
A Multiple-Valued Logical Semantics for Prolog

Roberto Barbuti and Paolo Mancarella *

Dipartimento di Informatica, Universit~ di Piss, Piss, Italy

Abs t rac t . The coincidence of the declarative and procedural interpre-
tations of logic programs does not apply to Prolog programs, due to
the depth-first left-to-right evaluation strategy of Prolog interpreters.
We propose a new semantics for Prolog programs based on a new four-
valued logic. The semantics is based on a new concept of completion
analogous to Clark's and it enjoys the nice properties of the declara-
tive semantics of logic programming: existence of the minimal Herbrand
model, equivalence of the model-theoretic and operational semantics.

1 I n t r o d u c t i o n

One of the most attractive features of the logic programming paradigm is the
equivalence between its declarative and procedural reading. When looked at as a
first order theory, a collection of Horn clauses can be characterized by its minimal
Herbrand model; when looked at as a set of procedure definitions, a collection
of Horn clauses can be characterized by its success set, which coincides with the
minimal Herbrand model. Unfortunately, it is well known that this equivalence
is lost when moving from logic programming to Prolog programming, the reason
being that Prolog interpreters use, for efficiency reasons, a depth-first left-to-
right computat ion strategy. As a consequence, the declarative semantics of logic
programming cannot be adopted as the abstract logical semantics for Prolog
programs. For this reason, usually the semantics of Prolog is defined using non-
logical frameworks [4, 5, 6, 7, 8, 9, 17].

When dealing with computational issues, one has to abandon classical 2-
valued logic and has to move to multiple-valued logic. A first a t tempt is to adopt
a 3-valued logic where the third truth value (undefined) is introduced to model
non-terminating computations (see, e.g. [1, 2, 14, 16, 19]). It is worth noting
that the 3-valued approach has been successfully used to give a semantics also
to logic programming with negation. However, these 3-valued based semantics
do not allow to model the computational behaviour of Prolog.

In this paper we propose a logical semantics for pure Prolog (without extra-
logical features and negation) based on a four-valued logic. Roughly speaking,
the fourth truth value is intended to model a computation in which a success
is "followed by" a non-termination as in the computation of the goal ~- p with
respect to the Prolog program {p, p (-- p}.

* Work partially supported by the EEC Keep in Touch activity KIT011 - LPKRR.

63

The semantics is based on the notion of sequential completion of a Prolog
program, which differs from Clark's completion in that the standard connectives
A and V are replaced by two new connectives A (sequential conjunction) and
V (sequential disjunction). These connectives are suitably defined on our four-
valued logic and their logical meaning reflect the computational behaviour of
Prolog: A models the left-most computation rule of Prolog, while V models the
search strategy, i.e. the sequential use of the clauses in a program.

The semantics we propose for Prolog enjoys the nice properties of the declar-
ative semantics of logic programming (existence of the minimal Herbrand model,
equivalence of the model-theoretic and operational semantics).

For the sake of clarity, in this paper we first explore our approach for propo-
sitional Prolog, and then we extend it to full, pure Prolog. The main difficulty
in moving from propositional to pure Prolog stands in the semantics of the ex-
istential quantification. In this respect, we introduce the concept of sequential
existential quantification and we give its meaning in our four-valued logic.

2 Prel iminaries

In this section we will provide the basic notions of multiple-valued logics and
logic programming.

There are different ways to present multiple-valued logics (see, e.g. [13, 23,
21]). Here, we basically follow the approach of [21] based on valuation systems.

We refer to a first-order language s with predicate symbols 7), variables l)
and function symbols 5 r. The ground term algebra over ~" is denoted by T(~').
The non-ground term algebra over 5 r and 1) is denoted by T(~', V). The set
of atoms constructed from predicate symbols in P and terms from T(2", l)) is
denoted A m (P , Y:, V) or A m for short.

A valuation system for a language s is tuple (7-, 7), 7~, ~) where: i) 7" is the
set of truth values, with at least two elements; ii) 7) is the set of designated t ruth
values, a non-empty proper subset of T; iii) T~ is a set of functions interpreting
the connectives of the logic; iv) ~ is a set of functions interpreting the quantifiers
of the logic.

Note that using valuation systems, we can assign different meanings to con-
nectives and quantifiers.

An assignment c~ relative to a valuation system (T,7),7~,~) is a pair a =
(p, I), where I is a non-empty set of individuals and p is a function which maps
variables and ground terms to elements of I, and each predicate symbol p to a
function I n --* 7-, where n is the arity of p.

Each assignment o~ induces an interpretation (or valuation) va of a sentence
in the language, inductively defined on the structure of the sentence and based on
T~ and ~ as far as the interpretation of connectives and quantifiers is concerned.
An interpretation v~ is a model for a sentence r iff v , (r E 7). Given two
formulae r r we say that r is a logical consequence of r denoted by r ~ r
iff va(r I) E 7), for all models v~ of r

64

As an example, classical first order logic is a multiple valued logic in which
7" = {t, f}, :D = {t}, and the connectives and quantifiers are interpreted as
usual.

