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Abstract. A system called BURS that is based on term rewrite systems and a 
search algorithm A* are combined to produce a code generator that generates opti- 
mal code. The theory underlying BURS is re-developed, formalised and explained 
in this work. The search algorithm uses a cost heuristic that is derived from the 
term rewrite system to direct the search. The advantage of using a search algorithm 
is that we need to compute only those costs that may be part of an optimal rewrite 
sequence. 
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Compiler building is a time-consuming and error-prone activity. Building the front- 
end (i.e. scanner, parser and intermediate-code generator) is straightforward--the theory 
is well established, and there is ample tool support. The main problem lies with the 
back-end, namely the code generator and optimiser there is little theory and even less 
tool support. Generating a code generator from an abstract specification, also called 
automatic code generation, remains a very difficult problem. 

Pattern matching and selection is a general class of code-generation technique that 
has been studied in many forms. The most successful form uses a code generator that 
works predominantly bottom-up; a so-called bottom-up pattern matcher (BUPM). A 
variation of this technique is based on term rewrite systems. This technique, popularised 
under the name BURS, and developed by Pelegrf-Llopart and Graham [30], has arguably 
been considered the state of the art in automatic code generation. BURS, which stands 
for bottom-up rewrite system, has an underlying theory that is poorly understood. The 
theory has received virtually no attention in the literature since its initial publication [29]. 
The only research that has been carried out in this technique has been on improved table- 
compression methods. Many researchers who claim to use BURS theory (e.g. [31, 14]) 
generally use 'weaker '  tree grammars instead of term rewrite systems, or equate BURS 
with a system that does a static cost analysis (e.g. [13]). We argue that a static cost 
analysis is neither necessary nor sufficient to warrant a BURS label, and that a system 
that is based on tree grammars cannot be a BURS. 

In this work we present an outline of formal BURS theory. Due to space restrictions, 
we present the full theory in [28]. This formalisation of BURS contrasts with the semi- 
formal work of Pelegri-Llopart and Graham. But there are other important differences 
in our work. We do not, for example, use instruction costs to do static pattern selection, 
and we do not use dynamic programming. Instead we use a heuristic search algorithm 
that only needs to dynamically compute costs for those patterns that may contribute to 
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optimal code. A result of this dynamic approach is that we do not require invoNed table- 
compression techniques. Note that we do not address register allocation in this work; we 
are only interested in pattern matching and selection, and optimal code generation. 

We begin in the following section with a brief survey of the literature. In Section 2 
we derive the input and output sets of an expression tree. These sets contain the patterns 
that match the given expression tree. The patterns are selected by the heuristic search 
algorithm A*. This algorithm, described in Section 3, is all-purpose--it can be used to 
solve all kinds of 'shortest-path' problems. In our case the search graph consists of all 
possible reductions of an expression tree, and we wish to find the least expensive. The 
A* algorithm uses a successor function (algorithm) to select patterns and apply rewrite 
rules. In this sense, the successor function marries A* to BURS. The successor function 
is presented in Section 4. In the implementation, the algorithm that generates input and 
output sets, and the successor function, are modules that can be simply 'plugged' into A* 
to produce a code generator. The implementation is also briefly described in Section 4. 
Finally, in Section 5, we present our conclusions. 

I Other work 

Kron [25], Hoffmann and O'Donnell [23], and Chase [7] have laid the foundations of 
the BUPM technique. Chase [7] implemented a BUPM by specifying patterns using a 
regular tree grammar (RTG). An RTG is a context-free grammar with prefix notation 
on the right-hand sides of the productions representing trees. Chase found that the 
tables generated by the pattern matcher were enormous, requiring extensive use of 
compression techniques. A formalisation of Chase's table-compression technique can be 
found in Hemerik and Katoen [ 18]. An asymptotic improvement in both space and time 
to Chase's algorithm is given by Cai et al [3]. 

Hatcher and Christopher [17] went further than Chase and built a complete BUPM 
for a VAX-11. Their work was a milestone in that they carried out static cost analysis, 
which is a cost analysis carried out at code-generator generation time. In a dynamic 
cost analysis, the code generator itself performs the cost analysis. This is a space-time 
trade-off. Static cost-analysis makes the code-generator generator more complex and 
requires a lot of space for tables. In effect, pattern selection is encoded into the tables. 
The resulting code generator, however, is simple and fast. In both the static and dynamic 
BUPMs, the cost analysis is usually carried out using dynamic programming [ 1, 8, 32]. 
For a comparison of the performance of static and dynamic BUPMs, see Henry and 
Damron [22, 21] and Henry [19, 20]. Two notable attempts to improve the efficiency of 
the dynamic (BUPM) code generator have been Emmelmann et al [11], who developed 
the BEG system, and more recently Fraser et al [13] with the IBURG system. 

