
D u r a t i o n s for T r u l y - C o n c u r r e n t T r a n s i t i o n s

Eric Goubault*

Abs t r ac t

In this article we take a rather different view on models for real-time systems. First of
all, transitions are not instantaneous. They really bear time changes. Secondly, the model
is of geometric inspiration (following the ideas of [24]). It is intuitively clearer than other
models in that executions can really be pictured as curves (or "trajectories"). Finally it is
based on a model of true concurrency which can express scheduling properties (see [12]).
We present the model in a very progressive way, starting from ordinary transition systems,
then going through some truly concurrent operational models, to end up with a fully
formalized model for real-time systems (with an application to a subset of timed CCS). The
model (timed higher-dimensional automata or timed HDA in short) is made into a category
where morphisms are simulations. It is shown to have many interesting algebraic (complete,
co-complete, cartesian dosed, monoidal closed) and computer-sclentific properties (the
timing laws axe given naturally by the categorical combinators). A discussion of important
matters such as fairness and Zeno is also provided.

1 I n t r o d u c t i o n

In [15], real-time models were considered good enough if they were r e f inab le , d i g i t i z a b l e , and
o p e r a t i o n a l . This means in particular tha t we should be able to look at a real-time system
at different levels of precision (this rules out formalisms depending on a base of time) and tha t
its description should be based on systems of transitions. Timed au tomata [3], generalizing
finite state machines over infinite strings by adding a finite set of real-valued clocks verify these
requirements. The same holds for t imed transition systems [16] which extend the formalism
of transit ion systems by imposing t iming constraints on transitions. In the first model, s tates
are waiting periods for clock constraints to be satisfied and in the second one, transit ions are
i n s t a n t a n e o u s as well but are due to occur within precise t ime hounds. This is not a natural
view on real-time systems. A transition should really t a k e t i m e in the sense tha t it corresponds
to an abstraction of some computation. As a mat te r of fact, we asked for refinability so we
cannot assume actions to be only "elementary" - almost instantaneous - ones. Unfortunately
models for real-time concurrent systems having transitions bearing time changes can no longer
be based on ordinary transit ion systems since interleaving of two actions a, b will result in
having an execution t ime equal to the sum of the t imes a and b take. This obviously ruins
all future reasoning and explains why this natural idea has never been formalized up to now
(except in some restricted way in [7]). A solution is to follow a t r u l y c o n c u r r e n t operational
approach. These approaches are discussed in Section 2.1. As more generally scheduling policies
of processes onto processors have a direct impact on the measure of t ime 1, it appears tha t we
need more than that . We need to be able to describe the l eve l o f p a r a l l e l l s m , i.e. the number
of busy processors at a given time. Some work has been done on this [14] and is introduced in

*LIENS, ~_~cole Normah Sup~rieure, 45 rue d 'Ulm, 75230 Paris Cedex 05, FRANCE,
emall :goubaul t @dml .ens ~h"

1 In most work on analysis of real-time languages, a "maximal parallelism" assumption is assumed. This
clearly is too rigid when it comes to real machines, and leads to complicated discussions when one wants to
change the scheduling policy in a semantics.

174

Section 2.2. The main idea is to conceive executions as g e o m e t r i c shapes . Ordinary transition
systems can already be thought of as one-dimensional t r a j ec to r i e s . Then the asynchronous
execution of n actions is a trajectory (or transition) of dimension n. It is fully formalized in
Section 2.2. We carry on by realizing these shapes in some euclidean space IR n (Section 2.4)
as a basic step towards having execution time of transitions measured by their l eng th . This
situation is abstracted in Section 3.1 where the length depends on a norm associated with
every transition. We construct a category of models (timed HDA) by defining morphisms to be
"simulations" (as in recent work in concurrency, [31]). A correctness criterion with respect to
untimed semantics is obtained by forgetting the geometry and the norms (Section 3.3). Fairness
(Section 3.2) is also discussed. In Section 3.4, Zeno behaviours are shown to be of a topological
nature. Similarly to fairness properties, we propose to give a choice between allowing or not
these behaviours. Finally in Section 4, the model is shown to be n a t u r a l in the sense that
parallel composition, non-determistic choice, etc. with suitable timing laws are categorical
combinators in the category of timed HDA. Moreover the model covers d i f fe ren t p a r a d i g m s
since synchronized product and function spaces are again natural constructions. The category
of timed HDA is actually a model for non-commutative intuitionistic l i n e a r logic. It has then
enough categorical properties for being used for d e n o t a t i o n a l (or c a t ego r i ca l) s eman t i c s .
A SOS-like metalanguage is defined for the operational semanticians. We give an application
in Section 5 (timed CCS).

2 Unt imed higher-dimensional automata

We begin by presenting a very simple geometric model for true concurrency, based on ideas by
Vaughan Prat t and Rob van Glabbeek [24], [29] and formalized in different ways in Ill], [14].