We assume that the reader is familiar with logic programming, and so we
recall only some basic definitions. For the concepts which are not reported here,
the reader can refer to [18, 3].

Given a first order language s a logic program over Z: is a set of definite
clauses of the form A ~-- B where A is an atom and B is a conjunction B1A. . .AB,
of atoms. A is called the head of the clause, and B is called the body of the clause.
All the variables occurring in a clause are implicitly universally quantified. A goal
is a clause with an empty head, denoted by ~- B.

The declarative semantics of logic programs is given by classical two-valued
logic and Herbrand interpretations. A Herbrand interpretation is a valuation v~
corresponding to an assignment (p, T(2")), in which the domain of individuals
is the ground term algebra (Herbrand Universe). The standard semantics of a
logic program P is given by its minimal Herbrand model, with respect to the
pointwise ordering on interpretations induced by the ordering f < t on truth
values,

On the other hand, the operational semantics of logic programs is given in
terms of SLD-resolution and the SLD-refutation procedure. Given a logic program
P and a goal G, an SLD-tree for P and G is a tree satisfying the following: (i)
each node of the tree is a (possible empty) goal, and (ii) the root node is G,
and (iii) let B1, B2, . . . , B , , . . . , B,,, (m > 1) be a node in the tree and B, be the
selected atom via a computation rule. Then, for each clause A ~-- B such that
mgu(A, Bin) = ~ ~ fail, the node has child (B1, B2 , . . . , B , . . . , Bin)0, where
mgu(A, B) denotes the most general unifier of A and B, which is fail if A and
B do not unify.

A search rule is a strategy for searching SLD-trees. An SLD-refutation pro-
cedure is specified by a computation rule together with a search rule. Success
branches in a SLD-tree are the ones ending in the empty goal, while failure
branches are the ones ending in a non-empty node without children.

The operational semantics of Prolog corresponds to a particular way of con-
structing and visiting SLD-trees, which can be formalized as follows. A Prolog-
tree is an SLD-tree such that: i) the computation rule is the left-most one; ii)
the children of a non-leaf node are obtained (from left to right) by considering
the clauses in the textual order they appear in the program.

Finally, the operational semantics of Prolog corresponds to the left-most
depth-first visit of the Prolog-tree for a given goal.

Our semantics is based on a notion of completion of a logic program which
is similar to Clark's completion [11]. The latter has been originally introduced
by Clark in order to provide a declarative semantics to negation as finite failure.
However (variants of) Clark's completion have been adopted to capture the
logical meaning of Prolog, and this is the case also for our approach. Let us
briefly recall the definition of Clark's completion.

Let P be a logic program. Each clause p(tl , t2, . . . , tk) ~-- B is first trans-
formed into

65

p (x l , x 2 , . . . , x k) ~-" 3~.xi = ti A x2 = t2 A . . . A xk = tk A B
where x l , . . . , xk are new variables and ~ is the sequence of variables occurring
in the original clause. Let then p(~) ~- Ei, 0 < i < m be the sequence of the
transformed clauses m clauses of P defining p. The completed definition of p is
the formula p(~) ~-* E1 V . . . VEm where Ei coincides with Bi if Bi is a non
empty conjunction, and Ei is true otherwise. If a predicate p never occurs in the
head of a clause in P, its completed definition is the formula p(~) *-+ false. The
completion of a Prolog program P, denoted by cornp(P) is the collection of the
completed definitions of the predicates in p E :P, equipped with the axioms of
Clark's equality theory which force -- to be interpreted as syntactic identity.

3 R e l a t e d works

There are several papers dealing with a logical description of the Prolog seman-
tics.

In [10], a translation from a propositional Prolog program P to a linear logic
theory LTp is given, and the soundness and completeness of the translation is
proved: the goal A succeeds under the Prolog evaluation iff LTp I"tin A, and A
fails iff LTp ~-Iin A • �9

A similar approach, using first order logic, is developed in [24]. A new com-
pletion of programs, g-completion is defined. The g-completion is a theory in
a language extended by new predicates which expresses the success, failure and
termination of goals. If the Prolog evaluation of a goal succeeds, fails or termi-
nates, then the corresponding formulas, in the extended language, are provable
from the g-completion. Conversely, if it is provable, in the g-completion, that a
goal succeeds and terminates, then the goal has a successful Prolog evaluation.

These approaches, although able to logically describe the successes and fail-
ures of Prolog computation, do not capture an important aspect of computa-
tions, that is non-termination. To model infinite computations a new value is
used, namely the undefined value u. The introduction of this new value leads
to the use of a multiple-valued logic as a tool for describing the operational
behaviour of logic programs.

