
A Complete Transformational Toolkit for Compilers*

J.A. Bergstra*, T.B. Dinesh 2, J. Field a, J. Heering 9

, Faculty of Mathematics and Computer Science, University of Amsterdam
Kruislaan 403, 1098 SJ Amsterdam, The Netherlands (j anb@fwi . u v a . n l)

2 CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands
({T. B. Dinesh, Jan. Heering}@cwi. nl)

a IBM T.J. Watson Research Center
P.O. Box 704, Yorktown Heights, NY 10598, USA (-i f i e l d @ w a t s o n , i bm. corn)

Abstract. In an earlier paper, one of the present authors presented a preliminary
account of an equational logic called P ~ . PIM is intended to function as a "trans-
formational toolkit" to be used by compilers and analysis tools for imperative
languages, and has been applied to such problems as program slicing, symbolic
evaluation, conditional constant propagation, and dependence analysis. PIM con-
sists of the untyped lambda calculus extended with an algebraic rewriting system
that characterizes the behavior of lazy stores and generalized conditionals. A major
question left open in the earlier paper was whether there existed a complete equa-
tional axiomatization of PtM's semantics. In this paper, we answer this question in
the affirmative for Pnvl's core algebraic component, PIMt, under the assumption
of certain reasonable restrictions on term formation. We systematically derive the
complete PIM logic as the culmination of a sequence of increasingly powerful
equational systems starting from a straightforward "interpreter" for closed PIM
terms.

1 Introduction

In an earlier paper [13], one of the present authors presented a preliminary account of an equational
logic called PIM. PIM is intended to function as a "transformational toolkit" to be used by compilers
and analysis tools for imperative languages. In a nutshell, PIM consists of the untyped lambda
calculus extended with an algebraic rewriting system that characterizes the behavior of lazy stores
[7] and generalized conditionals. Together, these constructs are sufficient to model the principal
dynamic semantic elements of most Algol-class languages. Translation of programs in most such
languages to PIM is straightforward; programs can then be formally manipulated by reasoning
about their PIM analogues. Moreover, the graph representations of PIM normal forms can be
manipulated in a manner similar to intermediate representations commonly used in optimizing
compilers.

A major question left open in [13] was whether there existed a complete equational axiom-
atization of PIM's semantics. In this paper, we answer this question in the affirmative for PIM's
core algebraic component, P1Mt, under the assumption of certain reasonable restrictions on term
formation. Formally, we show that there exists an w-complete equational axiomatization of PLM's

* This work was supported in part by the European Communities under ESPRIT Basic Research
Action 7166 (CONCUR II) and the Netherlands Organization for Scientific Research (NWO)
under the Generic Tools for Program Analysis and Optimization project.

93

final algebra semantics. Obtaining a positive answer to the completeness question is, we believe,
quite important, since it means that we can be assured that our transformational toolkit has an
adequate supply of tools. In [13], it was shown that many aspects of the construction and ma-
nipulation of compiler intermediate representations could be expressed by partially evaluating
PIM graphs using rewriting rules formed from oriented instances of PIM equations. Until now,
however, we could not be certain that all the equations required to manipulate arbitrary programs
were present (with or without restrictions on term formation).

We are aware of only a few prior completeness results for logics for imperative languages:
Mason and Talcott [22] show that their logic for reasoning about equivalence in a Lisp-like (rather
than Algol-class) language is complete; however, unlike PIM, their logic is a sequent calculus,
rather than an equational system. Hoare et al. [18] present a partial completeness result for an
equational logic; however, their result does not hold for the cases where addresses or stores are
unknowns, i.e., can be represented by variables.

In the sequel, we systematically derive the complete PIM logic as the culmination of a sequence
of increasingly powerful equational systems starting from a straightforward "interpreter" for PIM's
term language.

2 P~4 in Perspective

While there has been considerable work on calculi and logics of program equivalence for imper-
ative languages, our work has the following points of departure:

- A graph form of PIM is by design closely related to popular intermediate representations
(IRs) used in optimizing compilers, such as the PDG [12], SSA form [9], GSA form [2], the
PRG [28], the VDG [26], and the representation of Click [8]. Indeed, PIM can be regarded
as a rational reconstruction of elements of the earlier IRs. With the exception of the VDG
and Click's representation, PIM differs from the other IRs in that procedures, functions, and
computations on addresses are "first-class" features of the formalism.

- For structured programs, most of the non-trivial steps required to translate a program to
the PIM analogue of one of the IRs mentioned above can be carried out as source-to-source
transformations in PIM itself, once an initial PIM graph has been constructed from the program
using a simple syntax-directed translation. For unstructured programs, the PIM analogue of a
traditional IR may be constructed either by first restructuring the program's control flow graph
(e.g., using a method such as that of [1]), or by using a continuation-passing transformation.
(e.g., one similar to that used in [26]).

- PIM is an equational logic, rather than, e.g., a sequent calculus such as that of Mason and
Talcott [22]. A purely equational logic has the advantage that it can be used not only to prove
equivalences, but also to model the "standard" operational semantics of a language (using
a terminating and confluent rewriting system on ground terms) or to serve as a "semantics
of partial evaluation" (by augmenting the operational semantics by oriented instances of the
full logic). Equational logics are also particularly amenable to mechanical implementation.

- Unlike work on calculi for reasoning about imperative features in otherwise functional
languages [11, 25, 24], PIM has a particular affinity for constructs in Algol-class (as opposed
to Lisp-like) languages, since it does not rely on the use of lambda expressions or monads
to sequence assignments. This permits the use of stronger axioms for reasoning about store-
specific sequencing.

- Yang, Horwitz, and Reps [27] have presented an algorithm that determines when some pairs
of programs are behaviorally equivalent. However, their approach is limited by its reliance
on structural properties of the fixed PRG graphs used to represent the programs, and they
make no claims of completeness.

94

- Although the logics of Hoare et al. [18] and Boehm [6] treat Algol-class languages, [18]
does not accommodate computed addresses arising from pointers and arrays, and neither [6]
nor [18] cleanly separates store operations from operations on pure values. The separation
of these concerns in PIM means that it is easy to represent a language in which expressions
with and without side effects are intermixed in complicated ways (e.g., C).

In this paper, we will concentrate on the formal properties of first order systems derived from
PIM'S core algebraic component, PlMt. For further details on the correspondence between P1M
and traditional IR's, see [13]. For an example of a practical application of PIM, see [14], which
describes a novel algorithm for program slicing. The latter paper also makes use of the full
higher-order version of PIM, in which looping and recursive constructs are treated by embedding
the core first order algebraic system PIM~ (treated here) in an untyped lambda calculus.