2 .1 A n i n t r o d u c t i o n t o H D A

Operational models for concurrency start with (ordinary) transition systems. A transition
system is a structure (S , i ,L ,Tran) where S is a set of states, i is the initial state, L is the set of
labels and T r a n C S x L x S is the transition relation. This definition has already some geometry
in it since we are all used to represent them as arrows (transitions) between states (points or
small circles). This does not fulfill the aim we had at the beginning, i.e. it does not provide us a
semantics stable by refinement [30] nor it distinguishes non-determinism from truly concurrent
(or asynchronous) execution. This should be fixed (as said in the introduction) before using it
as a basis for real-time modeling. A possible answer is to decorate the transition systems with
some relation prescribing the independence of some actions (or transitions). This can be done
in more than one manner; just to mention a few: asynchronous transition systems [6], [27],
concurrent automata [28] and transition systems with independence [31]. We comment on the
former only, since exhaustivity would be too space consuming. Asynchronous transition systems
are equipped with an irreflexive symmetric binary independence relation I on actions verifying
a few conditions. The most important is that independence of actions means confluence of
the transition relation for the actions involved. This decoration on ordinary transition systems
(the independence relation I) is enough to make the distinction between non-determinism and
true concurrency. Suitable refinement operators can be defined as well on these structures.
There is a slight problem though. The level of parallelism is not defined in a very precise
manner. This is due to the fact that the independence relation is only a binary one. Of
course, a straightforward generalization would be to replace the binary relation I by an n-
ary relation. This could be done (though we do not have any pointers in the literature) but
the generalization to real-time concurrent systems seems too heavy work (how to measure
time for asynchronous executions?). This can be tackled if we get back to our geometric
intuition. Things have been made overly unnatural by adding an object (the independence
relation) which is not of the same nature as transitions and states. Just think of aIb as an

175

Figure 1: Non-determinism (i) versus overlap in time (it) abstracted by a transition of dimension
2 (iii).

(i) (ii) (iii)

abstraction of all possible asynchronous executions of a and b. As in [24], this can be pictured
as the filled-in square of the right-hand side of Figure 1, distinguishing it in a striking manner
with the interleaving at the left-hand side of the same figure. Notice that geometrically, the
interior of the square consists of the union of all paths where executions of a and b overlap "in
time" (middle picture of Figure 1). Time already makes its way into the model, though not
quantified yet. As a direct generalization, asynchronous execution of n transitions give rise to
hypercubes of dimension n, called n-transitions (ordinary transitions are 1-transitions, states
are 0-transitions). Interestingly enough, all this has a very neat algebraic formulation.

2 .2 F o r m a l i z a t i o n

We present the geometric shapes we are interested in as unions of points, segments, squares,
etc. hypercubes, i.e., as collections of n-transitions (n E IN). We glue them together by means
of boundary relations (see Figure 2), given by two boundary operators: d o , the start boundary
operator and d 1 the end boundary operator. They generalize the source and target functions
for ordinary automata.

(0, O) --.- '~ (0, i)

Consider the square, bl Z b'l �9 This corresponds to the asynchronous execution of actions

(1,'0) a---~ (I,' I)
a and b (a I and b I are copies of transitions of label a and b respectively). The object of dimension
2 "interior of the square" A should certainly have two source boundaries, up to the order on
{a, b}, d~ = a and d~ = b since from state (0, 0) we can fire a and b. Similarly, it should
have two target boundary operators d~(A) = a' and d](A) = b' since from the parallel execution
of a and b (represented by A) we can end first action a (giving "residue" b') or action b (giving
"residue" al). We will see that again when speaking about paths. Notice that with this ordering
on vertices, we have, d~176 = (0, O) = d~176 and d~(~(A)) = (1, 0) = d~(d~(A)). We
can show that for any hypercube of dimension n, we can choose an ordering on vertices, squares
etc. such that the 2 * n boundary operators verify the commutation rules 2, d~ o d} = d}_ 1 o d~
for k = 0, 1, l = 0, 1 and i < j (o is the ordinary composition of functions). Now we can g lue
these elementary shapes in order to get ttDA. This is exemplified in Figure 2. We verify on the
example the commutation rule between the source and target boundary operators d o and d 1
respectively. We can then introduce these formally under the name of unlabeled semi-regular
HDA.

Def in i t ion 1 A semi.regular HDA is a collection of sets Mn (n E IN) together with functions
. i o

Mn ~-~ U n - I for a l ia E IN andO < i , j < n - 1, such that dklod~ = d t od~
- - j - 1 dJ

(i < j , k , l = O , 1) andVn, m n # m , M n N M m = ~ .

2 Very much alike the ones we have for simpllcial complexes. Ideas of many constructions of the article
actually come from combinatorial algebraic topology.

176

M0

Xa

XI3
X?

Xa

XE

X~

Figure 2: Glueing of elementary shapes to get a semi-regular HDA.

M I M 2 / 4 ~ I-IDA M

, 9 / ,

C V d '

d ~ Boundary functions 8

c ' a b c d c ' d '
0

d = a a T "[8 r
d' 0 0

). d =
1 1

1 0
d =

!

C

c

Id
C'

d'

Elements z of M , (dim z = n) are called n-transitions (or states i fn = 0). In order to be able
to study "natural" constructions on HDA, we define a notion of m o r p h i s m between them. As
customary in recent work in concurrency [31], morphisms look like s imula t ions . In geometrical
terms, morphisms preserve shapes (every n-transition is mapped onto a n-transition), t ime and
orientation.

D e f i n i t i o n 2 Let M and N be two semi-regular IiDA, and f a family fn : M , --, iV, of
functions, f is a morphism of semi-regular HDA if and only i f fn o d~i -- d~ o fn+l and fn o d~ =
dli o f ,+l for all n G IN, 0 < i <_ n.

This defines the c a t e g o r y T,r of semi-regular HDA.