Examples of semantic definitions based on three-valued logic are the ones
of [14, 16, 19]. These logical semantics are defined for pure logic programming,
that is they model an operational behaviour based on fair SLD-trees visited by
a breadth-first strategy.

In [2], a semantics for Prolog in a logical style is presented. This logical se-
mantics is proved correct with respect to an operational one, which essentially
mimics the left-most depth-first visit of a Prolog tree. The left-most depth-first
search rule is taken into account by using the completion of programs and by
giving a sequential interpretation to the disjunction in the right part of each
predicate completed definition. Of course, in this case, the order of the argu-
ments of the disjunction is essential. This order must respect exactly the order

66

of clauses. Moreover the left-to-right computation rule is modelled by the se-
quential interpretation of the conjunction.

To define the semantics with respect to the completion of a program, [2]
generalizes the standard notion of goal, in the style of [20]. A goal is a formula
defined as follows: (i) a t ruth value f or t, or (ii) an atom, or (iii) s = t, where
s, t are possibly non ground terms, or (iv) G A G I, G V G ~, 3x.G, where G and
G' are goals.

As an example consider the Prolog program p(t) ~ q(~7), p(~) ~ r(~7).

where t, t ~, ~, s' are sequences of terms. Its completion is given by
p(~) ~ :l~.(x = t A q(~T)) V :IT.(~--~ A r(sT))

where y, z are the sequences of variables occurring in the two clauses respectively,
and ~ t is an abuse of notation to indicate all the equations having in the left
part a variable in ~ and in the right part the corresponding term in t.

The semantics of Prolog is obtained by giving an order to the evaluation of V,
so that, when evaluating the definition ofp(~), the part corresponding to the first
clause is examined first, and the second part is evaluated only if the evaluation
of the first one yields f . The evaluation order of A is defined analogously. Notice
that the evaluation order of V models the sequential use of the clauses, while the
one of A models the left-most computation rule.

More formally [2] gives the semantics in terms of the three truth values,
{t, f , u} 2 with the interpretation of V and A given by the following valuation
functionv mapping ground formulas on truth values.

v(B V C) = Iv(C) if v(B) = f
[v(B) otherwise

v(C) if v(B) = t
v(B A C) = v(B) otherwise

Unfortunately, this interpretation of the connectives fails to provide a complete
logical specification of Prolog semantics.

Consider the following propositional Prolog program (in completed form)
p ~-* q V loop. loop ~-. loop. q ~-* true. r ~-* false.

where the computation of the predicate loop is infinite. In the three-valued logic
this behaviour is modelled by assigning the truth value u to loop.

Consider the two goals p and r. It is easy to see that, by using the valuation
function v and the predicate definitions, the first one has t ruth value t, while
the second one f . Consider now the goal p A r which is equivalent, by using the
definition of p, to (q V loop) A r. By using the values of q, loop and r and the
valuation function v we obtain the result f , but this is not the result we get
by a Prolog interpreter. In fact, due to backtracking, the goal p A r would run
indefinitely, thus its t ruth value should be u.

If we expand the definition of p and we apply the distributivity of V on A we
obtain, from p A r, the goal (q A r) V (loop A r), which has the right value u.

Intuitively, the problem comes from the fact that the valuation function v
cannot model backtracking on different alternatives in a predicate definition. It

Actually, one more value, n, is used to model floundering of negation. We do not
consider it, since in this paper we do not take negation into account.

67

works properly only on goals in which the alternatives are "compiled", by apply-
ing distributivity, in a disjunction. For this reason, [2] gives semantics to Prolog
programs in two steps. In the first one a goal is transformed into a O-formula,
that is a formula in which all disjunctions are the immediate subformulas of either
a negation or other disjunctions. Then, the valuation function is applied to these
formulas to get the correct truth value. In the above example, (q A r) V (loop A r)
is a O-formula, while (q V loop) A r is not.

Although [2] represents a step towards the definition of a logical semantics
of Prolog, the approach is not completely satisfactory. It is not a true logical
semantics because it is not compositional on all the possible goals. In the previous
example, the true value of p A r is not given simply by the and of the values of
p and r. To get the correct value we have to apply a transformation, which has
the sound of making some computation steps, to get a formula in the O-form.

In the following section we will present a four-valued logic which can be used
to give a compositional true logical semantics of Prolog. The fourth t ruth value,
which is denoted by t=, models the computational behaviour of a goal which has
at least one solution, but whose computation is infinite.

A first intuition on the use of this fourth t ruth value can be found in [19],
in which a value corresponding to t~ was used to model an SLD-tree with both
infinite and success branches. However, this is not suitable for the semantics
of Prolog, because a solution for a goal is given only if the success branch,
corresponding to this solution, has no infinite branches on the left.

4 A L o g i c a l S e m a n t i c s f o r P r o p o s i t i o n a l P r o l o g

Our aim is to give a compositional logical semantics to Prolog by using a four-
valued logic. For the sake of clarity, we first define the semantics of propositional
Prolog. In the next Section this semantics is extended to full Prolog.