3 How PIM Works

3.1 PIM Terms and Graphs

Consider the program fragments P~-P5 depicted in Fig. 1. They are written in a C language subset
that we will call/~C. The only non-standard addition to ~C is the notion of a meta-variable, e.g.,
' ?P ' or ' ? x ' . Such a variable may be thought of as a simple form of program input (where
each occurrence of a meta-variable represents the same input value) or as a (read-only) function
parameter. The only deviation from standard C semantics in #C is the assumption that no address
arithmetic is used.

{ p = ?P; { p = o; { p = ?P; { p = o; { p = ?P;
x = ?X; x = i; y = p; y = p; y = ?P;

y = p; y = p; X = p; x = p; X = ?P;

X = p; X = p; if (p) if (p) }

if (p) if (p) x = y; x = y;

x -- y; x = y; } }

} }
/'I P~ Ps P4 P,

Fig. 1. Some simple/~C programs.

A directed term graph [3] form of the PIM representation of F , , SPa, is depicted in Fig. 4.
Sp, is generated by a simple syntax-directed translation, complete details of which may be found
in [4]. A term graph may be viewed as a term by traversing it from its root and replacing all
shared subgraphs by separate copies of their term representations. Shared PIM subgraphs are
constructed systematically as a consequence of the translation process, or as a "side-effect" of the
natural extension of term rewriting to term graphs [3]. Parent nodes in PIM term graphs will be
depicted below their children to emphasize the correspondence between program constructs and
corresponding PIM subgraphs. This orientation also corresponds to the manner in which compiler
IR graphs are commonly rendered. In the sequel, only a small number of graph edges will be
depicted explicitly, primarily those that are shared; most other subgraphs will be "flattened" for
clarity.

The properties of the equational systems we consider in this paper are completely independent
of whether a tree or graph representation is used for PIM terms. Nonetheless, sharing is quite
important in practice, since the size of the term form of a program's PIM representation may be
exponentially larger than the graph form.

95

3.2 PIMt: Core PIM

In this paper, we focus on the first-order core subsystem of PIM, denoted by PIMt. The flail version
of PIM discussed in [13] and slightly revised in [14] augments PIMt with lambda expressions,
an induction rule, and certain additional higher-order merge distribution rules that propagate
conditional "contexts" inside expressions computing base values or addresses. As shown in [14],
PIM's higher-order constructs allow loops (among other things) to be modeled in a straightforward
way. Without the higher-order extensions, PIMt is not "luring-complete. However, the constructs
in PIMt alone are sufficient to model the control- and data-flow aspects of finite programs in
Algol-class languages.

The signature 4 of PIMt terms is given in Fig. 2. The sort structure of terms restricts the form
of addresses and predicates in such a way that neither may be the result of an arbitrary P ~
computation. Although our completeness result depends on this restriction, the equations in the
complete system PIM t remain valid even when the term formation restrictions are dropped b.

Fig. 3 depicts the equations of the system PIMt ~ The equations labeled (Ln) are generic to
merge or store structures, i.e., in each case 'p ' should be interpreted as one of either s or m.
Equations (A1) and (A2) are schemes for an infinite set of equations. PIMt ~ is intended to function
as an "operational semantics" for PIMt, in the sense that when its equations are oriented from
left to right, they form a rewriting system that is confluent on ground terms of sort 1), the sort of
observable "base" values. PIMt ~ also serves to define the initial algebra semantics for PIMt.

P1M can be viewed as a parameterized data type with formal sorts ~; and ,4. These sorts are
intended to be instantiated as appropriate to model the data manipulated by a given programming
language. In examples in the sequel, we will augment PIM with a small number of function
symbols to model addresses and integer data in ~C programs. From the point of view of our
formal results, these additional functions are simply treated as uninterpreted "inert" constructors.

3.3 PIM's Parts

In the remainder of this section, we briefly outline the behavior of P ~ ' s functions and the
equations of PIM ~ using program/:'1 and its PIM translation, SPa, depicted in Fig. 4. The graph
Sp 1 is a PIM store structure e, an abstract representation of memory. Sp1 is constructed from
the sequential composition (using the operator 'o, ') of substores corresponding to the statements
comprising/>1. The subgraphs reachable from the boxes labeled ,5'1-,5'4 in Spx correspond to the
four assignment statements in Pt.

The simplest form of store is a cell such as S~ = {~ddz(p) ~ [meta(p)]]r. A store cell
associates an address expression (here ' addr(p) ') with a merge structure, (here [met a(p)], where
' recta(P) ' is the translation of the #C recta-variable ' ? P'). Constant addresses such as 'axidr (p) '
represent ordinary variables. More generally, address expressions may be used when addresses are
computed, e.g., in pointer-valued expressions. ' 0 , ' is used to denote the empty store. Equations
(L1) and (L2) of PIM ~ indicate that null stores disappear when composed with other stores.
Equation (L3) indicates that the store composition operator is associative.

4 This signature differs slightly from the corresponding signature in [13]; the differences princi-
pally relate to a simplification in the structure of merge expressions.

5 If address or predicate expressions may contain nonterminating computations, there are a
number of semantic issues beyond the scope of this paper that must be addressed. In brief, we
take the position (usually adopted implicitly by optimizing compilers) that equations remain
valid as long as they equate terms that behave the same in the absence of nontermination.

6 For clarity, Fig. 4 does not depict certain empty stores created by the translation process; this
elision will be irrelevant in the sequel.

96

sorts
8 (store structures)

A4 (merge structures)
A (addresses) 0p Op l =
B (booleans) 1 up 0p =
V (base values) la op (I~ Op Is) =

TI>a l =
functions F I> v ! =

{.,4 ,-.-, .h,4} -.-, ,5 (store cell)
B I>, ,$ --* 5 (guarded store) {at ~ rn} @ a~ =
,S o. 8 ---, ,$ (store composition) {a ~-* 0,,~} =

0. ---. ,$ (nullstore) 0. O a =
8 O .,4. --., .h.4 (storedereference) (sx o, sa) @ a =

[V] ..-* ,h,4 (merge cell)
B I>,,~ .,~ -.* .A4 (guarded merge) (oq X a~) =

.M o,,, .A,,I .-.* ~ (merge composition) (cq ~ oti) =
O,r . -- . .A'I (nullmerge) (rno , , [~]) ! =

ax ,c~z , . . . "--* A (address constants) [~]! =
T,F ---, B (boolean constants) 0,,~! =

,.4 .~. ,.4 ---* B (address comparison)
"~B ---, B (boolean negation) ~T =

B ^ B ~ B (booleanconjunction) ~F =
B V B ---, /3 (boolean disjunction) T ^ p =

A4! .--, 1) (merge selection) F A p =
cx, ez , . . . --.* V (base value constants) T V p =