In 1990, Balachandran et al [2] used a RTG and techniques based on the work 
of Chase, Hatcher and Christopher to build a static BUPM. Very recently, Ferdinand et 
al [ 12] reformulated the (static) bottom-up pattern-matching algorithms (based on RTGs) 
in terms of finite tree automata. A subset-construction algorithm is developed that does 
a static cost analysis, and generalises the table-compression technique of Chase. 

Pelegri-Llopart and Graham [29, 30] combined the static cost analysis concept from 
Hatcher and Christopher, the pattern-matching and table-compression techniques from 
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Chase, and, most importantly, term rewrite systems (rather than tree grammars) to develop 
a system called BURS. A BURS is, in fact, a generalisation of a BUPM, and is more 
powerful. The term rewrite system in a BURS consists of rewrite rules that define 
transformations between terms. A term, which is represented by a tree, consists of 
operators and operands (which are analogous to nonterminals and terminals in context- 
free grammars). However, variables that can match any tree are also allowed. The 
advantage of using a term rewrite system is that, as well as the usual rewrite rules that 
reduce the expression tree, we can use rules that transform the expression tree. Algebraic 
properties of terms can therefore be incorporated into the code-generation process. The 
'theory' that Pelegr/-Llopart and Graham develop is quite complex, however. They also 
compare the performance of a BURS with other techniques. They find that the tables are 
smaller and the code generator much faster. 

Mainly theoretical research into the role of term rewrite systems in code generation 
has been carried out by Emmelmann [10] and Giegerich [16, 15]. 

In 1992, Fraser, Henry and Proebsting [14] presented a new implementation of 
'BURS technology'. Their system, called BURG, accepts a tree grammar (and not a 
term rewrite system) and generates a 'BURS'. The algorithm for generating the 'BURS' 
tables is described by Proebsting in [31 ]. 

The only serious application of heuristic search techniques to code generation has 
been the PQCC (Production-Quality Compiler-Compiler) Project [33]. The construction 
of the code generator and the code-generator generator in PQCC are reported by Cattell 
in [4, 5, 6]. Cattell uses a means-ends analysis to determine an optimal code match. This 
involves selecting a set of instruction templates that are semantically close to a given 
pattern in the input expression tree. The heuristic semantic closeness means that either 
the root operators of the pattern and a particular template match, or that there is a rewrite 
rule that rewrites the root operator of the template into the root operator of the pattern. 
For performance reasons, the search procedure is done mostly statically, using a set of 
heuristically generated pattern trees. 

2 An Outline of BURS Theory 

In this section we describe how the sets of patterns that match a given expression tree 
are computed. We will only outline the formal approach that has been used--for a full 
treatment, the reader is referred to [28]. For more information on term rewrite systems 
see [9]. 

A ranked alphabet 22 is a pair (S, r)  with S a finite set of symbols and r E S ~ IN, 
where g~l denotes the set of natural numbers. If a is a symbol in S, then r(a)  is its rank. 
Symbols with rank 0 are called constants. The set of symbols with rank n, denoted 22n, 
is {a E S Ir(a ) = n}.  

For ,~ a ranked alphabet and V a set of variable symbols, the set of terms T~(V) 
consists of constants, variables and a( t l , . . .  ,tn), where a E 22n, and t l , . . .  ,tn E 
Try(V), n > 1. For term t, Vat(t) denotes the set of variables in t. The terms t for which 
Vat(t) = 0 are called ground terms. 

The position of a sub-term of a term t can be indicated by a path from the root of 
t to the root of the sub-term. A position is represented as a string of positive naturals, 
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separated by dots. For example, the position of  the first child of  the root is 1, and the 
second child 2. The position of  the first grandchild of  the root is 1.1. The root is at 
position e. We define Pos(t) as the set of  positions of  all nodes in 4. The sub-term of  a 
term t at position p E Pos(t) is denoted tip. We are now able to define a term rewrite 
system with costs. 