A propositional logic program is a collection of definite clauses from a lan-
guage s in which 2" = 0.

4.1 A f o u r - v a l u e d logic

In this section we introduce the valuation system 124 defining the four-valued
logic we will use to provide propositional Prolog with a logical semantics.

As mentioned in the previous section, the idea is to extend the usual three-
valued logic by a fourth t ruth value, t~, which is intended to model an infinite
Prolog tree which has at least a successful branch to the left of the first infinite
one. Moreover, the connectives A and V are interpreted in a sequential manner,
in order to reflect the operational behavior of Prolog. Since the semantics of
a Prolog program P is given in terms of (a variant of) its Clark's completion,
we directly define our valuation system with respect to the language of Clark's
completion.

68

D e f i n i t i o n 1. The valuation system 124 = (T4,2)4, 7~4) is defined as follows:
(i) T4 : { f , u , t ~ , t }
(ii) 7)4 = {t}
(iii) The constants false and true have meaning f and t respectively, while

the meaning of the connectives A, V and ~ is given by the following functions
belonging to T~4.

x\yl t t~ u f x\yl t t , u f
t It t . u f t It t~tu t {

t~ t ~ t ~ u u t~ t~ t u t ~ t u t i f x = y
u u u u u f - (x , y) = [U [U U U U fotherwise
f [f f f f f [t t~ u f

f^(x,y) f v (x , y)

Let us explain intuitively the above definitions. The interpretation of A mim-
ics the computation corresponding to a conjunction of goals. Since t is intended
to model a finite success, if it is the first argument of a sequential conjunction
the result is equivalent to the second argument. An argument equal to tu models
a computat ion in which there is at least a success and then it is infinite; if it is
the first argument of a sequential conjunction, the resulting computation is still
infinite, but the existence of a success, in the whole computation, depends on
the value of the second argument. Finally a value f or u for the first argument
is the result of the whole computation.

On the other hand, the interpretation of V mimics the result of exploring
different alternatives in a computation of a Prolog goal. The first argument
equal to t models the fact that we have got a finite success in the computation of
the first alternative; of course, if the second argument corresponds to an infinite
computat ion the result must reflect it. If the first argument is tu we have at least
a success and an infinite computation independently from the behaviour of the
second alternative. Obviously, when the first alternative has a finite computation
without successes, the result of the whole computation is the one of the second
alternative, and, finally, when the first alternative has an infinite computation
without successes, we cannot pass to examine the second one.

Finally, the ~-~ connective is defined in the expected way also in our four-
valued logic, that is it has t if and only if the two arguments have the same
truth value. Otherwise its value is f .

4.2 S e m a n t i c s o f Propos i t i ona l Pro log

The semantics of a propositional Prolog program P is given in terms of its
sequential completion s_comp(P), which is similar to Clark's completion. The
only difference is that , when constructing the sequential completion of a program
P, the textual order in which atoms occurs in the body of a clause as well as the
textual order in which clauses defining a predicate p occur in P determine exactly
the order in which their transformations occur in the disjunction of conjunctions
which form the completed definition of p. Due to its similarity with the definition
of Clark's completion, we omit the definition of s_comp(P).

Of course, we have to give also a new definition of goal.

6 9

D e f i n i t i o n 2 . A goal is a formula defined as follows: (i) the constant false or
the constant true, or (ii) an atom, or (iii) G A G', G V G', where G and G' are
goals.

The first important observation is that in our four-valued logic we can logi-
cally model backtracking, as stated by the following proposition. Recall that a
model of a formula, in a valuation system 12 = (T, :D, ~'), is an interpretation vp,
where p is an assignment, which assigns to the formula a truth value in l) (the
truth value t in the case of our valuation system 124).

P r o p o s l t i o n 3 . Given three goals, G, G ~ and G ~, in propositional Proiog, every
interpretation is a model of the formula

((a V a ') A a") ~ ((G A G") V (G' A G"))

Stated otherwise, the formulas (G V G') A G u and (G A G") V (G' A G") are
equivalent, i.e. they have the same truth value in every interpretation.

Let us consider the sequential completion of the example of Section 3.
p ~ qV loop. loop ~ loop. q ~ true. r ~ false.

Assigning the truth value u to loop, the value of p is now tu and hence the value
of the goal p A r is u.

It is important to remark that the classical properties of V and A are not
preserved in our valuation system. For example, the formulas G A (G' V G t')
and (G A G ~) V (G A G") are not equivalent 3. However, we are interested in
maintaining the properties which model the evolution of Prolog computations.
In this respect, notice that (G A G ~) V (G A G ~') does not model the evolution of
the computation of the goal G A (G ~ V G~).

