*. v,#2[a :'-': v]

/.t I-" el =*. vl , #1
#1 ~- [v! /x]e2 ~ V2,~2
p t- l e t x = el in e2 =~ vz, tt2

p t- ex =~ Vl, #1
(i,O) r dom(tq)
#1[(i,0) :---- Vl] 1" [((i,0), 1)Ix]e2 ~ v2 ,~2

p t- l e t v a r x := el in e2 =~ V2,P2[(i,O) := d e a d]

p t- el ~ n, Pl (n a positive integer)
(i,O) r dom(#l)
#1[(i ,0), . . . , (i , n - 1):= unini t , . . . , uninit] b

[((i, o), o)/xle2 ~ v2, ~2
~- l e t a r r x[el] in e2 ~

v2, #2[(i, 0) , . . . , (i, n - 1) := d e a d , . . . , d e a d]

F ig . 2. T h e Evaluat ion Rules

350

L e m m a 2 (T y p e S u b s t i t u t i o n) . I f A; 7 t- e : ~-, then for any substi tution S ,
SA; S~/F e : ST, and the latter typing has a derivation no longer than the former.

L e m m a 3 (S u p e r f l u o u s n e s s) . Suppose that A;'y F- e : T. I f i r dom(A), then
A[i : r '] ; ~/~- e : r , and i f x r dom(^/), then A; ~/[x :p] F- e : T.

L e m m a 4 (S u b s t i t u t i o n) . I f A; 7 t- v : cr and A; 7Ix : a] }- e : r , then A; 7 }-
[v/x]e : r. Also if A;~/t- (a, 1) : T var and A;~/[x : r var] f- e : T ~, then A;~/ F
[(a, 1)/x]e: r'.

T h e preceding lemma does not hold for a rb i t ra ry expression subst i tut ion.

L e m m a 5 (V- in t ro) . I f A; ~/F e : v and a l , . . . , a,~ do not occur free in A or in
% then A;^/F- e : V a l , . . . , a n . T.

We can now give the subject reduct ion theorem:

Theorem6 (Subject Reduction). I f # f- e ~ v , # ' , A ~- e : r , and # : A, then
there exists A' such that A C_ A', #~ : A ~, and A' [- v : T.

Pro@ By induct ion on the s t ruc ture of the derivat ion of # ~- e ~ v, tt'. Here we
jus t show the (BINDVAR) and (BIND) cases.

(BINDVAR). The evaluation must end with

F- el =~ vl, ~1
(i ,0) r d o m (# l)
]~1 [(i, 0) :---~ Vl] ~- [((i, 0), 1)/x]e2 => v2, #2
t- l e t v a r x := el in e2 :=~ v2,tt2[(i ,0) :-- d e a d]

while the typing must end with (LETVAR):

A]-'el :T1
A; Ix : n var] t- e2 : "r2
A t- l e t v a r x := el in e~ : 75

and # : A. By induction, there exists A1 such tha t A C_ A1, #1 : A1, and A1 t- Vl :
T1. Since #1 : A1 and (i ,0) • dora(#1), also i r dora(A1). So A1 C AI[i : Vl]. By
rule (VAR),

Al[i : T1] }- ((i ,0) , 1) : T1 var

and by L e m m a 3,
A,[i: r l l ; [x : n var]

So we can apply Lemma 4 to get

AI[i: TI]F [((i ,O), l) /x]e2:7"2

Also, #1[(i ,0) := Vy] : AI[i : Vl]. So by a second use of induction, there exists A'
such tha t A 1 [i : T1] C_ A I, ~t 2 : A I, and A' F v2 : 7"2.

It only remains to show tha t #2[(i ,0) := d e a d] : A'. But this follows imme-
diately from #2 : A'.

351

Remark. What would go wrong if we simply removed the deallocated address
(i, 0) from the domain of the final memory, rather than marking it d e a d ? Well,
with the current definition of # : A, we would then be forced to remove i from
the final address typing. But then ~2 - i : A I - i would fail, if there were any
dangling pointers ((i , j) , 0) in the range of #2 - i. If, instead, we allowed A I to
retain the typing for i, then the next time that (i, 0) were allocated we would
have to change the typing for i, rather than extend the address typing.