Definition 2.1 Costed term rewrite system 

A costed term rewrite system (CTRS) is a triple ((27, V),  R,  C)  with 
- 27, a non-empty ranked alphabet 
- V, a finite set of  variables 
- R,  a non-empty, finite subset o f T ~ ( V )  • TE(V) 
- C E R ~ R + U {0}, a cost function 

such that, for all (4, t ' )  �9 R,  t '  5~ 4, 4 r V and Var(4') C_ Vat(t). [] 

Note that R denotes the set of  real numbers. Elements of  R,  identified as r t ,  r2, and 
so on, are called rewrite rules. An element (t, t ' )  E R is usually written as t , t ' .  The 
cost function C assigns to each rewrite rule a non-negative cost. This cost reflects the 
cost of  the instruction associated with the rewrite rule and may take into account, for 
instance, the number of  instruction cycles, or the number of  memory  accesses. When C 
is irrelevant it is omitted from the CTRS. A term rewrite system (TRS) is in that case a 
tuple ((27, V),  R).  

The CTRS defined in the following example is a modified version of an example 
taken from Pelegri-Llopart and Graham [30], and will be used as a running example 
throughout this section. 

E x a m p l e  2.2 Let ((27, V) ,  R,  C)  be a CTRS, where 27 = (S, r ) ,  S = { + ,  e, a,  r, 0 }, 
r ( + )  = 2, r (c)  = r ( r )  = r ( a )  = r (0)  = 0, V = { x, y }, and R defined as follows: 

R = {  ( r l )  q - ( x , y )  ) ~-(y ,x) ,  (r2) -I-(z, 0) , • x, (r3) J t - (a ,a )  ---~ r ,  
( r , )  + ( e , r )  , a,  0 , c, c a ,  

("r)  a - - - ,  , ' ,  ( r s )  r , a } 

The cost function C is defined by C ( r l )  = C( r2)  = C(rs) = O, C(ra) = C(rs) = 3, 
C(r4) = 5 and C ( r r )  = C( r s )  = 1. Some example terms are +(0 ,  + (c ,  c)), a,  and 
+ ( x ,  +(0 ,  +(c ,  y))) .  For t = + (x ,  +(0 ,  +(c ,  y)))  we have that Pos(t) = { e, 1, 2, 2 .  
1 , 2 . 2 , 2 . 2 . 1 , 2 . 2 . 2  }. Some sub-terms of  t are 4[,= 4,411= x, and 412.2= + ( c , y ) .  [] 

Variables in a term t can be substituted by some term. The substitution a E V 
Ts  in a term t is written 4 a. Rewrite rules r l  : ta ~ t~ and r2 : t2 ~ t~ are 
equivalent if and only if there is a bijection a E Var(ta) ~ Vat(t2) such that t~ = t2 
and t~ a = t~. Thus, rewrite rules that are identical, except for variable symbols,  are 
considered equivalent. 

A rewrite rule and substitution are used to define a rewrite step. In a rewrite step 

41 (r,p), 42, where41,42 E T,~(V), r : t ~ t' E R a n d p  E Pos(tl) , theresulttermt2 

is obtained from t l  by replacing 411p by t 'a in t l  and using substitution a with 4 ~ = 4~1~,. 
We can also write (r, p) t l  = t2. A rewrite rule r that is applied at the root position, i.e. 
(r, e), is usually abbreviated to r. 
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A sequence of  rewrite steps that are applied one after another is called a rewrite 

sequence. A rewrite step is a rewrite sequence of  length 1. We write t (rl,pl)...(r,,p,)~ t '  

if and only if 3 t l , . . . , t , ~ - i  : t (ra,vl)?. t l  (rz,p2),. . . . .  tn-1 ( r , , p , ) ,  t ' .  We can also 

let S(t) = ( r l , p l ) . . .  (rn,Pn), and write S(t)t = t ' .  We sometimes denote a rewrite 
sequence S( t )  by 7". 

The cost of  a rewrite sequence -r is defined as the sum of  the costs of  the rewrite rules 
in 7". The length of  r is denoted I r ] and indicates the number of  rewrite rules in r .  If  a 
rewrite rule r occurs in a rewrite sequence r ,  then we write r E r .  We assume that all 
rewrite sequences are acyclic. 