Now, we can define the model-theoretic semantics of propositional Prolog
as the minimal model of s_comp(P) with respect to a suitable ordering be-
tween assignments. This ordering is the pointwise ordering obtained from an
ordering between the four truth values based on the following Hasse diagram.

t
/

tu

u

Following [15], we refer to this ordering as the knowledge ordering, <_k.

D e t i n i t i o n 4 . Given a propositional language s = (7), 19), let p,p~ : 7) ~ •4 be
two assignments relative to the valuation system 124. We say that p is less than or
equal than p', denoted by p _<k P~, ifffor all atoms p E P we have p(p) _<k p'(p).

It is easy to see that the set of assignments relative to 124 is a complete partial
order with respect to _<k.

P r o p o s i t i o n 5 . Given a propositional Prolog program P, the set of all models
of s_comp(P) has a minimal element with respect to in <k.

3 Consider the values t~, f and t for the goals G, G t and G", respectively. The goal
G A (G'V G") has truth value tu, while (G A G ')v (G A G") has value u.

70

The existence of the minimal model is based on the definition of a suitable
bo t tom-up operator q-p associated with any program P, which is the analogous
of the Fi t t ing operator ~ p for the three-valued case.

D e f i n i t i o n 6 . Let P be a propositional Prolog program and /~ = (7~,O) be
language of its sequential completion. The operator 7"p mapping assignments in
.4 to assignments in .4 is defined as follows. For each predicate symbol p E P
7-p(p)(p) = vp(r where p ~-. r is the sequential completed definition of p in
s_comp(P), and vp is the valuation induced by p.

L e m m a 7 . Let P be a propositional Prolog program, and 7"p be the operator
associated with P. Then the following facts hold: i} :Tt, is monotonic with respect
to <k, and ii) a valuation vp is a model of s_comp(P) iff p is a fixpoint of Tp.

As a consequence, we have that the interpretation vp induced by the least
fixpoint of the 7"p operator is the minimal model of s_comp(P).

Finally, we show that the minimal model of s_comp(P) reflects indeed the
operat ional behaviour of Prolog.

T h e o r e m 8. Let P be a propositional Prolog program, A4 the minimal model
of s_comp(P) and G a goal:

Azl(G) = t i f f the Prolog-tree of P and G is finite and contains at least one
success branch
.A4(G) = f iff the Prolog-tree of P and G is finite and does not contain any
success branch
A//(G) = tu iff the Prolog-tree of P and G is infinite, and it contains at least
a success branch on the left of the first infinite branch
Ad(G) = u iff the Prolog-tree of P and G is infinite, and it contains no
success branch on the left of the first infinite branch.

[]

5 P u r e P r o l o g

In this section we extend the logical semantics to pure Prolog. Without loss of
generality, we consider only Prolog programs in which all the clause heads are
pairwise not unifiable. Given a program in which this property does not hold, it is
easy to construct a new program, by adding an extra argument to any predicate,
which has the property. For example, the program p(f(x)) ~-- p(x), p(x) ~ q(x)
would be t ransformed into p(1, f (x)) *-- p(y, x), p(2, x) ,--- q(y, x).

A s a consequence of the introduction of variables and terms, we have to give
a new definition of goal. In the following, for the sake of brevity, we will denote
a conjunction of equations sl = tl A s2 = t~ A . . . A sk = tk simply by s = t

D e f i n i t i o n 9 . A goal is a formula defined as follows: (i) a constant false or true,
or (ii) an a tom, or (iii) a conjunction of equations s = t, or (iv) G A G', G V G',
qx.G, where G and G ~ are goals.

71

Note that the axioms of the Clark's equality theory force = to be interpreted
as syntactic identity also in the four-valued logic.

To give a logical semantics to Prolog we have to give a meaning to 3. It
is worth noting that the meaning of a formula 3x.G, cannot be simply given
classically by the disjunction of G[x := t] under all possible assignments for x.
Actually, the disjunction must be interpreted as a form of sequential disjunction,
and the assignments have to be considered following a special order.

To get an intuition of this let us consider the Prolog program
p(b) ~- p(b) p(a)

on a language in which ~" = {a, b} and P -=- {p}. Its sequential completion is
given by

p(x) ~ (x = b A p (b)) V x = a .
Obviously, the Prolog goal p(x) will loop, and this should be reflected by the
meaning of the goal 3x.p(x). The meaning of 3x.p(x) cannot be simply given by
the disjunction p(x)[x := a] V p(x)[x := b], because this disjunction has truth
value t in the minimal model of the program. Note that the program could be
viewed as a propositional one, thus, in its minimal model the atom p(b) would
have value u, while p(a) would have value t.

On the other hand, the meaning of 3x.p(x) can be neither given by the
sequential disjunction p(x)[x := a] V p(x)[x := b], because in this case its t ruth
value would be tu.

The value for the goal, corresponding to the operational behaviour of Prolog,
is given by the sequential disjunction p(x)[x := b] Y p(z)[x := a] in which the
assignments for x are taken in the "right" order. Essentially, this order is given
by the order of clauses in the Prolog program.