? --* I) (unknown base value) F V p =

1 (LI)
l (L2)
(lx o** 12) op Is (L3)
I (LS)
0p (I.,6)

(ax • as) t>,,, m (Sl)
0, (S2)
0,,~ (S3)
(,x @ ~) e,,, (s2 Q a) (St)

T (i >_ ,) (AI)
F (i ~ j) (A2)

(M2)
(M3)

? (M4)

F (BI)
T (B2)
p (s3)
F (114)
T (B5)
p (B6)

Fig. 2. Signature of PIM, Terms. Fig. 3. Equat ions o f PIM ~

Stores may be guarded, i.e., executed conditionally. The subgraph labeled $6 in Fig. 4 is
such a store, and cor responds to the ' i f ' s ta tement in P t . The guard express ion denoted by Vx
cor responds to the i f ' s predicate expression. Consis tent with s tandard C semant ics , the guard Vt
tests whe the r the value o f the variable p is nonzero. W h e n guarded by the tree predicate ('T ') ,
a store structure evaluates to itself. I f a store structure is guarded by the false predicate (' F ') , it
eva lua tes to the null store structure. These behaviors are axiomat ized by equat ions (L5) and (L6).

A n express ion o f the form s @ a represents the result of dereferencing store s at address a.
Examples of such express ions are those conta ined in the subgraphs labeled (M3) and (/14"4) in
Srx. The resul t of the dereferencing operat ion is a merge structure. Unl ike an ordinary " lookup"
opera t ion which retr ieves a s ingle value g iven some "key" , the PIM store dereferencing operator
can be thought o f as retr ieving all of the values ever associated with the address at which the store
is dereferenced, and amalgamat ing those results into a merge structure. This retrieval behav io r
is codified by equat ions (S1)- ($4) , (A1), and (A2), and can be thought o f as comput ing a very
conserva t ive initial approximat ion to all the definit ions of a g iven address that " reach" a part icular
use. Fur ther s implif icat ion o f merge express ions that result f rom a store dereferencing operat ion
can yield a more accurate (and convent ional) set o f definit ions reaching a g iven use.

Th e s imples t nonempty form of merge express ion is a merge cell. The boxes labeled Mx,
M2, M s , M4, and Me in Fig. 4 are all merge cells. As with store structures, nontrivial merge
structures may be buil t by prepending guard express ions , or by compos ing merge substructures
us ing 'ore'. 0,~ denotes the null merge structure. Some of the character is t ics o f merge structures
are shared by store structures, as indicated by the "po lymorph ic" equat ions (L1)-(L6). In the
sequel , we will therefore of ten drop subscripts dis t inguishing related store and merge constructs
w h e n no confus ion will arise.

97

............. ::::::::: ::~"(M'I)

f : .

. :

i

4,

{addr(p)F~ [] } ~ j ~ ' - ~ recta(P)

k J

Fig. 4. Sp t : PIM representation of program Pt. Fig. 5. ,.qJ,a : A simplified form of S p t .

Merge structures used in conjunction with the selection operator, T , yield values. When the
selection operator is applied to a merge structure m, ra must first be evaluated until it has the form
m ' o,,~ Iv], i.e., one in which an unguarded cell is rightmost. At this point, the entire expression
m! evaluates to v. This behavior is axiomatized by equations (M2) and (M3). Equation (M4)
states that attempting to apply the selection operator to a null merge structure yields the special
error value '? ' .

Note in Fig. 4 that the '! ' operator is used in the translation of every reference to the value
of a variable. When the retrieval semantics of the 'Q ' operator are combined with the selection
semantics of the '! ' operator in an expression of the form (s @ a)!, the net effect is first to retrieve
all the values in s associated with address a (i.e., assignments to the variable associated with a),
then to yield the rightmost (i.e., most recently assigned) value associated with a.

4 Reasoning with PIM Terms and Graphs

Consider program P2 in Fig. 1. Its PIM representation, Sp 2 , is the same as S p 1 , except that ?P and
?x are replaced with 0 and 1, respectively. Given SP2, the expression V~ = (S p 2 Q addr(x))!
represents the value of the variable x in the final store produced by evaluation of S p 2, i.e., the
final value of x after executing P2. A similar expression can be constructed to compute the final
value of any variable in the program (including, if desired, a variable which never receives an
initial assignment!).

Since V~ is a closed expression of sort k', we can use the equations of Fig. 3 to evaluate it.
A simple interpreter for such expressions may be constructed by orienting the equations in Fig. 3
from left to right, then applying them until a normal form is reached. (It is easily seen that the
system is terminating; i.e., noetherian). The result of normalizing V~ is the constant '0'.

Consider now the program P4 of Fig. 1. Although it should be clear that P~ behaves the same
as P~, the equations of PIMt ~ are insufficient to equate the PIM translations of the two programs.

98

We will require a more powerful system to axiomatize thefinal algebra semantics, in which all
behaviorally equivalent closed terms (such as those representing/:'2 and/94) are equated. PIM +,
the equational axiomatization of PIMt ~ final algebra semantics, will be the subject of Section 6.

Finally, consider program P5 of Fig. 1. Although it is behaviorally equivalent to both Px and
Pa, one cannot deduce this fact using PIM + alone. Intuitively, this is due to the fact that P1, Pa,
and -P5 are all open programs. To equate these terms, as well as to prove all other valid equations
on open terms, we will need the w-complete system PIMp, which will be developed in Section 7.

5 Partial Evaluation and w-Completeness

It is often assumed that an operational semantics forms an adequate basis for program optimization
and transformation. Unfortunately, many valid program transformations do not result from the
application of evaluation rules alone. For instance, consider the equation "if (p) then e else e =
e." Some version of this equation is valid in most programming languages (at least if we assume
p terminates), yet transforming an instance of the left hand side in a program to the right hand
side cannot usually be justified simply by applying an evaluation rule.

It is our view that transformations such as the equation above are best viewed as instances
of partial evaluation. Unlike some others, we are not concerned with binding-time analysis or
self-application [19], but, following [17], simply assert that partial evaluation = rewriting of open
terms with respect to the intended semantics. However, how do we know that we have enough
rules for performing partial evaluation?

The open equations (equations containing variables, such as the one above) valid in the initial
algebra of a specification are not in general equationally derivable, but require stronger rules of
inference (such as structural induction) for their proofs. An w-complete specification [17] is one
in which all valid open equations may be deduced using only equational reasoning. In our setting,
then, finding such an w-complete specification amounts to showing that one's partial evaluator
has all the rules it needs at its disposal; it will thus be our goal in the sequel to find an oJ-complete
axiomatization for PIMt.