(BIND). If el is a value vl, then the evaluation must end with

[-" Vl =~ v l , #

i - l e t x = v l i n e 2 ~ v 2 , p '

while the typing must end with (LET-VAL):

A F v l : r l
;~; [x : C l o s e , (n)] ~- e2 : r2
A t - l e t x = v l i n e 2 : r 2

and # : A. By Lemma 5, A }- vl : Close~(Tl), and so by Lemma 4, A b [vt/x]e2 :
T2. So by induction, there exists A I such that A c_ A I, #1 : AI, and A~ b v2 : v2.

The case when el is not a value is similar, but Lemma 5 is not required, and
induction is used twice. []

The subject reduction property does not by itself ensure that a type system is
sensible. For example, a type system that assigns every type to every expression
trivially satisfies the subject reduction property, even though such a type system
is useless. The main limitation of subject reduction is that it only applies to well-
typed expressions that evaluate successfully. Really we would like to be able say
something about what happens when we attempt to evaluate an arbi t rary well-
typed expression.

One approach to strengthening subject reduction (used by Gunter [Gun92],
for example) is to augment the evaluation rules with rules specifying that cer-
tain expressions evaluate to a special value, T y p e E r r o r , which has no type.
For example, an a t tempt to dereference a value other than a pointer would
evaluate to T y p e E r r o r . Then, by showing that subject reduction holds for the
augmented evaluation rules, we get that a well-typed expression cannot evalu-
ate to T y p e E r r o r . Hence any of the errors that lead to T y p e E r r o r cannot
occur in the evaluation of a well-typed expression. Aside from the drawback of
requiring us to augment the evaluation rules, this approach does not give us as
much information as we would like. It tells us that certain bad things will not
happen during the evaluation of well-typed expression, but says nothing about
what other bad things can happen.

We now present a different approach leading to a type soundness theorem
that characterizes precisely everything that may go wrong when we a t t empt
to evaluate a well-typed expression. First, we note that a successful evaluation
always produces a value:

352

L e m m a 7 . If p t- e ~ v ,# ~, then v is a value and #~ is a memory.

Roughly speaking, the combination of the subject reduction theorem and the
correct forms lemma (Lemma 1) allows us to characterize the forms of expres-
sions that will be encountered during the evaluation of a well-typed expression.
This will allow us to characterize what can go wrong during the evaluation.

To get a handle on the "progress" of an at tempted evaluation, it is helpful to
recast the evaluation rules as a recursive evaluation function, eval. For example,
the (UPDATE) rules correspond to the clauses

eval(#, (a, 1) := e) =
le t (v, #') = eval(#, e) in

i f a E dora(#') a n d #'(a) r d e a d t h e n
: = v])

else
fail;

eval(IJ, *el := e2) =
le t ((a,0),iZl) = eval(#,el) in
le t (v,#2) = eval(#l,e2) in

i f a e dora(p2) a n d #2(a) ~t d e a d t h e n
: =

else
fail;

Introducing eval allows us to talk about type soundness in terms of what happens
when eval is called on a well-typed program.

Def in i t ion 8. A call eval(#, e) is well typed iff there exist A and r such that
p : A and A F - e : v .

D e f i n i t i o n 9. An activation of eval aborts directly if the activation itself aborts.
Note that an activation does not abort directly if it makes a recursive call tha t
aborts or does not terminate.

We can now show the key result for type soundness:

T h e o r e m 10. Suppose that an activation eval(l~, e) is well typed. Then every
recursive call made by the activation is well typed. Furthermore, if the activation
aborts directly, it aborts due to one of the following errors:

El . An attempt to read or write to a dead address (i , j) .
E2. An attempt to read or write to a nonexistent address (i , j) . Address (i,O)

always will exist, so the problem is that the offset j is invalid.
E3. An attempt to read an uninitialized address (i , j) .
E4. An attempt to declare an array of size less than or equal to O.