Two rewrite sequences may also be permutations of  each other. Permuted rewrite 
sequences will, of  course, have the same cost, but note that corresponding rules in the 
two sequences may not be applied at the same positions. 

E x a m p l e  2.3 Consider the CTRS shown in Example  2.2, and let t = +(0,  +( r ,  c)). 

We can write t !r~,2)~. t ' ,  with t '  = +(0 ,  +(e ,  r )) .  We can also write ( r l ,  2) t = t ' .  The 

term t '  is obtained from t by replacing t12 by + ( y ,  x)"  in t, using substitution tr with 
~r(x) = r and tr(y) = e such that (z, y)~ = t12. Two derivations starting with t '  are: 

1. +(0, +(c,r)) <~,,2>~. +(O,a) <~,,2>~. +(O,r) (~'">~- +(r,O) (~">:- r 

2. +(O, +(c,r)) <r"~>'.-+(O,a)(~'~>:-+(a,O) (~"~>'.-+(r,O)<~">:- r 

These rewrite sequences are permutations of  each other and both have cost 6. [] 
Given a CTRS ((~2, V) ,  R,  C)  and 2 ground terms t, t '  E T~ ,  we now wish to 

determine a rewrite sequence ~- such that t ~ '.- t '  with minimal cost. In practice, 

term rewrite systems in code generation will allow many different rewrite sequences 
to transform t into t ' .  Fortunately, optimisations are possible so that we only need to 
consider relatively few of  these rewrite sequences. 

The first optimisation is based on an equivalence relation on rewrite sequences. 
The equivalence relation is based on the observation that rewrite sequences can be 
transformed into permuted sequences of  a certain form, called normal form. Permuted 
rewrite sequences yield the same result for all terms t. Hence we only need to consider 
rewrite sequences in normal form. It is a stipulation for our approach, and a property 
of  a BURS, that permuted sequences also have the same cost. I f  a cost function does 
not satisfy this property (for example, if the cost of  an instruction includes the number 
of  registers that are free at a given moment),  then the reduction that we obtain by only 
considering the normal form will lead to legal rewrite sequences being discarded. 

We can label, or decorate, each node in a term with a rewrite sequence. Such a rewrite 
sequence is called a local rewrite sequence, and is denoted by L(tlp), where tip is the 
sub-term of t at position p at which the local rewrite sequence occurs. Of  course, p may 
be e (denoting the root). A term t in which each sub-term is labelled by a (possibly 
empty) local rewrite sequence is called a decorated term, or decoration, and is denoted 
by D(t). We can usually decorate a given term in many ways. I f  we wish to differentiate 
between the rewrite sequences in different decorations, then we use the notation LD(tlp). 

Given a decoration D(t) of  a term t, the corresponding rewrite sequence SD (t) can 
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be obtained by a post-order traversal of  t. The rewrite sequence SD(t) corresponding to 
a decoration D(t) is defined as: 

SD(t) = { Lo(tl,), i f t  E ,Co 
(1. So(tl).. .n. So(t,)) Lo(tl,), ift  = a( t l , . . . ,  t , )  

Here, n .  7- for rewrite sequence 7- and (positive) natural number n denotes 7- where each 
position Pi in 7- is prefixed with n.. Decorations are considered to be equivalent if and 
only if their corresponding rewrite sequences are permutations of each other. 

0 r l r 4 r 7  + ~ 0 r17"4 + 

/ \  / 
~6"f7 C �9 C 'P6"~7 C 

Fig. 1. Equivalent decorations D(t) and D' (t) of a term t 

\ 
c 

Example 2.4 Consider the CTRS shown in Example 2.2 and let t = +(0,  +(c,  c)). 
Two decorations D(t) and D'(t) of t are depicted in Figure 1, on the left and right, 
respectively. The corresponding rewrite sequences are: 

sv(t) = (r6, 2.1)(rr,  2 .1) (r l ,  2)(r4, 2)(~r, 2)(rl, ~)(~2, ~> 
SD, (t) = (re, 2 . 1 ) ( r r ,  2 . 1 ) ( r l ,  2)(r4, 2)(rl ,  f)(rT, 1)(r2, e) 

The decorations D (t) and D '  (t) are equivalent because SD (t) is a permutation of SD, (t). 
[] 

We can define an ordering relation -~ on equivalent decorations. The intuitive idea 
behind this ordering is that D(t) -~ D'(t) for equivalent decorations D(t) and D'(t) if 
their associated local rewrite sequences for t are identical, except for one rewrite rule r 
that can be moved from a higher position q in D'(t) to a lower position p in D(t). 