To formalize these ideas, we require some definitions:

Definition 1 An algebraic specification S = (22, B) with non-void many-sorted signature `U,
finite set of equations B, and initial algebra I (8) is ta-complete /f I (S) ~ tt = t z / f i b l- tt = t~
for open `u-equations tl = t2.

One way of proving ta-completeness of a specification is to show that every congruence class
modulo E has a representative in canonical form (not necessarily a normal form produced by a
rewrite system) such that two distinct canonical forms tt and t2 can always be instantiated to
ground terms ~r(tt) and ~r(t2) that cannot be proved equal from B. Another way is to show by
induction on the length (in some sense) of equations that equations valid in I (S) are provable
from E. We use both methods in this paper. See also [17, 21, 5].

In the foregoing we assumed initial algebra semantics; however, as was pointed out in Section
4, a final algebra semantics is required to capture behavioral equivalence. To this end, we need
the following:

Definition 2 Let 22 be a many-sorted signature and S, T E sorts(22). A 22-context o f type
S --~ 7" is an open term of sort 7" containing a single occurrence of a variable [3 of sort S and
no other variables.

The instantiation C(I:I := Q of a `u-context (7 of type S ---, 7" with a 22-term t of sort S will be
abbreviated to C(t). If t is a ground term, C(t) is a ground term as well. If t is a 22-context of
type S ' ---, S, C(t) is a ,U-context of type S ' ---, 7-.

99

Definition 3 Let S = (E , E) be an algebraic specification with non-void many-sorted signature
S, finite set of equations E, and initial algebra I (S) . Let O _C sorts(S) . The final algebra
F o (S) is the quotient of I (S) by the congruence - o defined as follows:

(i) ix,t2 groundterms of sort S 6 O:
t l - o t2 iff I (S) ~ t~ = t2.

(ii) t l , *2 ground terms of sort S {[O:
tx - o *2/ff I (S) ~ C(t t) = C(tz) for all contexts C of type S ---, Twith 7" 6 0 .

Item (ii) says that terms of nonobservable sorts (sorts not in O) that have the same behavior with
respect to the observable sorts (sorts in O) correspond to the same element of Fo (S) . It is easy
to check that - -o is a congruence. Definition 3 corresponds to the case M = I (S) of N (M) as
defined in [23, p. 488].

From the foregoing, we see that our completeness result will require two basic technical steps:

(A) Finding an initial algebra specification of the final model Fv (PIM ~ Fv(PIM ~) is the quotient
of the initial algebra I(PIM ~ by behavioral equivalence with respect to the observable sort
V of base values. We add an equational definition of the behavioral equivalence to PIM ~
resulting in an initial algebra specification of Fv(PIM ~

(B) Making the specification obtained in step (A) w-complete to improve its ability to cope with
program transformation and partial evaluation.

6 Step (A)mThe Final Algebra

In this section, we give an initial algebra specification PIM + of the final model Fv(PIMt~ PIM ~
is shown in Figures 2 and 3. The additional equations of PIM + are shown in Figure 6.

ra o,,~ [~] = [~] (M2')

{~1 ~ "~1} o. {,,~ ,-. ,,~} = (~, • ~) t>, {~ ~ (,~, o= ,,~)} o.
"~(al • a2) t>. ({a= ~ m=} o. {at ~ m , }) (SS)

Fig. 6. Additional Equations of PIM +

Proposit ion 1 Fv(PIM ~ ~ (M2 '), ($8).

Proof We prove (M2'). The proof of ($8) is similar.
The normalized contexts of type .M ~ V are

c~.. = ([~,1 o~... o~ [e~_~] o~ 0 o= [~,~+~1 o~... o~ [~,~1)!

(1 < k < ~). By (M2)

c ~ , . (, , o , . [~]) = , ,~ = c~ , . ([~]) (k < .)

c . , . (, ~ o . . M) = ~ = c . . . ([~]) .

D

(M2) is rendered superfluous by (M2'). Let PIMt + = PIMt ~ -- (M2) + (Mg. ') + (S8). We have

Proposit ion 2 z(P~M +) = Fv(P~,~

100

Proof We show that two distinct ground normal forms are observationally distinct. (i) Ground
normal forms of sort .A,4 are

0,n, [?], Jell (i >_ 1). (1)
~,~ and [?] are distinguished by the context ([el] o,~ n)!, the others by 1:3 !.
(ii) Ground normal forms of sort S are

0,, {a~l ~ M~} o o . {a~,~ ,--, M . } (,~ > 1, il < . . . < i,,, ~2)
Mj in normal fozm (1),
Mj r in view of ($2)).

Two distinct normal forms of sort ~r can be distinguished with respect to .A4 by a suitable store
dereference of the form D @ al, for some k. Hence, they can be distinguished with respect to 1)
according to (i).
(iii) Sorts .,4 and B are not affected. Any identification of elements of these sorts would immedi-
ately lead to collapse of the base values. 13

7 S t e p (B) - - - ~ - C o m p l e t e E n r i c h m e n t

We are now in a position to derive PIMp, the w-complete enrichment PIM, +. The additional
equations of PIM~ are shown in Figure 9. As before, p in equations (Ln) is assumed to be one
of ra or s. The reader will have no difficulty verifying the validity of the additional equations of
PIM~ in the initial algebra I(PIM +) by structural induction. The w-completeness proof uses both
proof methods mentioned in Section 5. It basically proceeds by considering increasingly complex
open terms and their canonical forms. The latter are determined up to some explicitly given set of
equations and are considered distinct only if they are not equal in the corresponding theory. The
fact that two distinct canonical forms can be instantiated to ground terms that cannot be proved
equal from PIM~ is not explicitly shown in each case, but is easily verified. In two cases (boolean
terms with x and unrestricted open store structures) the proof is not based on canonical forms, but
proceeds by induction on the number of different address variables in an equation (its "length").
Although the details of the canonical forms are included here, the (rather lengthy) proofs that they
can actually be reached by equational reasoning from PIMt as well as the two inductive cases are
omitted for reasons of space. The full proof is available in [4].

Boolean terms without x . The only booleans are T and F. To see that (B 1)-(B 19) constitute
an w-complete specification of the booleans, take n = 2 in [5, Theorem 3.1]. Suitable canonical
forms are the disjunctive normal forms without nonessential variables (variables whose value
does not matter) used in the proof.