In the following we define the order in which the assignments for the variables
must be taken to model the computational behaviour of Prolog.

We consider a denumerable set of indexed variables, 13 ~q = {x~- I ~ is a
sequence of binary digits}. We will denote by ~ :: m the sequence composed by
the sequence ~ followed by the digit m. We assume that I) f3 1) ~q = 0, where V
is the set of variables in the underlying language.

D e f i n i t i o n l 0 . Given the denumerable set 1; ~eq of variables, a total variable
assignment (a total assignment for short) is a total function s : 1) seq ~-+ T(.7:).

A total assignment is an assignment of ground terms in the language l:
to all the variables in V ~eq. Total assignments are used to give a meaning to
existentially quantified goals. The order among total assignments is based on
the following definitions.

D e f i n i t i o n l l . Given a goal G in the first-order language/ : = (5 , P, l; U 1;'eq),
we say that G is V-closed iff all the free variables occurring in G belong to r seq .

Def in i t i on12 . Given a 1)-closed goal G and a total assignment s, we denote
by G[s] the closed goal obtained from G by replacing variables in 1; seq with
corresponding terms in s.

7 2

D e f i n i t i o n l 3 . Given a Prolog program P, two total assignments s and s ~, a
sequence ~ of binary digits, and a Y-closed goal G; we say that s must occur
before s ~ in G with variables starting from ~, denoted as s ~ s ~, iff one of the
following holds:

- G is an atom p(t), p(~) ~-~ G' is in s_comp(P) and s -<~,[r:=q s'.

- G is t = t ' and both V E T ~ (T~-tT)[s] and C E T ~ (t = ~)[s'].
G is Go A G1 and either s -~:o ~ s' or both sr ~ S'~Go~::~ and s .~.;1-.. s'
hold.
G is Go V G1 and either s -~:o ~ s' or both s ~ : : ~ s'~n::~ and s .~::1 s' - 7~Go ,

hold.
~ : : 0

- G is qx.Go and s ao[r:=x~::ol s~' x E l) and x~::0 E !)s~q

Intuitively, a total assignment s must occur before a total assignment s' iff
in the left-most inner-most visit of the definition of G a set of equations is found
which is satisfied by s and not by s'. Note that in the visit, each encountered
existential variable belonging to 1; is substituted by a free fresh one from])seq.
Thinking operationally, s corresponds to the bindings of a branch in the Prolog-
tree for the goal G which is on the left of a branch (if any) s' corresponds to.
Note that we assume the clause heads pairwise not unifiable, thus the bindings
corresponding to different branches are different.

P r o p o s i t i o n 1 4 . Let P be a Prolog program, G a goal, ,4 the set of all total
assignments and)~ the empty sequence of binary digits. The relation -.<(~) between
assignments is a non-reflexive ordering relation on ,4.

Proof. Based on the fact that no clause heads are unifiable.

In the following, we will denote the ordered set by (,4, j(x)~ Note that, in -~G 1"

(, 4 , - ~)) we can have infinite chains whose limits do not belong to ,4. This
because a limit of a chain can be an assignment which substitutes infinite terms
for variables. To obtain the truth value of a Prolog goal, we need to "close"
(,4, .~(~))4 by extending it with the limits of the chains.

D e f i n i t i o n 15. Let (,4,-<~)) be an ordered set of all assignments, T~176 ") the
set of infinite terms built from symbols in ~', and ,4c~ the set of total assignments
s : l) 8eq ~-* T(~') U T~176 We define ,4 as the set

,4 U {sis E ,400 such that s is the limit of an infinite chain in (,4, -<~))}

In the following we will denote an ordered closed set of all the assignments

a s

Given a goal G, we can obtain its t ruth value with respect to the ordered

closed set of all the assignments, (A, -<(~)).

4 In the sense of applying to it a closure operation.

73

D e f i n i t i o n 16. Given a Y-closed goal G', and a set of assignments B ordered by
-<, we denote the sequential disjunction of G' with respect to (B,-<),

V a,[s]

as a possible sequential disjunction of all G/[s]'s such that G/[s] occurs in the
disjunction before G'[s'] if s -< s ~ (s, s~E B).