Now, traces of execution are described as sequences of states and transitions satisfying certain
properties. A p a t h is to be understood as a sequence of allocation (case (ii) below) of one
action at a time on a new processor or deallocation (case (i) below) of one action at a time (i.e.
its execution has ended on a given processor). An example of a path in an automaton M is
given in Figure 3 together with its inclusion morphism into M (M simulates all of his paths).

De f in i t i on 3 A path in a semi-regular HDA M is p = (P0 , . . . ,P ,) such that Po and Pn arc
states and Vk, O < k < n, 3j, Pk = dJ (p~ - l) (i) or, Pk = d~j(p~+l) (i i)

The definition of paths explains why the morphisms are (higher-dimensional) simulations. The
commutation with the start boundary operator d o for example can be seen as asserting: "when-
ever M fires a new action, N fires a similar one".

Properties of the category of semi-regular HDA will be seen as a special case of those of timed
HDA in Section 4.

2 . 3 F r o m t h e u n t i m e d t o t h e t i m e d w o r l d

In the formalization, we have forgotten the geometry. Let us have it back. As a matter of fact,
in order to introduce time into the model we already have, we are going to represent transitions

177

Figure 3: A path and its inclusion morphism in a semi-regular HDA.

a Po ~,~ A 2 p 4

as real continuous geometric objects. Continuous geometry is good for measuring time: the
principle here is to have time measured by the l e n g t h of transitions (or paths). Traces are then
real t r a j ec to r i e s as in mechanics. This is close to intuition, contrarily to most approaches (see
[22] for an excellent overview of these approaches), t r a n s i t i o n s take t i m e 3. Being interested
by program analysis, where transitions are in fact abstractions of some complex process, this
approach is very natural. In particular refinement comes then for free (look at Figure 6 for art
easy example).

Recovering the geometry will be done in the same style as the geometric realization functor
between simplicial sets and CW-complexes (see for instance [20] or [10]). We associate with
every n-transition x a unit cube of dimension n in IK n, nn = {(to tn)/Vi, 0 <_ ti < 1}. Then,
similarly to the process seen in Figure 2, we glue these cubes together according to the values
of the boundary functions. In order to do this, we need to define functions characterizing the
boundaries of these unit cubes in IR n. Let 6/k, 0 _< i _< n, be the continuous functions (n > 0)
from Dn_l to On with 6~(to , . . . , t n -1) = (to t i - l , k , t i tn-1). They describe how the
boundaries of a cube can be included into it. Then 5i ~ o 6J = 6J+ 1 o 6/k, (i < j). Consider now,
for a semi-regular HDA M, the set R(M) = U (z, On). Each (x, I::1,) inherits a topology

n,zEM~
given by the standard one on R n+l, thus R (M) is a topological space with the disjoint sum
topology. Let -- be the equivalence relation (the "glueing" relation) induced by the identities:
Vk, i, �9 E M,+I , t e On, n > O, (d~(x), t) - (x,6/k(t)). Let I M I= R (M) / =_. It has a
structure of topological space induced by R (M) . I M I is called the geomet r i c r ea l i za t ion
of M. It is easy to make this construction into a functor from T s r to Top, the category of
topological spaces with continuous maps. As observed in [10], we can actually work in K e
the full subcategory of Kelley spaces (i.e. compactly generated topological spaces 4, [1]) instead
of the entire category Top. The geometric realization functor has then fairly nice properties.
When taken in value in K e it commutes with finite inverse limits and all eolimits. All this
gives us a hint about how to define timed higher-dimensional automata. A first step towards a
general definition is given in next section.

2 . 4 T i m i n g a s e m i - r e g u l a r H D A

Let M be a semi-regular HDA. The standard way in mathematics to measure the length (time)
of transitions in I M I is to have a norm I1.1]~ on the tangent space at every z E M of the
shapes we have. Then the length of a transition a is the integral of the speed dt ~(t)
for a parametrization 7 of a (it does not depend on the parametrization chosen). I M I has
a well known differential structure. On every transition of dimension n, we put the norm
I]ul unl} = maz{I ul I I un 1}. The norm chosen corresponds to giving all
I-transitions the unity duration and to have that when n processes run asynchronously, the
time to complete them is the maximum of the times necessary to complete each of them,

SThere have been some semantics in which transitions take time in some way [2, 19], but they relied on
coding this explicitly in the term language. Our approach is language independent.

4 A Kelley space is a Hausdortf topological space X such that a subset F of X is closedwhenever its intersection
with each compact subspace of X is closed. In particular, locally compact spaces are Kelley spaces.

178

S o

o

Figure 4: Deformed cubes

x2

as already observed in [24]. This corresponds to our view of independent processes running
asynehronously. For instance, in Figure 3, the geometric realization of the path is of length
2. The fully synchronous execution in the automaton at the right-hand side (the diagonal of
the square from the starting point to the end) is of length 1. This view to timed HDA, if
encouraging, is not yet satisfactory. We have a very r ig id notion of time in the sense that the
norm has to be chosen uniformly for all transitions. In general, the interaction between actions
makes the norm (or "local cost of computation") vary as one of the actions takes over the others
(i.e. as we approach the boundaries, or interleavings). We only have to abstract away from
a so concrete representation in order to get what we need. Look for instance at the classical
billiard example (Figure 6): the representation of transitions has been chosen in order to fit to
the trajectory of the ball; states are then the coordinates of the point representing them. The
picture will become more general in next section.