Boolean terms with x . These require (A3)-(A6) in addition to (A1-2). (A5) and (A6) are
substitution laws. ($9) and (SI0) are similar laws for guarded store and merge structures which
will be needed later on. The transitivity of x is given by the equation

(.~ • .~) A (~ • ,~) A -~(.~ • .~) : r ,

which is an immediate consequence of (AS) or (A6) in conjunction with (B11). Note that the
~c

number of address constants " i is infinite. Otherwise an equation V i = l (a x o~i) = T would
have been needed.

A suitable canonical form is the disjunctive normal form without nonessential variables men-
tioned before with the additional condition that the corresponding multiset of address constants
and variables is minimal with respect to the multiset extension of the strict partial ordering

�9 . . ~- a2 >- a~ >- ~i (i > 1). (3)

101

A multiset gets smaller in the extended ordering by replacing an element in it by arbitrarily many
(possibly 0) elements which are less in the original ordering [20, p. 38]. The canonical form is
determined up to symmetry of • and up to associativity and commutativity of V and A as before.

Open merge structures with ~ but without Q or !. These are similar to the if-expressions
treated in [17, Section 3.3], but there are some additional complications. First, we have

o,,, (p t>,,, ['4) = (- 'P C,,,, ,~) o,,, (p ~,,,, b']), (4)

which is a generalization of (M2'). Unfortunately. the even more general equation

is not valid for p = T and m2 = 0,,,. Instead we have the weaker analogue

(Pt ~,,, 0 o,,, Z~ o,,, (p~ ~.,~ 0 = ((-'P~ ^ P~) ~',,, 0 o,,, Z~ or,, (p~ t,,,, O. (5)

This affects the canonical forms of subterms involving variables of sort .A4, making them some-
what more complicated then would otherwise be the case. (LI0) has the equivalent conditional
form

p t A / ~ = F ==~ (p t t>p l l)op (p2 t>p l2)=(p2 t>p l2)op(p l t>p l l) , (6)

which is often morn readily applicable than (L10). Suitable canonical forms for open merge
structures without @ or ! are 0,,~ and

(Pl I>,~ [Vt]) o,~ -. �9 om (P~, I>,,~ [Vh]) o,~ (Ol t>,~ M1) o,~ . . . o,,~ (Q,~ t>,~ M, 0 (7)

with

(i) P(in boolean canonical form ~ F, P(A Pj = F (i ~ j)
(ii) ~ a variable or constant of sort ~, l& # l~ (i ~ j)

(iii) Qi in boolean canonical form ~ F, Qi A Qj = F (i ~ j)
(iv) M(an open merge structure mix o,,~ mi2 or,, . " consisting of > 1 different variables

mi= ,m(=, . . . orsort)4 , and M(# M~ (i # j).

It is easily verified that two such canonical forms are equal in/'(PIM +) if and only if they are
syntactically equal modulo associativity and commutativity of V and A, modulo symmetry of
x , and modulo associativity and conditional commutativity of or,, (equations (L3) and (6) with
p = m).

Open merge structures with ~. and Q but without L These can be flattened by using the
distributive law ($4) and replacing any dereferenced store cells (P 1>, {A ~-* M}) O A' with
P A (A • A') I>,,~ M by (SII), (S1), (L8). Dereferenced variables (P t>, s) Q A with s a
variable of sort S and A an address constant or variable, can be replaced by P I>,,~ (s Q A) by
(S I 1). Any remaining compound variables s Q A cannot be eliminated but are similar to ordinary
variables of sort .M except that the address component A is subject to the substitution law

= (~ , • ~) ~,,, (,~ o,~ 0, ~,,,, (, o ~2)) o,,, , ~) , (8)

which is a consequence of (L7-8), (S10). Two compound variables s @ A and s ' Q A' are
different if s ~ s ~ or A ~ A' (modulo (8)). Canonical form (7) is still applicable if requirement
(iv) is replaced by

(iv') Mi an open merge structure consisting of >_ I different variables, which may be either
ordinary variables of sort .M or compound variables s @ A, and M(~ Mj (i ~ j)

(v) The corresponding multiset of address constants and variables is minimal with respect to the
ordering (3).

102

Hence, an open merge structure with @ but without ! can be brought in

canonical form (7) with (iv') and (v) instead of (iv). (9)

Open merge structures with !. This is the general case of merge structures. Subterms
containing ! are of the form [M!] for some merge structure M. These subterms can be eliminated
by means of (M7). Hence, merge structures with ! can be brought in canonical form (9).

Open terms of sort V. These can be brought in the form M! with M in canonical form (9).
If M has a subterm P I>rr, [.9] move it to the leftmost position by repeated application of (6), and
eliminate it with (MS). Hence, open terms of sort V have canonical form

mr! (M in canonical form (9) without subterm P t>,,, [.9]). (10)

Open store structures without @ or • and without variables of sort S. We first note the
following immediate consequences of ($8):

{,~ ~ ra~} o. {~ ~ ra~} = {,, ~ (ra~ o ~ ra~)} (s6)

(a~ x a2) = F ==} .{at ~ rut} o, {a2 ~ ra2} = {a2 ~ rn2} oo {at ~ rat} ($7)

($7) is a conditional commutative law. (1 l) is similar but with an appropriate guard rather than a
condition. Suitable canonical forms in this case are 0, and

(]I1 t>. {At ,-, M r)) o oo (a , , ~,, {A, , ,--, mr,,)) (12)

with

(i) Ai a constant or variable of sort ,4
(ii) Mi a merge structure without x in canonical form (7) # 0,n

(iii) Hi the canonical form # F of

A :f(Ai x Ak) (13)
k----I

with +(A~ x Ak) denoting one ofAi x Ak or ",(Ai • Ah)
(iv) / / / A / / j = F (Ai = Aj modulo ($9), i # j)

(v) V / / j ---- T (l < i < n)

Aj-~A i

modulo (Sit)
(vi) The corresponding multiset of address constants and variables is minimal with respect to the

ordering (3).

The canonical form is determined up to associativity of o, (equation (L3) with p = s). Further-
more, as a consequence of requirements (iii) and (iv) at least one of the conditional commutative
laws (6), ($7), (11) applies to any pair of adjacent store cells, and the canonical form is uncondi-
tionally commutative. Unlike the original term, the canonical form is not x-free. If all addresses
are known, (12) reduces to

(T ~ . . { - ,~ ~ mrs}) o. �9 o. (T ~ . . { ~ . ~ M . }) 0 4)

with all ai~ different in view of (iv) and the Mi in canonical form (7) # 0,,, in view of (ii). Apart
from the normalization of the merge structure components, this canonical form can be reached by
($7) and ($6).