D e f i n i t i o n l T . Given a set of total assignments B, we define the subset B]~;:=~
of B, where x~-E W ~q, t E T(2-)U T~(2-), as the following set: BIx~:=t = {sis E
B, s (~) = t}

D e f i n i t i o n l 8 . Given a closed goal G with terms from T(J r) U T~176 an or-
dered set of total assignments (B,-<), a sequence of binary digits ~, and an
interpretation I, the truth value of G, with variables starting from ~ with re-

/'G (~) ~ is the truth value obtained as spect to (B,-<), in I, denoted by \ (B,.~))(I)

follows:

- f if G is false,
- t if G is true,
- u if G is t = t ' and there are infinite terms occurring in it, or the truth value

of (t = t ~) in I, if all the occurring terms are finite,
- u if G is p(t) and there are infinite terms occurring in it, or the truth value

of p(t) in I, if all the occurring terms are finite,
(,.-, (~::0) ~ /,.-., (~::1)

- the value of ~,u0(B,.~))(D V i vl(t~,~)} (I) i f G is the goal Go V G1,

(,.-, (~::0) ~ (,,~ (~::1) - the value of ~ u0(tL.~))(D A ~u1(~,~))(i) if G is the goal Go A G1,

the maximal value (with respect to the truth ordering relation <t) of the
possible sequential disjunctions

[. , (~::0) ,
~,-o(~i . .<)LX :-- x~::0][s])(D

where e is the assignment x~::0 := s(x~::0), if G is the goal 3x.G0.

When evaluating an existentialgoal, we replace the existential variable by a
fresh one from the set l) seq, indexed by a sequence longer than ~. The reason
for substituting a fresh variable for the quantified one is to study the t ruth
value of the formula by means of ground instantiations of the introduced fresh
variable x~::0 (total assignments on l;'eq). Note that for each assignment s, the
instantiated goal is evaluated with respect to the set of assignments which agree
with s about the value of x~::0, Bi~z.o:=,(~:z::o).

Finally we can give the truth value of a goal.

7 4

Defini t ion 19. Given a closed goal G, the closed ordered set of all the assign-
ments (~, j(A)~ and an interpretation I, the truth value of G is value obtained
a s :

(~'~(2))j (s)

Recall that the ordering - ~ is induced by the goal G and by the Prolog
program P. Now we can define the notion of model for pure Prolog.

Def ini t ion20. Given a Prolog program P and an interpretation I. I is a model
for s_comp(P) iff for every definition

in s_comp(P), the truth value of (p(~)[~ := t-])(i) is the same as the truth value

of (e[7 :-- t-])(l) for each sequence t of terms in T(.~).

According to this notion of model, the results for propositional Prolog can
be extended to pure Prolog. In particular, Theorem 8 can be rephrased for pure
Prolog. Let us now give two examples.

Example 1. Consider the Prolog program
p(s(x)) ~- p(x). p(0).

Its sequential completion is given by p(x) ~-~ (3y.x = s(y) A p(y)) V x ---- O.
In the minimal model of the sequential completion all the atoms p(sn(O)),

with n -- 0, 1, 2, . . . , have value t.
Consider now the goal G = 3x.p(x) . The replacement of the existential vari-

able from a fresh one in V s~q starting from the empty sequence)~ produces p(xo),
where 0 stands for the sequence containing the unique value 0. We have that
{x0 : - sn+l(O) , . . . } ~ {x0 := sn(O) , . . . } , for all natural numbers n, and for
all total assignments in J4. Thus, there is an infinite descending chain of total
assignments

. . . {xo := % := % . . .

. . . % := % := o,...}
whose limit in .4 is the total assignment {xo := s~(O),...}. Thus, the value of

Q

~e(~,~))

is u, which is the value of the initial goal, Sx.p(x) , as well.
This models the operational behaviour of the Prolog goal p(x) with respect to

the given program, which has an infinite Prolog-tree without success branches.

Example 2. Consider the Prolog program
p(0). p(s(x)) ~- p(x).

Its sequential completion is given by p(x) ~-* x = 0 V (3y.x = s(y) A p(y)).
In the minimal model of the sequential completion all the atoms p(sn(O)), with
n = 1, 2, . . . , have value t.

75

Consider now the goal G = 3x.p(x). We have that {x0 := sn(O),. . .} -4~
{x0 := sn+l(O),...}, for all natural numbers n. Thus, there is an infinite ascend-
ing chain of total assignments,

{x0 := O,.. .} ~ { x o : = s (O) , . . . } -<~{x0 :=s2 (O) , . . . } ~ . . .
whose limit is {xo : - s~176 The replacement of the existential variable by
a fresh one in 1; "eq starting from A produces p(xo). The t ruth value of the goal
is then obtained as the infinite sequential disjunction

V
,E(~,<(~ '))

This corresponds to the infinite disjunction t V t V . . . V u, thus the initial
goal has value t~. This models the operational behaviour of the Prolog goal p(x)
which has infinite Prolog-tree with infinitely many success branches on the left
of the infinite one.

6 C o n c l u s i o n s

We have shown how Prolog programming can be given a logical semantics based
on a four-valued logic. Besides the usual undefined t ruth value, we have a fourth
t ruth value tu which models the computation of a goal which succeeds (at least
once) and then loops. Future work will concentrate mainly on two issues. First
of all, we plan to extend it to normal Prolog programs (i.e. Prolog programs
with negation-as-failure), possibly adapting the approach of [2] where an extra
t ruth value N is introduced to model floundering. On the other hand, we plan
to explore the possibility of further extending the approach to cope with other
extra-logical features of Prolog.