3 T i m e d higher-dimensional automata

3.1 Basic def init ions

First of all, we need a geometric shape X to define a timed HDA, i.e. we need a topological
space. There are many kinds of topological spaces. We have seen that t iming semi-regular HDA
only requires Kelley spaces 5. A good point is that they have very good algebraic properties:
they form a complete and cocomplete cartesian closed subcategory of Top [1].

Then we have to give a differential structure on X to be able to measure time. This is difficult
to do so in full generality. In particular, when it comes to algebraic properties, differential
manifolds are difficult to handle 6. We therefore choose to present here a very particular math-
ematical object, in which the differential structure is given by the transitions. Thus we have
to look at transitions now. Intuitively they should be sort of d e f o r m e d cubes (see Figure
4). This leads us to define them as almost inclusion functions, i.e. as continuous functions
z : 13, - . X (called singular cubesr They are required to be continuously deformed cubes

5This is purely a technical point for having good categorical constructions. It does not affect in any manner
the geometric intui t ion underlying the model we are presenting.

6Quotients, function spaces are hard work (they need submersion theorems and infinite dimensional differ-
ent ial geometry respectively).

7By analogy with singular simplices, [20].

179

Figure 5: Delay transit ions (left) and t imeout HDA (right).
I

y,,
I

t = l >

t = l . 5 ~
O t x

only in their interior since we may want to identify some of their boundar ies to get cyclic shapes .
This is formalized by saying tha t all singular cubes x : 13n ~ X induce homeomorph i sms f rom s

dl, to their images 9. Moreover, we want X to be covered by all its t ransi t ions, i.e. we im-

pose {x(•n) /n E ~4, t e Xn} to part i t ion X, i.e. X is the disjoint union U x(t~n).
nEg'l,xEX~

We should be able to take boundaries, i.e. the collection of s ingular cubes should he s table

by compos i t ion wi th 6~ (by Section 2.3). Finally, on every tangent space T=X =de1 Txu(i~n)

(where = ~ u (S .) , . ~ X .) of X at x ~ X we have a no rm II-II, such t h a t F (= , ~) -- II~ll. is
a cont inuous funct ion 1~ The norm can be seen as an i n f i n i t e s i m a l c o s t for the compu ta t ion
at some point . To sum up things,

D e f i n i t i o n 4 A (unlabeled) timed HDA is a Kelley space X together with a presentation of X
by singular cubes. This means that we have sets Xn containing singular cubes x : ran -'* X
stable by composition with 6~ (c = O, 1, 0 < j < n - 1). Moreover we impose the following
conditions on X 11,

�9 {z (t~n) /n E ~ / , z E Xn} partition X ,

�9 all singular cubes x : ran --* X induce homeomorphisms from dln to its image.

�9 X is given a family of norms II'll, on every tangent space TxX = {(x, x)} (where x E

u(eJn), u E Xn) of X such that F (z , k) = I1~11= is a continuous function

E x a m p l e 1 (see Figure 5)

�9 Let X t (t E IR) be the timed HDA generated by the unique 1-transition Az.tz : ra 1 --.*
trat = {0 < zt <__ t}. trax is equipped with the norm II~ll~ =1 ~: I. We will see that it is a
delay transition of duration t (similar to the 6t operator of timed CCS [21]).

�9 Define Tt to be the upper half circle of diameter t centered at coordinates (�89 in the
plane IK 2 (with its standard basis). R is given the structure of a timed IYDA with the
norm induced by the euclidean one in hr~ 2, and with the covering of 1-transitions (for
0 E [0, ~r/2]) zs : ml --* Tt, us(u) = (tucos2(O),tusin(O)cos(O)). We will see that it allows
us to represent a timeout operator (t is the mazimum waiting time).

When X is a t imed HDA, it is easy to see that the collection of sets Xn defines a semi-regular
HDA. We define in a similar manner morphisms of t imed HDA,

S~n denotes the topologicalinterior of 13n i.e. ~n = {0 < ti < 1}, n > 1 and ~0 = {0}.
9Therefore the singular cubes give a (trivial !} structure of manifold to all the x(~.) .

l~ F is at least C 3 then this defines a Finsler space ([26]). Recall that a norm F verifies the properties,
Vk E Ft, F(x,k~) =l k I F(x,.§ F(x, tb) > 0 and F(x,~) = 0 if and only if ~ = 0, and Vx, ~ and ~',
F(=,~ + ~') < F(=,~) + F(=,~').

11 Which m~ke it into a combinatorial cell complex in the terminology of [18].

180

Figure 6: A t imed HDA representing a billiard ball trajectory (i), and a refined version (ii).
r . �9
,,
I i
I I
i �9 s ~ I
I ~_ t I

I I
I I
I

(i)

i
I i
I i
I

(ii)

D e f i n i t i o n 5 Let X and Y be timed HDA. A continuous function f : X ---, Y is a morghism
of timed HDA if and only if,

(i) for all n-transition x E Xn, y = f o z is a n-transition (i.e. y E Yn).

(i i) f commutes with all the boundary operators.

Actually, since we are in a very special case, (i) implies tha t f is differentiable on every manifold

z(d]n) since f is then the identity function in the local coordinates, thus a C ~ diffeomorphism.
(ii) can be seen to be partly redundant as well. We write T T for the category of timed HDA.
Notice tha t no requirement has been made on the way morphims behave with respect to time.
Choices are not so easy for "computer-scientific" reasons as well as for "technical reasons' '1~.
Nevertheless, we will consider two subcategories of TT, TT= whose objects are timed HDA and
whose morphisms f : X --* Y preserve time (are isometrics), i.e. Ildf(u).611~(u) �9 x = Ilullu (where
df is the differential of f), and TT< whose objects are timed HDA and whose morphisms f

contract time, i.e. Ildf(u).all~) _< i/all xla.
Now, labeled timed HDA are morphisms 1 : P --+ L, where L is the "labelling" automaton. 1
is nothing but the canonical projection associated with the equivalence "having the same label
as" on transitions. If we are in T T = or TT< then the labelling prescribed the allowed durations
of transitions.