The transitive closure of -.~ is denoted 4 +. The minimal decorations under -~+ are 
said to be in normal form. Normal forms need not be unique as --<+ does not need to 
have a least element. We let NF(t) denote the set of  decorations of  t that are in normal 

form. In [28] we prove that, given a term t and a rewrite sequence 7- such that t ~ .'. t ' ,  

a normal-form decoration of t always exists. 

Example 2.S In Example 2.4 we have D(t) -< D' ( t )  because rewrite rule r7 associated 
with the root position of t in D ' ( t )  can be moved to a lower position of t in D(t). As 
all local rewrite rules in D(t) are applied to the root position of the sub-term with which 
they are associated, they cannot be moved any lower, hence D(t) is in normal form. [] 

In a second optimisation, we reduce the number of  decorations that we need to 
consider still further by restricting the class of  normal-form decorations to strong normal 
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form. Local rewrite sequences in this restricted class contain rewrite rules that are only 
applied to positions that have not previously been substituted for a variable. We say that 
each position in a term is either rewriteable or non-rewriteable. If a term is rewritten 
using a rewrite rule that does not contain a variable, then the writeability of the positions 
in the rewritten term do not change. If the rewrite rule does contain a variable, then the 
positions in the term substituted for the variable become non-rewriteable. 

LetRPt(7-) be the set ofrewriteable positions in the term resulting from applying 7- to 
t. Initially, all positions in t are rewriteable, so RPt(e) = Pos(tl,). For rewrite sequence 
7-(tl ' t2,p) we define: 

RPt(r(tt  , t2,p)) = (RPt(T) --Pos(t'lp))U Pos(t"lp)- {Pos(t"lp.q) l q E VP(t2)} 

where t 5 :. t' (tl--~t2,p), t" ,  and VP(t) is the set of positions in t at which a variable 

occurs. In the definition above, we see that the set of rewriteable positions in t" consists 
of the rewriteable positions in t '  (i.e. RPt(7-)), minus the positions in the sub-term that 
has been matched by tt (Pos(t'lp)), plus the positions in the sub-term t2 that replaced tt  
(Pos(t"lp)), and minus the positions in the sub-terms that are substituted for the variables 
(if any) in t2 ({Pos(t"[p.q) [ q E VP(t2)}). Given a normal-form decoration, we prove 
in [28] that a strong-normal form always exists. 

Example 2.6 We are given a TRS with S = { *, +, c, r, 2 }, corresponding ranks 
{ 2, 2, 0, 0, 0 }, V = { x } and R defined as follows: 

Rf{(rl) ,(2,x) (r2) + (c, c) ----, ;?} 

Assume that we have some term t = *(2, +(c, c)). Initially, the rewriteable positions in 
t are given by RPt(e) = {e, 1, 2, 2.1, 2.2}. If we now apply the rewrite rule (r2, 2) 
(note that this rule does not contain a variable), then we generate the term t" = .(2, r) 
with rewriteable positions: 

Ret((r2, 2)) = (RPt(e) - Pos(tl2) ) U Pos(t"12) - 0 
= {e, 1,2,2.1,2.2}- {2,2.1,2.2}U {2} 
= I, 2} 

We now apply the rewrite rule (rl,e) and generate t" = +(r, r). We are allowed to do 
this because the position e is rewritcable. The rewriteable positions in this new term are: 

RPt((r2, 2)(rl ,  e)) = (RPt ((r2, 2)) - Pos(t'l,)) U Pos(t"l,) 
-{eos(t"lg) lq = 1,  2} 

= 1,2} - I, 2} u {e, 1, 2} - {1,2} 
= {d 

Because the root position in the term +(r, r) is rcwriteable, we can now apply the rewrite 
rule (?3, ~) and generate the goal term r. [] 

A normal-form decoration D(t) is in strong normal form if all rewrite rules r in local 
rewrite sequences LD(tlp ) are applied at rewriteable positions p, for all p E Pos(t). We 
let SNF(t) denote the set of decorations of t that are in strong normal form. 