103

Open store structures with O and x and with variables of sort S, but without variables
of sort.,4. The main equation we need is (S 12). Note that in case of a finite number K of address
constants oq, the stronger equation s = ({ax ~ s @ cq}) o, . . . oj (' ["K ~ s @ aK}) would
hold. Since there are no address variables, any occurrences of,~ can be eliminated by (AI-2) and
the following extension of the simple canonical form (14) applies:

27 o, ((T I>, "{ail ~ M1}) o, . . . o~, (Tt>o .{oti,~ ~ Mn})) (15)

with

(i) 27 in canonical form (7) with k = 0, or rather its equivalent for sort S
(ii) the rightmost part in canonical form (14), but with merge structure components M~ in

canonical form (9) # 0,,~ rather than (7)
(iii) p A q = F for anyp t>, (. . . o, s) in 27 andq I>,,~ ((s @ a~j) o,,, . . .) in Mj.

Unrestricted open store structures. The proof is similar to that of boolean terms with x ,
and proceeds by induction on the number N of (different) address variables. The case N = 0 (no
address variables) corresponds to the previous case.

Let PIM~ = PIMt + --I- the equations of Figure 9. In view of the foregoing we have

Proposition 3 PIM t is ~a-complete.

8 PIM in Practice

8.1 Rewriting PIM Graphs

By orienting equation instances of PIM t and implementing the resulting rules on graphs, we
obtain a term graph rewriting system [3]. Such systems can be designed to produce normal
forms with a variety of interesting properties. For example, the graph S~, 1 depicted in Fig. 5 is
obtained by first normalizing the graph SpI (Fig. 4) with respect to the system PIM~ developed
in Section 8.2, then using instances of equation ($8) of PIM + to permute addresses with respect
to a fixed ordering. Sp~ is the normal form of the PIM representations of both Pt (i.e., Sp~)
and Pa (Fig. 1); therefore, it is immediate that they are behaviorally equivalent. However, the
normalization process can be used not only to discover equivalences not apparent from the initial
PIM representations, but also to "build" useful graph-based compiler IRs as a side effect [1 3]. For
example, the composition operator in the subgraph M ' of S~, 1 is very similar to an instance of
the 7 node of GSA form [2].

Consider finally the pC programs depicted in Fig. 7. Both of these programs are behaviorally
equivalent; this fact may be deduced by inspection of the normal form graph S~, s shown in
Fig. 8 (produced by augmenting the system used to produce ,5'~,1 with an oriented instance of
equation (L 1 1)). We know of no intermediate representation in the compiler literature for which
the representations of Pe and Pr would be the same.

8.2 Confluent Subsystems of PIM t

In this section, we concentrate on obtaining confluent and terminating rewriting systems derived
from PIMp. Much of this work was carried out with the assistance of the TIP inductive theorem
proving system [15], which was used to perform Knuth-Bendix completion [10] and to aid in
inductive verification of equations incorporated in PIMp. Here, we indicate the progress with
respect to converting part of PIM~ into a term rewriting system. We first consider the completion
of PIM ~ then treat the additional equations of PIM + , and finally those of PIMp.

"104

y = 17; (*per) = 12; } ~ [1 2 >
i f (!(?P}) y-- 17; a ~ _ _ ~

x = 13 ; } /,-~{ addr (pe r) ~ [
Z = y + X; ptr = &y; [} z = 17;

if {!(?P)) { ~.{ addr(x)~ ' }]

(*ptr) = 19; \.J 17 /
x
ptr = &z; { addKy)

)

" '?P " ?~ ; l,.sum(I.I,,l ptr = &z; {addr(z) }
(*pgr) = y + x;

} 1
p6 p, (s;)

Fig. 7. Semantically equivalent #C programs. Fig. 8. "q~'6 : Normal form of PIM representations
of P6 and Pr.

Knuth-Bendix Completion of PIMt ~ The rewriting system obtained by interpreting the
equations ofPXMt ~ as left-to-right rewriting roles and with AC-declarations for A and V is confluent
and terminating with the addition of the rule

(at X a2) I>,,~ 0,n ~ 0,n, (MA0)

which originates from a critical pair generated from the roles (S1) and ($2). PIMt ~ is ground
confluent even without this rule. Note that with rule (M2), a right-associative orientation of (L3)
would cause the completion procedure to add an infinite number of roles

(, ~ o,, (~2 o , . . . (~ , o , [,,]).. 3)! - ' " (i >_ 2). 06)

Knuth-Bendix Completion of PIMt +. When (M2') is substituted for (M2), the orientation of
(L3) becomes irrelevant, since the context in which the pattem m o,~ [v] could be matched is
now immaterial. As a result, TIP's completion procedure terminates by giving (L3) for the merge
case a right-associative orientation and generating the additional roles (MA0) and (MA1) (see
Figure 10). We note that (MA0) is a special case of (L4) below.

Adding ($8) is, however, a difficult problem since the equation is (conditionally) commutative.
We therefore proceed by first splitting ($8) into ($6) and ($7). ($7) is difficult to orient, but ($6)
has an obvious orientation and is in acceptable form for mechanical analyzers. After attempting
TIP's completion procedure on the system with ($6) and (M2'), we see immediately that the
critical pairs that result from ($6) and ($4), using (S1), give rise to a special case of (L7) for
p = m. Unfortunately, both ($6) and (L7) are left-nonlinear roles (when oriented left to right).
Obtaining a left-linear completion is often preferable to a left-nonlinear completion, since a
left-linear system admits an efficient implementation, without the need for equality tests during
matching. We therefore consider left-nonlinear equations separately, and proceed for the moment
without ($6) and (L7).

Adding the boolean equations (B7), (B 18) and (B 19), along with the oriented versions of the
equations (I.,4) and (L8) results in a confluent and terminating system.