Timed HDA are in particular semi-regular 8DA with boundary operators d~(z) = ~ o 6~
(where z is a n-transit ion z : t3n --. X). As such we know what a path in it is (we may add
in particular initial and final states to timed HDA). But it is not clear though how to decide
how much t ime a transition may take. To answer this question we define "virtual paths" in
a t imed HDA X as being particular curves on X which paths are in some way abstractions
of. Basically, they are continuous functions 7 : [0, oo[--+ X such that there exist open intervals
Ik =] a k , ~ + l [, n~-transitions z k, k = 0 m - 1(or ~) with ~ Ik = [0,1]\{ai} (disjoint

union) and 3"b~ : Ik --- zk(/h,~). Moreover, "rbk must be a differentiable function (Ik has the

s tandard differentiable structure of IR) and (zk)~ "1 o 71z, (0 < i < nk) should be increasing
maps. The set of virtual paths from a point u to a point v is denoted by ~2(u, v). To determine
the t ime tha t a path takes from its initial to its final point we use the metric generated by the
norm on T X 14.

D e f i n i t i o n 6 (see [26]) The distance (or time) inf between two points u and v in X is defined to
be as (with value in IRUoo), ~x (u, v) = inlay(., .) f o II~(t)ll~(,)dt. We have atso the distance

(or time) sup between two points (with value in IRUoo), T~X (u, v) = sup.rev(u,v)] ~ II~(t)ll~r
1 2 C a t e g o r i e s o f m e t r i c s p a c e s , h e n c e c a t e g o r i e s w i t h n o r m s , d o n o t h a v e v e r y g o o d a l g e b r a i c p r o p e r t i e s i n

general. One must be careful when defining morphisms !
13Called conservative or non-expansive functions in categories of generalized metric spaces.
14Thls is very close to the intuition behind the metric spaces models for real-time of [25].
lSWhere the integrah are in fact the sum of the integrals on the open intervals Ik

181

T~ x defines actually a distance function thus a metric on X (generalized in the sense tha t it
may take infinite values).

In TT=, au toma ta are simulated exactly in the same t ime (i.e. all vir tual paths and their
images have the same length). In TT<, we allow to simulate by f a s t e r a u t o m a t a . This is a
sensible notion of simulation since programs can only be safely implemented on faster machines
than needed 16 .

E x a m p l e 2 A simple computation shows now that X~ (example 1) has length t, i.e. has ex-
ecution time t. For T~, the 1-transitions zo have execution time from 0 to t. The transition
xo leads to the escape sequence, all the other ones lead to the normal ending of the program.
Finally, a hypercube of dimension n timed as in Section ~.4 has maximal execution lime n (all
interleavings) and minimal execution time 1 (synchronous execution of the n 1-transitions, i.e.
the diagonal of the hypercube).

Similarly to the untimed case, we can defined l a b e l e d t imed HDA to be unlabeled t imed
I,IDA plus a labeling morphism in TT. T i m e d h i g h e r - d i m e n s l o n a l t r a n s i t i o n s y s t e m s are
labeled t imed I-IDA together with an initial state.

3 . 2 F a i r n e s s

Notice tha t we can easily define a time loca l to a p r o c e s s o r . We can take for granted tha t
in I M I the length of the projection of a path 7 on the i th coordinate is the cpu t ime of the
i th processor on 7. More generally, we suppose tha t ~ i (~ t) 1~ is the infinitesimal cost of com-
putat ion on processor i. Q u a n t i t a t i v e weak f a i r n e s s is expressed as a property of the norm:
all processors must be used for some time on every (fair) paths, i.e. [l(0 , ~i(~tt), 0 0)11
should be strictly positive function of time. Q u a n t i t a t i v e s t r o n g f a i r n e s s is a weaker prop-
erty on the norm: whenever the global t ime diverges, the local t imes of every processor must
diverge as well.

3 . 3 C o r r e c t n e s s T i m e d / U n t i m e d

Similarly to work in program analysis, we can define a way to go from the t imed to the unt imed
world and then back to the t imed one which has special properties. It is done in general [8]
by means of Galois connections which ensure tha t an analysis (or a non-s tandard semantics)
is c o r r e c t with respect to a semantics. Being in a completely categorical framework, the right
mathemat ica l tool is then pairs of adjoint functors. We actually have here a r ight-adjoint to
the functor I " [, F : T T -* Tsr defined by F (X) = (Xn) , (F forgets time). Moreover, the
units and counits of the adjunction are isometries. This entails t ha t this adjunct ion restricts
to adjunctions between TT= and T,r , and TT< and T, r respectively. Having simulations as
morphisms in these categories, this shows that s i m u l a t i o n p r o p e r t i e s (and bisimulation ones
in particular) in the timed world are c o r r e c t with respect to the corresponding ones in the
untimed world.