Example 2.7 Let ((,~, V), R) be a TRS with S = { *, a, b, c, d, e, f }, r(*) = 2 and 
all others with rank 0, V = { x }, and R defined as follows: 

n '{ (~ ' l )  *(a,b) ,*(c,d), (?'2) *(c,~g) )*(e,x), (r3) d------*f} 
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Let t = *(a,b), and define a decoration D(t) by local rewrite sequences LD(t) = 
r l  r2 (r3,2) and L/9(tll) = L/9(t12) = e. The decoration D(t) is in normal form, but 
not in strong normal form, because r2 makes position 2 non-rewriteable (ra may therefore 
not be applied to this position). The decoration D'(t) defined by LD, (t) = ra (r3, 2) r2 
and L/9,(tl~) = LD,(tl2) = e is, however, in strong normal form. Note that the rewrite 
step (ra, 2) is applied at the root in both decorations. [] 

We now use the strong normal-form decorations of a term to compute the input 
and output sets. These sets define the patterns that match the expression tree. Given the 

strong-normal-form decoration D(t) such that t So(O,.. g for some given goal term 9, 

then we define the possible inputs for each sub-term t' o f t ,  denoted ID(F), and outputs, 
denoted 0/9 (t'), as follows: 

t, if t E 270 
I/9(t) = a( t l , . . . , t ,n)  ' i f t  = a ( t l , . . . , t n )  

where I/9(ti) LD(*~)~. t~ for 1 < i < n 

/~D(t). t '  O19 (t) = t '  where ID (t) : ' 

Using the inputs and outputs, we can now define the input set and output set of a 
term t for some goal term 9. The input set IS~(t) is the union of all possible inputs for 
all strong normal-form decorations of t. Similarly for the output set OSg (t). 

ISg(t) = { I/9(t) [ D(t) E SNF(t) A t SD(t)> 9} 

OSg(t) = { OD(t) l D(t  ) E SNF(t) A t SD(*),..g} 

Note that the sets are computed for a specific goal term 9. 

Example 2.8 Consider again our running example and the term t given by + ( 0, + (c, c)). 
A normal-form decoration D(t) for this term is shown on the left in Figure 1. This 
decoration is also in strong normal form. The inputs Io( t )  and outputs O/9(t) of this 
decoration for goal term r are depicted on the left in Figure 2, where the inputs and 
outputs are given on the left and right side (resp.) of each node. The input sets ISr (t) 
and output sets OSr(t) of this term t for goal term r are shown on the right in Figure 2. 
[] 

An algorithm to calculate input and output sets for terms t and 9, and the corre- 
sponding local rewrite sequences, consists of 2 passes. In the first, bottom-up pass, sets 
of triples are computed for all possible goal terms. A triple, written (t, r, t'), consists of 
an input t, rewrite sequence 1-, and output t' such that t r ;. F. In the second, top-down 

pass, these sets of triples are 'trimmed' using the given goal term 9. These trimmed sets 
of triples, denoted by V(t), consist of the input and output sets, and the associated local 
rewrite sequences. For space reasons, the algorithm to compute V(t)  is not shown, but 
can be found in [28]. 

Example 2.9 Below we show the set of triples V(t)  for our running example with 
expression tree t = +(0, +(c, c)). 
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+(O,r) + r {+(a,a),+(O,r),+(e,r)} + {r} 

0 O ( + ( r , c )  + r {o} o {o,c,a} 

J ~ {+(a,a),+(r,e),+(c,r)} . 

C C 7" C C C J 

Fig. 2. The inputs, outputs, input sets and output sets of the term +(0, +(c, c)) 

tZ,P} 

\ 

tt, - { (+(a, a), r3, r), (+(0, r), rxr2, r), (+(c,  r), r4rT, r) } 
tlz = { (0, c, 0), (0, rs, c), (0, r~r6, a) } 
tlz = { (+(a, a), ra, r), (+(a, a), r3rs, a), (+(r, e), f ir4,  a), (-t-(r, c), rlr4rr, r), 

(+(~, ~), ~,, a), (+(c, ~), ~,~,, ~) } 
tlm.t " { {e, +, c), {e, re, a), {e, ror, ,  r) ) 
"t12.2 - { (c, ~:, c), (c, re, a) ,  (c, ror,.t, r) } 

Note that all rewrite rules are applied at the root. [] 
To guarantee termination of this algorithm the length of each local rewrite sequence 

must be bounded. That is, for all t E Tz(V)  and D(t) E SNF(t) there exists some 
natural number k such that Vp E Pos(t) : I LD(tIp) [ < k. This is referred to as the 
BURS property. The BURS property is necessary because we can have terms that contain 
variables on the right-hand side of rewrite rules in our rewrite system. Rewrite sequences 
can therefore continue indefinitely, and terms can 'explode' if the property does not hold. 
Our running example, by the way, is BURS with k = 3. 