105

Adding (M7) or (M8) requires that (L3) be oriented in the right-associative direction. This
is caused by the generation of the rule (MA2). Also, adding (M7) and (M8) generates the rules
(MA1) to (MA5). (MA1) and (MA5) are due to the right-associative ordering of (L3). The
resulting system PIMp" is shown in Figure 10. P1M~ is confluent, terminating, and left-linear. If
we assume rewriting modulo associativity, we do not have to consider explicit versions of (L3)
and thus (MA1) and (MA5) can be dispensed with.

p D~ 0a = 0p
pD~(h%la) =

l oa lx oa l = la op l
(p t>, la) % (-,p ~>~ 1~) =

(-,v t>, z.) o , (v t), z,.)
(v~ t>~ 0 o~ (~ t>~ 0 = (~ v ~) t>~

(a ~ a) = T
(a~ .~ ~) = (a~ • ,,~)

(~ • ~) A (a~ • ~) =

[,',',,] = [t] o,,, m
((p c, ~. [?l) o~ ,~)' = .a

(~x • ~) ~>, {a~ ~ m} =
(ax • s:~) c,, {a., ,.-, ,',',}

(a; • aa) I> . (s o a~) =
(a: • a~) ~>., (~ o a~)

(v t > , ,) o ~ = v t ~ , ~ (~ o ~)
• t--* frt} Os 11 =

(p ~ ^ p ~) ^ p ~ = p:^(p~^p~)
Px Apa = p ~ A p x

p A p = p
p A - - p = F

(p ~ v f ~) v p ~ = p ~ v (p ~ v p ~)
p a V p ~ : p a V p a

p V p = p
pV-p = T

p~A(p~Vp~) =
(v, ̂ v~) v (v~ ̂ w)

PxV(PaAP~) =
(w v w) ^ (w v w)

"~(P~ ̂ pa) = "~Px v -~p~
"(pa V Pa) = "Px A "~Pa

(LA) gp op ! -* | (LI)
! o p g p --* ! (L2)

(I.,7) (Ix op la) op ls ..-, Ix op (la op 13) (L3)
(LS) p I>p 0p -* 0p (L4)
(L9) T~>p ! .-.* ! (LS)

F l>p ! ~ Op (I.,6)
(LI0) Px t>p (P2 I>p i) --* (Pl A p a) ~>p I (L8)
(LID

{a~ ,-. ,n} O a2 - .
(A3) (ax ~ aa) I>~ rr~ (Sl)
(A4) {a ~-* 0,,~} --* O. ($2)

~, 0 a --, 0,,~ ($3)
(AS) (81 o, s2) O a -*

(sl 0 a) o,,, (a2 a a) (S4)
(A6) p I>, {a ~ ~n} --*

{a ~ (p t>,,,, m)} (s5)
(M7) (p~.,)oa .-, p~(,oa) (slJ)
(MS)

(a i ~ a i) ---* T (i > 1) (A])
($5) (a , ~. aS) - , V (i # ~) (A2)

($9) rrt on, Iv] ---* [~] (M2')
[v].* -* v (M3)

(SIO) ~m! .--* ? (M4)
(SI]) [rrt!] .-.* [?] o,,~ rrt (M?)

((r ~,,~ [?]) o,~ m):
(S12) --* m! (M8)

(BT) -~T --~ F (BI)
(B8) -~F --* T (B2)
(139) T A p ---* p (B3)
(BI0) F A p --* F (B4)
(BII) T V p --* T (B5)
(BI2) F V p --, p (B6)
(BI3) -~-~p --, p (B7)
(BI4) "~(Px A Pa) -'* "~Pa V "~pa (BI8)
(BiS) "~(Pt V Pa) "-* "~Px A -~p~ (BI9)

(BI6) mx o,~ ([v] o,~ ~n2)
---* Iv] om rn-, (MAD

(Bl7) ([?] om m)! --~ wt! (MA2)
(BI8) (V I>,,~ [?])! ~ ? (MA3)
(Bl9) [?] on, (p I>m [?])

--* [?] (MA4)
[?] o.~ ((v ~,,~ [?]) o,~ ~)

---* [?] o,,~ m (MAS)

Fig. 9. Additional Equations of PIMp. Fig. 10. Rewriting rules of PIMp".

Enhancing the rewriting systems. Further enrichments to PIMp" seem to require left-
nonlinear rules in order to achieve confluence. Adding (L7), we require the additional rules

106

(MBI)-(MB4) shown in Fig. 11. If we then add ($6), we need the rule (SB1), also shown in
Fig. 11. Adding all the rules in Fig. 11 to those of PIMp, we get the system PIMI'.

If we enrich PIM~ with the equations (B10), (B14) and (B16), oriented left-to-right, the
completion procedure of the LP system [16] adds the absorption law

/~V(pApl) --+ p. (BAI)

pt>p(lx opl2) --~ (pt>pll)op(pt>pl2) (L7)
{,~ ~ ,-,,.,. } o, ,T~ ,-.,. ,',,.-~} --, . .{ , , , ,-,. (~ o . ,-,.,..,)} cs6)

(p i>,~ m) om (p D,,~ Iv]) ---* p D,~ [v] (MBI)
((p Apt) {>m m) om (p [>,~ iv]) -+ p t>m Iv] (MB2)

(pt>mmt)om((pt>m[vl)omm) --* (pt>m[v]) om m (MB3)
((pAp,)t>mmt)ora((pt>m[v])omm) -=* (pt>m[v])omm (MB4)

Fig. 11. PIM[-" = PIMT"+ roles above.

Finally, both PIM~ and PIM"" produce normal forms modulo associativity and commutativ-
ity of A and V, i.e., with respect to (B8), (B9), (B12) and (B 13). We can obtain several variants of
these systems by choosing rewriting modulo associativity, or modulo associativity and commu-
tativity. For example, we can treat (L3) and thus (MA 1), (MA5), (MB3), (MB4) and (SB I) using
rewriting modulo associativity. Note that PIM~ does not require rewriting modulo associativity
and commutativity, since it can be enhanced with the symmetric variants of the rules (B3)-(B6)
and the two associativity rules for A and V.

Problematic equations. Attempts to obtain further enriched confluent and terminating rewrit-
ing systems have been unsuccessful thus far. Adding both (B16) and (B17) results in a non-
terminating system. (A4), (A5), (A6), ($9), (S10) are good candidates to be put in the set of
"modulo" equations but we are not aware of any available KB-completion system that allows it.
(S 12) and the general form of ($8) cannot be ordered properly and thus lead to non-terminating
term rewriting systems. (B11), (B15), (L9), (L10) and (L1 I) lead to left-nonlinear rules, which
again cause problems for completion modulo AC. Despite these difficulties, we conjecture that
larger confluent subsystems of PIM~ exist, particularly if we consider confluence modulo asso-
ciativity, idempotence, identity, and commutativity. Finding such systems is left as future work.

9 Extensions and Future Work

There are four major areas in which we would like to see additional work:

- Using the canonical forms discussed in this paper to develop a decision procedure for PIMt.
- Providing a more extensive formal treatment of PIM's embedding into the untyped),-calculus

than that of [13] and [14], addressing in particular nontermination issues and the induction
rule used in [13].

- Obtaining completeness results for variants of PIMt, including versions with no restrictions
on the formation of address or predicate expressions and variants incorporating the merge
distribution rules, as used for addresses in [13] and generalized in [14].

- Constructingconfluentand/orterminating rewriting subsystemsofPrM~ stronger thanPIM~.