3 . 4 Z e n o b e h a v i o u r s

Let 7 be an infinite virtual path. If 7([0, c~[) is compact, then there is a l imit point a in the
sequence (7(ak))k- Therefore, even if time always increases by strictly positive steps , there
may be a (sub)path in which time "slows d o w n " up to some point. This is exemplified by the
Zeno paradox (which can be explicitly given a t imed I,IDA representation, Figure 7) in which
a door is seen to be closed through observations of the type "it is closed half way from the

16There exist properties that are not preserved when going on a faster machine (see [7]), but this goes beyond
the scope of this article.

lVWhere ~i denotes the ith coordinate in the tangent space.

182

Figure 7: Typical Zeno behaviour and a hybrid ~ystem implementing it.

limit point j

A timed I-IDA that could represent this behaviour is X with,

�9 X = [0, 11,

�9 Xo = { z ~ / i E IN, zi = 1 - ~ } ,

�9 X1 = {[zi, xi+l]/i E IN} and the obvious boundary operators,

�9 the norm is induced by the euclidean norm on [0,1].

S beeps

end". The time it needs to be closed is finite, the number of allowed obervations (transitions)
is infinite. No lower bound whatsoever is imposed on the time of transitions. This precisely
creates the paradox.

There are easy ways to prevent Zeno paradoxes to occur in a timed HDA X. As they happen
when there exist some limit points, it suffices to prevent them to crop up. A sufficient condition
is to have a lower b o u n d on the time transitions take (even locally), very much alike the "finite-
variability" condition of [5]. Why not put this condition in the model from the very beginning?
We argue that for hybrid systems (or even just ordinary real-time systems like in [21]), it may
be interesting to consider Zeno paradoxes as well. Suppose we have a system S in which the
temperature t diverges in finite time (grows at an exponential rate in practise). Suppose also
that S is equipped with a measuring apparatus which beeps every time the temperature grows
of one degree Farenheit. We model S by a timed HDA in which the states represent the number
of times .5' has beeped (i.e. the temperature of S minus its initial value) and the 1-transitions
are the delay transitions from one state to the next. Then it implements a Zeno behaviour:
no strictly positive lower bound can be given to the time of execution of any transition. As
we do not know the p rec i s ion at which time can be measured, we cannot eliminate this Zeno
behaviour when studying the system S.

4 T i m e d higher-dimensional automata as denotat ional
and operational models

In this section, we show that TT is a complete and co-complete cartesian closed, monoidal
closed category similarly to T,r . Some constructions will be exemplified in both categories.
TT< is shown to be a complete and co-complete monoidal category. TT= has only filtered
limits and colimits and a tensor product. As customary since [31], categorical combinators will
be recognized to be t i m e d - p r o c e s s - a l g e b r a sor t o f c o m b i n a t o r s (as those of [21]). In order
to see this, we introduce a SOS-l ike m e t a l a n g u a g e which gives an operational view to the
constructions.

The idea is to write n-transitions a of some timed HDA X as arrows s ~ s' where s and s'
[t,t~}

are the beginning state (i.e. the beginning state of a beginning 1-transition of . . . a beginning
(n - 1)-transition of a) and end state of a respectively, and tl is the minimal execution time,
t2 the maximum execution time of a (t2 may be oo as we are working in IR U {co}. More

183

Figure 8: Synchronized product (middle) and coproduct (right) of two transitions (left)�9
X Y synchronized Coproduct

product

/ (a,b)

a 13 (a,13) (13,~) (X

8

formally, we define an entailment relation ~ to relate X to its transitions, and we write,

� 9 1 = 8,

1 1 ...din_xa X ~ s - ' ~ s' ~ d~ s',
[~,,~l ~(~ s') q,

T;'. (n")(s, s') t2
n-transition a by adding dim a = n.

�9 Sometimes, we specify the dimension n of the

Let X and Y be two timed HDA. Then their cartesian product is the timed HDA Z described
t t ~

x ~ u ~ ~ x ' ~ u' ~ ~' and dim t = operationally by the rule, (t, t')
x • x ' ~(u, u') [max(~l, ~ i) , " a x (~ , ~i)] (~' ~')

dim t I = dim (t,t I)

This shows that this is really a synchronized product (see Figure 8) of the two automata X
and Y. More formally, it is defined as

�9 Z,~ = {z : On ~ 0 . x on ~ X x Y / z E X n , y E Y .} where A is the diagonal
A(~) = (~, ~),

�9 Z = u z (n .) c _ X x Y ,
nEN,zEZ~

�9 I1~, 91[(~,y) = max(ll~ll~, Ilully)�9

The projections here are not isometrics in general, but they are contracting maps, i.e.
TX(pl(u) ,pl(v)) <_ T~Z(u, v). Notice that the norm (and then the timing laws above) is given
by the categorical construction and is by no means arbitrary.

The union (or coproduct) of two timed HDA X and Y is described operationally by the two
rules,

t t ~ x ~ u t~,~,~ ~ x ' ~ u ' ~ '
t

X O X ' ~ u ~ v u IJ I X u X' ~ ' [al,' ~2]'

We recognize a rule for non-determinls t ic choice (see Figure 8) as in timed CCS with the
operator +. Again, the intuitively clear timing laws are given directly by the structure of the
model.
The parallel composi t ion with no interference can be defined operationally by the rule

184

Figure 9:
(right).