353

Proof. We just consider all possible forms of expression e. Here we just give the
case el := e2; the other cases are quite similar.

If evaI(#, el := e2) is well typed, then there exist A and r such tha t # : A and
A b el := e2 : r . The latter typing must be by (ASSIGN):

A J- e l : T var
A F e 2 : r
A I - e l : = e 2 : r

By Lemma 1, el must be of the form ((i , j) , 1) or else of the form *e~. So,
simplifying notation a bit, we are left with two cases: (a, 1) := e and *el := e~.
Note that there is a clause of eval that applies to each of these. We consider the
two cases in turn.

If the activation is eval(#, (a, 1) := e), where/~ : A and A [- (a, 1) := e : r ,
then the typing must end with (ASSIGN):

A b (a, 1) : r var
A b e : r
A F (a, 1) := e : r

So by (VAR), A(i) ---- T, where a = (i , j) .
Also, the recursive call evaI(#, e) is well typed. If this call fails to return,

then the parent activation evaI(l~, Ca, 1) := e) doesn't abort directly. If the call
succeeds, then by Lemma 7 it returns a value v and a memory #' , so the pat tern-
match ' le t (v, #') = eval(#, e)' doesn't abort.

By the subject reduction theorem, there exists ,V such that A c_ A', # ' : A t,
and A t ~- v : r . Hence At(i) = r , and so (i, 0) e dom(#t).

So the only way for the activation eval(#, (a, 1) := e) to abort directly is if
(i , j) f[dom(#') or # ' ((i , j)) = dead . And since (i,0) �9 dom(~t), we know that
if the first case holds, the error is in the offset j .

If the activation is eval(#, *el := e2), where # : A and A ~- *el := e2 : T, then
the typing must end with (L-VAL) followed by (ASSIGN):

A ~ el : r ptr
A F . e l : r var
A b e 2 : r
Al-*e l : --e2:7"

So the recursive call evalClz, el) is well typed. If this call fails to return, then the
parent activation eval(#, *el := e2) doesn't abort directly. If the call succeeds,
then by Lemma 7 it returns a value vl and a memory/~1.

By the subject reduction theorem, there exists A1 such that A c_ A1, #1 : A1,
and A1 ~ Vl : T ptr. So by the Correct Form lemma, Vl is of the form ((i , j) ,0)
hence the pat tern-match ' let ((a, 0), #1) = eval(#, el) ' doesn't abort . Also, by
(PTR), A1 (i) -- T.

By the Superfluousness Lemma, A1 b e2 : v, so the recursive call eval(#l , e:)
is also well typed. If this call fails to return, then the parent activation doesn' t

354

get stuck. If it succeeds, then it returns a value v and a memory #2, so the
pat tern-match ' le t (v, #2) = eval(#l, e2)' doesn't abort. By the subject reduction
theorem, there exists ~ such that ~1 C A~, #2 : ~ , and A~ t- v : r . Hence A~(i) = T,
and so (i, 0) E dom(l~2).

So the only way for the activation eval(#, *el := e2) to abort directly is if
(i , j) ~ dora(#2) or #2((i , j)) = dead . And since (i,0) E dora(#2), we know that
if the first case holds, the error is in the offset j . []

C o r o l l a r y 11 (T y p e S o u n d n e s s) . IrA }- e : r and ~ :)~, then eval(#, e) either

1. succeeds (producing a value of type r), or
2. fails to halt, or
3. aborts due to one of the errors El , E2, E3, or E4.

Proof. Any call must either succeed, fail to halt, or abort.
If the call aborts, then one of its recursive activations must abort directly.

Now this activation must have been reached by a finite path of recursive calls
from the root call eval(#, e). Since the root call is well typed, by Theorem 10
all the calls on the path are well typed. So the activation that aborts directly is
well typed. Hence by Theorem 10 it aborts due to one of the errors E1-E4. []

5 Discuss ion

The semantics specifies that an implementation is under no obligation to preserve
the contents of variables beyond their scope, which in turn justifies a stack-based
implementation. Further, there is no need for static links since all functions
in Polymorphic C are closed with respect to top-level declarations. It is also
interesting to note that in light of this closure property, there would be no need
to specify in the semantics that a variable dies at the end of its scope if there
were no & operator. The variable would simply be unreachable in this case.