107

References

I. AMMARGUELLAT, Z. A control-flow normalization algorithm and its complexity. IEEE Transactions on Software
Engineering/8, 3 (March 1992), 237-25 I.

2. BALLANCE, R. A., MACCABE, A. B., AND OTI'ENSTEIN, K. J. The program dependence Web: A representation sup-
porting control-, data-, and demand-driven interpretation of imperative languages. In Proc. A CM SIGPLAN Conference
on Programming Language Design and Implementation (White Plains, NY, June 1990), pp. 257-27 I.

3. BARENDREGT, H., VAN EEKF..LEN, M., GLAUERT, J., KENNAWAY, J., PLASMEIJER, M., AND SLEEP, M. Term graph
rewriting. In Proc. PARLE Conference, VoL II: Parallel Languages (Eindhoven, The Netherlands, 1987), vol. 259 of
Lecture Notes in Computer Science, Springer-Verlag,pp. 141-15g.

4. BERGSTRA, J., DINESH, W., FIELD, J., AND HEERING, J. A complete transformational toolkit for compilers. Report
CS-R9601, CWI, Amsterdam, January 1996; also Report RC 20342, IBM TJ. Watson Reseach Center, January 1996.

5. BERGsTRA~J.~ANDHEER~N~. Whichdatatyp~shav~w-comp~eteinitialalgebraspeci~cations?The~retica~C~mp~ter
Science 124 (1994), 149-I 68.

6. BOEHM, H.-J. Side effects and aliasing can have simple axiomatic descriptions. ACM Trans. on Programming
Languages and Systems 7, 4 (October 1985), 637--655.

7. CARTWRIOHT, R.,ANDFELLEISEN, M. The semantics of program dependence. InProc. ACMSIGPLANConferenceon
Programming Language Design and Implementation (Portland, OR, June 1989), pp. 13-27.

8. CLICK, C. Global code motion, global value numbering. In Proc. ACM SJGPLAN Conf. on Programming Language
Design and Implementation (La Jolla, CA, June 1995), pp. 246--257. Published as ACM SIGPLAN Notices 30(6).

9. CYTRON, R., FERRANTE, J., ROSEN, B. K., WEGMAN, M. N., AND ZADECK, F. K. Efficiently computing static single
assignment form and the control dependence graph. ACM Trans. on Programming Languages and Systems 13, 4
(October 1991), 451-490.

10. DERSHOWITZ, N., AND JOUANNAUD, J.-P. Rewrite systems. In Handbook of Theoretical Computer Science, Vol. B.
Formal Models and Semantics, J. van Leeuwen, Ed. Elsevier/The MIT Press, 1990, pp. 243-320.

I 1. FELLElSEN, M., AND FRIEDMAN, D. P. A syntactic theory of sequential state. Theoretical Computer Science 69 (1989),
243-287.

12. FERRANTE, J., O'vrENSTEIN, K. J., AND WARREN, J. D. The program dependence graph and its use in optimization.
ACM Trans. on Praogramming Languages andSystems 9, 3 (July 1987), 319-349.

13. FIELD, J. A simple rewriting semantics for realistic imperative programs and its application to program analysis. In
Proc. ACM SIGPLAN Workshop on Partial Evaluation and Semantics-Based Program Manipulation (San Francisco,
June 1992), pp. 98-107. Published as Yale University Technical Report YALEU/DCS/RR-909.

14. FIELD,s G.,ANDTIP, E Parametricprogramshcing. InProc. Twenty-secondACMSymp. on Principles
of Programming Languages (San Francisco, January 1995), pp. 379-392.

15. FRAUS, U. Inductive theorem proving for algebraic specifications---TIP system user's manual. Tech. Rep. MIP 9401,
University of Passan, ! 994. The TIP system is available at URL: ftp://forwiss.uni-passau.de/pub/local/tip.

16. GARLAND, S., AND GUTrAG, J. A Guide to LP, The Larch Prover. Tech. Rep. 82, Systems Research Center, DEC, Dec
1991.

17. HEERING, J. Partial evaluation and w-completeness of algebraic specifications. Theoretical Computer Science 43
(1986), 149-167.

18. HOARE, C., HAYES, I., JIFENG, H., MORGAN, C., ROSCOE, A., SANDERS, J., SORENSEN, 1., SPIVEY, J., AND SUFRIN, B.
Laws of programming. Communications of the ACM 30, 8 (August 1987), 672-686.

19. JONES, N.,GOMARD, C., ANDSESTOFT, P. PartialEvaluationandAutomaticProgramGeneration. Prentice-Hall, 1993.
20. KLOP, J. Term rewriting systems. In Handbook of Logic in Computer Science, Vol. H, S. Abramsky, D. Gabbay, and

T. Maibanm, Eds. Oxford University Press, 1992, pp. I-116.
21. LAZREK, A., LESCANNE, P., AND THIEL, J.-J. Tools for proving inductive equalities, relative completeness, and w-

completeness. Jnformation and Computation 84 (1990), 47-70.
22. MASON, I. A., AND TALCOTr, C. Axiomatizing operationalequivalence in the presence of side effects. In Proc. Fourth

IEEE Syrup. on Logic in Computer Science (Cambridge, MA, March 1989), pp. 284--293.
23. MESEGUER, J., AND GOGUEN, J. Initiality, induction and computabifity. In Algebraic Methods in Semantics, M. Nivat

and J. Reynolds, Eds. Cambridge University Press, 1985, pp. 459-541.
24. ODERSKY, M., RABIN, D., AND HUDAK, P. Call by name, assignment, and the lambda calculus. In Proc. Twentieth ACM

Syrup. on Principles of Programming Languages (Charleston, SC, January 1993), pp. 43-56.
25. SWARUP, V., REDDY, U., AND IRELAND, E. Assignments for applicative languages. In Proc. Fifth ACM Conf. on

Functional Programming Languagesand Computer Architecture (August1991), vol. 523 of Lectare Notes in Computer
Science, Springer-Verlag, pp. 192-214.

26. WEISE, D., CREW, R., ERNST, M., AND STEENSGAARD, B. Value dependence graphs: Representation without taxation. In
Proc. Twenty-First A CM Syrup. on Principles of.Programming Languages (Portland, OR, January 1994), pp. 297-310.

27. YANG, W., HORWITZ, S., AND REPS, T. Detecting program components with equivalent behaviors. Tech. Rep. 840,
University of Wiconsin-Madison, April 1989.

28. YANG, W., HORWITZ, S., AND REPS, T. A program integration algorithm that accommodates semantics-preserving
transformations, ln Proc. FourthACM SIGSOFTSymp. onSoflware DevelopmentEnvironments(lrvine,CA, December
1990), pp. 133-143.