Parallel composition (middle) of two transitions (left) and linear function space

X Y Tensor product

a I ~
a

Linear arrow

X-o XY

~x.bx

(see Figure 9)
t t *

t | I

X @ X' ~ . e r [max(a,, a l) , a2 + a~] ~ ~ r

and d im t | t ~ = d im t + d im t ~ More formally, it is a t e n s o r p r o d u c t Z = X | Y defined by,

�9 Z = X x Y ,

�9 Z . = { z : 0, , ~- Ok x O,,-k ~ Z / z ~ X ~ , y ~ Y, , -k}

�9 Ili,, ~)ll(~,y) = max(l l&l l~, II~lly).

Now Z = X --o Y, such that X ---o. is the right-adjoint to . | X, is,

�9 Zn = { z : 0,~ .-* (X ~ Y) / z ' : or, | X - ' , Y , z / (u , x) = z(u)(z) is a morphism}, where
On is considered as the timed HDA with the unique n-transition I d : El,, ~ 0,~,

�9 Z = U z(Dn) C (X ---* Y) endowed with the compact~open topology [1],
n E I q , z E Z n

�9 , Y

�9 for I E Z, It]llI = sup~ex, il~il~=,lt/(~)~lls(~).

t t ~ x~b~,~ x ~ x ' ~ . ' ~ '
We conjecture that operationally is, t ' (t) . In X --o

x' ~='(=) [ma~(.~,.i),.~ + "li r
X ' we have functions which fork new actions (dynamically) as ~z.b @ = in Figure 9. The
argument of these functions may be computed in pa ra l l e l with the body of the function.

5 S e m a n t i c s o f a t o y language

We consider the following language (a subset of RTCCS, [17]),

P ::= M ; P I nil t P + P '

I PIIP I (t)P I rec x.P[x]

The atomic actions aJ are supposed to take unit time. (t) P can behave like P after time t. For
the sake of simplicity, we do not consider synchronization here. We refer the reader to [13] for
details.

18The untimed part is easy to verify though.

185

5 . 1 Semantic domains

As in [11] we want to give to terms of the language denotations which are higher-dimensionM
transition systems. To this end, we want to define a huge timed HDA D (called domain)
which will contain all possible operational behaviours of terms of the language. Elements of
the domain, and thus denotations, will be sub-timed-HDA of D (i.e. inclusion morphisms into
D) as in the untimed case.

All this is most conveniently done by recursive domain definitions (see [23]). As a matter of
fact, we generally want a domain to contain a few specified actions and to be closed under such
constructs as the parallel composition (the tensor product).].I (and then amalgamated sums -
i.e. pushouts - +), x and | are covariant functors commuting with colimits, therefore standard
results [4] guarantee the existence of solutions to recursive equations like D -~ U + D | D (U
is a given timed HDA) which is precisely a timed HDA closed under parallel composition.
More complex constructions can be done (similar to the homotopical constructions of [11]), for
instance to give domains for imperative languages where states are mappings from variables to
actual values but we will not need them here.

5.1.1 D e n o t a t i o n a l s eman t i c s

We first define semi-regular HDA (a~) and (uJ), to he the following HDA (geometrically),
aJ

(~) : 1 ~ �9 ~ , (aj) : 1 1 . ~

Let P and K be the domains given by the recursive equations,

J P~-(la, I),,~'+ ~ X , + P |
tER +

g~-(Id I)+K|
where [�9 [is the geometric realization functor of Section 2.3, and the norm is induced by the
Euclidean norm in IR n.

Let I : D --+ L the morphism of HDA defined by,

�9 vi e ~ , t(a~) = ai

�9 v=, v ~ P, t(= | v) = t (,) | t(v)

I t l ifts easily to k : I | I: P "-' K , making P into a]abe|ed timed HDA.
The domain of HDA in which we give the semantics of the language is k : P ~ K. We can
actually give it in D = P, and recover the full definition by applying the labelling I. Then,

�9 [nil] = (1)

�9 [P+ q] = [P]]_I[q] (].] is the coproduct in TT/K, it corresponds to an amalgamated sum
in TT)

�9 [a$;q I = (} ui })]..] (or'~i | for some fresh i

�9 [(t) pl = X, 11 (t | [p])

�9 [pllql = l r] | [ql

�9 [ree x.p[z]] =lira [pi[nil]] where the direct limit is taken on the full subcategory of TT/K
whose objects are the [pi[nil]]

186

5 . 2 O p e r a t i o n a l s e m a n t i c s

Its operational semantics is then (by results of Section 4),

nl l ~ 1 1 1
[0, 0] U

P ~ 6 , S t

U

(tl.P ~ t ~ s [t+ol,t+~2] t~s'
a

aJ;P~ I[l, i--- ~

a

a
Q + Q ' ~ s ~ t

a

U
P ~ s [al ,a2] ' s '

U

a t

O ' ~ S ' �9 t '
[at, a'l

a t

Q+Q'~s'-------.-~t ' I t

a t

t !

a ~ a ~
QIIQ' ~ s | s' [max(a,, a~), a2 q- ce~]" t | t'

U
Q[rec =.Q[=]] ~ s . t [-,,-~l

U

The last rule expresses that [ree x.Q[x]] forms a co-cone with the diagram ([Qi[nil]])i.

E x a m p l e : By the rules above, or a calculation on the denotational semantics, we see that the
term (2.5).(al; nilll(1).al; nil) has minimum execution time 4.5 (with a synchronous schedule
on two processors) and maximum execution time 5.5 (with a schedule on one processor only,
hence by interleaving).