To maintain subject reduction, the semantics also ensures that any program
with pointer errors does not produce a value. This requires a number of mecha-
nisms, for example, keeping track of cells that have been deallocated, that we do
not expect to see in any realistic implementation of the semantics. We believe
that an implementation, for the sake of efficiency, should be able to do whatever
it likes on programs that do not yield values, and hence are in error, accord-
ing to the semantics. For example, the semantics does not prescribe a value for
dereferencing a dangling pointer. So it would be acceptable, upon an a t tempt
to dereference such a pointer, for an implementation to merely return the last
value stored there, as in C, rather than detect an error.

Given that a real implementation would not catch pointer errors, what then is
the practical significance of our type soundness theorem? Two things can be said.
First, the theorem gives a characterization of the source of er rors- - i t tells us that
when a program crashes with a "Segmentation fault--core dumped" message,
what causes the crash is one of the errors E l -E 4 and not, for example, an invalid
polymorphic generalization. Second, by directly implementing our semantics, one
can get a robust "debugging" implementation that flags all pointer errors.

355

6 Conclus ion

Advanced polymorphic type systems have come to play a central role in the
world of functional programming, but so far have had little impact on traditional
imperative programming. We assert that an ML-style polymorphic type system
can be applied fruitfully to a "real-world" language like C, bringing to it both
the expressiveness of polymorphism as well as a rigorous characterization of the
behavior of well-typed programs.

Future work on Polymorphic C includes the development of a type inference
algorithm (preliminary work indicates that this can be done straightforwardly),
the development of an efficient implementation (perhaps using the work of [Le92,
ShA95, HAM95]), and extending the language to include other features of C,
especially structures.

References

[DAM82]

[GMW79]

[Gun92]

[Har94]

[HAM95]

[KR78]

[LeW91]

[Le92]

[ShA95]

[SML93]
[Tof90]

[VoS95]

[Wri95]

Damas, L. and Milner, R., Principal Type Schemes for Functional Programs,
Proc. 9th A CM Symposium on Principles of Programming Languages, pp.
207-212, 1982.
Gordon, M., Milner, R. and Wadsworth, C., Edinburgh LCF, Lecture Notes

in Computer Science 78, Springer-Verlag, 1979.
Gunter, C., Semantics of Programming Languages: Structures and Tech-
niques, MIT Press, 1992.
Harper, R., A Simplified Account of Polymorphic References, Information
Processing Letters, 51, pp. 201-206, August 1994.
Harper, R. and Morrisett, G., Compiling Polymorphism Using Intensional
Type Analysis, Proc. P~nd A CM Symposium on Principles of Programming
Languages, pp. 130-141, 1995.
Kernighan, B. and Ritchie, D., The C Programming Language, Prentice-Hall,
1978.
Leroy, X. and Weis, P., Polymorphic Type Inference and Assignment, Proc.
18th ACM Symposium on Principles of Programming Languages, pp. 291-
302, 1991.
Leroy, X., Unboxed Objects and Polymorphic Typing, Proc. 19th A CM Sym-
posium on Principles of Programming Languages, pp. 177-188, 1992.
Shao, Z. and Appel, A., A Typed-Based Compiler for Standard ML, Proc.
1995 Conf. on Programming Language Design and Implementation, pp. 116-
129, 1995.
Standard ML of New Jersey, Version 0.93, February 15, 1993.
Tofte, M., Type Inference for Polymorphic References, Information and
Computation, 89, pp. 1-34, 1990.
Volpano, D. and Smith, G., A Type Soundness Proof for Variables in LCF
ML, Information Processing Letters, 56, pp. 141-146, November 1995.
Wright, A., Simple Imperative Polymorphism, Lisp and Symbolic Computa-
tion 8, 4 pp. 343-356, December 1995.