Acknowledgments . We thank Paola Quaglia for helpful discussions on the subject of
this work. We also thank the anonymous referees for their comments and suggestions.

R e f e r e n c e s

1. J.H. Andrews. The Logical Structure of Sequential Prolog. In S. Debray and
M. Hermenegildo, editors, Proc. 1990 North American Conf. on Logic Program-
ruing, 585-602. The MIT Press, Cambridge, Mass., 1990.

2. J.H. Andrews. A Logical Semantics for Depth-first Prolog with Ground Negation.
In D. Miller, editor, Proc. 1993 lnt'l. Svmp. on Logic Programming, 220-234. The
MIT Press, Cambridge, Mass., 1993.

3. K. R. Apt. Introduction to Logic Programming. In J. van Leeuwen, editor, Hand-
book ol Theoretical Computer Science, volume B: Formal Models and Semantics,
495-574. Elsevier, Amsterdam and The MIT Press, Cambridge, 1900.

4. B. Arbab and D.M. Berry. Operational and Denotational Semantics of Prolog.
Journal of Logic Programming, 4:309-330, 1987.

5. R. Barbuti, M. Codish, R. Giacobazzi, and G. Levi. Modelling Prolog Control.
Journal of Logic and Computation, 3:579-603, 1993.

76

6. R. Barbuti, M. Codish, R. Gia~:obazzi, and M. Maher. Oracle Semantics for Pro-
log. to appear in Information and Computation.

7. A. Bossi, M. Bugliesi, and M. Fabris. A New Fixpoint Semantics for Prolog. In
Proc. of the Tenth Int. Conference on Logic Programming, 374-389. MIT Press,
1993.

8. E. B6rger, and D. Rosenzweig. A Mathematical Definition of Full Prolog. Science
of Computer Programming, 1994, (to appear).

9. A. de Bruin and E. de Vink. Continuation semantics for Prolog with cut. In
J. Diaz and F. Orejas, editors, Proc. CAAP 89, volume 351 of Lecture Notes in
Computer Science, 178-192. Springer-Verlag, Berlin, 1989.

10. D. Cerrito. A Linear Axiomatization of Negation as Failure. Journal of Logic
Programming, 12:1-24, 1992.

11. K.L. Clark. Negation as Failure. In Logic and Databases, 293-322, Plenum Press,
New York, 1978.

12. S. K. Debray and P. Mislira. Denotational and Operational Semantics for Prolog.
In M. Wirsing, editor, Formal Description of Programming Concepts 1II, 245-269.
North-Holland, Amsterdam, 1987.

13. Epstein G.. The Lattice Theory of Post Algebras. In D.C. Rine, editor, Com-
puter Science and Multiple-valued Logic, 23-40. North-Holland, Amsterdam, 1984.
Reprinted from Transaction of the American Math. Society, 95, 2:300-317, 1960.

14. M. Fitting. A Kripke-Kleene Semantics for Logic Programs. Journal of Logic
Programming, 4:295-312, 1985.

15. M. Fitting. Bilattices and the semantics of logic programming. Journal of Logic
Programming, 11:91-116, 1991.

16. K. Kunen Negation in Logic Programming. Journal of Logic Programming, 4:298-
308, 1987.

17. N.D. Jones and A. Mycroft. Stepwise Development of Operational and Denota-
tional Semantics for Prolog. In Sten-A.ke T~rnlund, editor, Proc. Second Int'l Conf.
on Logic Programming, 281-288, 1984.

18. J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin, 1987.
Second edition.

19. A. Mycroft. Logic Programs and Multy-valued Logic. In M. Fontet and
K. Mehlhorn, editors, Proc. STACS 84, volume 166 of Lecture Notes in Computer
Science, 274-286. Springer-Verlag, Berlin, 1984.

20. D. Miller, G. Nadathur, F. Pfenning, and A.Scedrow. Uniform Proofs as a Foun-
dation for Logic Programming. Annals of Pure and Applied Logic, 51:125-157,
1991.

21. M. Rayan and M. Saxtler. Valuation Systems and Consequence Relations. In
S. Abrarnsky, D.M. Gabbay and T.S.E. Malbaum eds.,Handbook of Logic in Com-
puter Science, Vol. I, Clarendon Press, Oxford, 1-78, 1992.

22. W.R. Smith. Minimization of Multivalued Functions. In D.C. Rine, editor, Com-
puter Science and Multiple-valued Logic, 227-267. North-Holland, Amsterdam,
1984.

23. Special Section on Multiple-valued Logic. 1EEE Trans. on Computers, C-30:617-
706, 1981.

24. R.F. Sts The Declarative semantics of the prolog Selection Rule. In Proc. Ninth
IEEE Syrup. on Logic in Computer Science, Paris, 252-261, 1994.