6 Future d i rec t i ons and C o n c l u s i o n

In this article, we have presented an o p e r a t i o n a l m o d e l for r e a l - t i m e t r u l y c o n c u r r e n t
sys tems . The model has n e a t a lgebra ic p r o p e r t i e s . In particular, the category of models
(timed HDA) is complete, co-complete, cartesian closed and monoidal closed. Categorical
combinators are t i m e d process a lgeb ra operators. Timed HDA can be used for d e n o t a t i o n a l
as well as o p e r a t i o n a l semantics.

In the future, we would like to use the model for different purposes. The first one is to develop
a theory of c o m p l e x i t y for constrained concurrency, i.e. for machines which can use at most n
processors. Mathematically, it would rely on a careful study of the effect of truncation (forget
all transitions of dimension more than n) on geodesics. A second one would be program analysis
in the style of [9].

R e f e r e n c e s

[1] S. Abrarnsky and T. Maibaum. Handbook of Logic in Computer Science, volume 1. Oxford Press,
1993.

187

[2] L. Aceto and D. Murphy. On the ill-timed, but well-cansed. In Proc. o] CONCUR'93, number
715 in LNCS, pages 9 7 - 111. Springer-Verlag.

[3] R. Alur and D. Dill. The theory of timed automata. In Proceedings of the REX Workshop,
Real-Time: Theory in Practice, LNCS. Springer-Verlag, 1991.

[4] A. Asperti and G. Longo. Categories, types and structures. The MIT Press, second edition, 1991.
[5] H. Barringer, R. Kuiper, and A. Pnueli. A really abstract concurrent model and its temporal

logic. In Proc. of the 13th POPL, pages 173-183. ACM Press, 1986.
[6] M. A. Bednarczyk. Categories of asynchronous systems. PhD thesis, University of Sussex, 1988.
[7] R. Cleaveland and A. Zwarico. A theory of testing for real-time. In Proceedings of LICS. IEEE

Press, 1991.
[8] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis of

programs by construction of approximations of fixed points. Principles ol Programming Languages
J, pages 238-252, 1977.

[9] R. Cridlig and E. Goubanlt. Semantics and analyses of Linda-based languages. In Proc. o] WSA '93,
number 724 in LNCS. Springer-Verlag, 1993.

[10] P. Gabriel and M. Zisman. Calculus of fractions and homotopy theory. In Ergebnisse der Mathe-
matik und ihrer Grenzgebiete, volume 35. Springer Verlag, 1967.

[11] E. Goubault. Domains of higher-dimensional automata. In Proc. o] CONCUR'93, Hildesheim,
August 1993. Springer-Verlag.

[12] E. Goubanlt. Schedulers as abstract interpretations of HDA. In Prac. o] PEPM'95, La Jolla, June
1995. ACM Press.

[13] E. Goubault. The Geometry of Concurrency. PhD thesis, Ecole Normale Sup~rieure, to appear,
1995.

[14] E. Goubault and T. P. Jensen. Homology of higher-dimensional automata. In Proc. o] CON-
CUR'9~, Stonybrook, New York, August 1992. Springer-Verlag.

[15] T.A. Henzinger. The Temporal Specification and Verification o] Real-time Systems. PhD thesis,
Stanford University, 1991.

[16] T.A. Henzinger, Z. Manna, and A. Pnueli. Timed transition systems. In Proc. o] the REX
Workshop, Real-Time: Theory in Practice, LNCS. Springer-Verlag, 1993.

[17] P. Krishnan. A model for real-time systems. In Proc. of Mathematical Foundations of Computer
Science, number 520 in LNCS. Springer-Verlag, 1991.

[18] A.T. LundeU and S. Weingram. The Topology o] CW-Complexes. Van Nostrand Reinhold Com-
pany, 1969.

[19] A. Maggiolo-Schettini and J. Winkowski. Towards an algebra for timed behaviours. Theoretical
Computer Science, 103:335 - 363.

[20] J. P. May. Simplicial objects in algebraic topology. D. van Nostrand Company, inc, 1967.
[21] F. Moiler and C. Tofts. A temporal calculus of communicating systems. In Proceedings of CON-

CUR'90, number 458 in LNCS. Springer-Verlag, 1990.
[22] X. Nicollin and J. Sifakis. An overview and synthesis of timed process algebras. In Proe. o.f

CAV'9$, number 575 in LNCS, pages 376-398. Springer-Verlag, 1992.
[23] G. Plotkin. Domains. Technical report, Computer Science Department, Edinbourgh, 1984.
[24] V. Pratt . Modeling concurrency with geometry. In Proc. of the 18th A CM Symposium on Principles

of Programming Languages. ACM Press, 1991.
[25] G. M. Reed and A. W. Roscoe. Metric spaces as models for real-time concurrency. In Proc.

o.f Mathematical Foundations of Programming Languages and Semantics, number 298 in LNCS,
pages 331-343. Springer-Verlag, 1987.

[26] I-I. Rund. The Differential Geometry of Finsler Spaces. Springer-Verlag, 1959.
[27] M.W. Shields. Concurrent machines. Computer Journal, 28, 1985.
[28] A. Stark. Concurrent transition systems. Theoretical Computer Science, 64:221-269, 1989.
[29] It. van Glabbeek. Bisimulation semantics for higher dimensional automata. Technical report,

Stanford University, 1991.
[30] R. van Glabbeek and U. Goltz. Partial order semantics for refinement of actions. Bulletin o.f the

EATCS, (34), 1989.
[31] G. Winskel and M. Nielsen. Models for concurrency, volume 3 of Handbook of Logic in Computer

Science, pages 100-200. Oxford University Press, 1994.