The work of Pelegrf-Llopart and Graham 

Pelegri-Llopart and Graham[30] (PLG) first define a normal-form rewrite sequence, 
and then a local rewrite sequence and assignment. We have reversed this order, and we 
have been more formal. For example, we characterise normal-form decorations by using 
the ordering relation 4.  Our rewriteable positions are related to PLG's touched positions, 
which PLG define only informally and unclearly. PLG do not explicitly define a strong 
normal form. While we directly encode the inputs, outputs and local rewrite sequences 
into the expression tree, PLG use local rewrite graphs for each sub-term of the given 
expression tree. These graphs represent the local rewrite sequences of all 'normal-form 
rewrite sequences' that are applicable. 

3 Heuris t ic -Search Methods  

Search techniques are used extensively in artificial intelligence [24, 27] where data is 
dynamically generated. In a search technique, we represent a given state in a system by a 
node. The system begins in an initial state. Under some action, the state can change--this 
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is represented by an edge. Associated with an action (or edge) is a cost. By carrying 
out a sequence of actions, the system will eventually reach a certain goal state. The aim 
of the search technique is to find the least-cost series of actions from the initial state to 
one of the goal states. In most problems of practical interest, the number of states in the 
system is very large. The representation of the system in terms of nodes, edges and costs 
is called the search graph. A search graph G is a quadruple (N, E, no, Ng) with a set of 
nodes N,  a set of  directed edges E C_ N x N,  each labelled with a cost C(n, m) E R, 
(n, m) E E,  an initial node no E N,  and a set of  goal nodes N 9 _C N.  Furthermore, G 
is connected, Ng ~ 13 and V(n, m) E E : n ~ Ng. 

One of the best known search techniques is the A* algorithm ([26, 27]). The letter 
'A' here stands for 'additive' (an additive cost function is used), and the asterisk signifies 
that a heuristic is used in the algorithm. The A* algorithm computes the least-cost path 
from the initial node to a goal node. The algorithm begins by initialising sets of  open 
nodes No C N to {no}, closed nodes Nc C_ N to 13, and the path and cost of  the initial 
node no. As long as we have not found a goal node, we carry out the following procedure. 
We use a cost function to compute Ns, which is the set of  nodes in No with lowest cost. 
I f  this set contains a goal node, then we are finished, and we return the path of  this node. 
Otherwise we choose a node out of Ns, remove it from No, add it to No, and compute its 
successors. The successor nodes of a given node are those nodes that can be reached with 
a path of length 1 from the node. If  a successor, m say, is neither in No nor No, then we 
add m to No, and compute its path and cost. If  we have visited m before, and the 'new'  
cost of  m is less than the cost on the previous visit, then we will need to 'propagate'  the 
new cost. This involves visiting all nodes on paths emanating from m and recomputing 
the cost. The algorithm terminates when we find a successor node that is a goal node. 

The cost of a node n, denoted f*(n), is the sum of the minimum cost of  a path from 
no to n, denoted g(n), and the estimated cost from n to a goal node, denoted h*(n). 
The estimated cost is obtained by using heuristic domain knowledge. This heuristic 
knowledge allows us to avoid searching some unnecessary parts of  the search graph. The 
search technique therefore needs to try fewer paths in an attempt to find a goal node. Note 
that the actual cost of  reaching a goal node from n is denoted h(n). The relationship 
between h* (n) and h(n) is important. We consider the following cases: 

1. h*(n) = 0 I f  we do not use a heuristic, then the search will only be directed by 
the costs on the edges. This is called a best-first search. 

2. 0 < h*(n) < h(n) If  we always underestimate the actual cost, then the algorithm 
will always find a minimal path (if there is one). A search algorithm with this property 
is said to be admissible. 

3. h* (n) = h(n) I f  the actual and estimated costs are the same, then the algorithm 
will always choose correctly. As we do not need to choose between nodes, no search 
is necessary. 

4. h*(n) > h(n) If  the heuristic can overestimate the actual cost to a goal node, then 
the A* algorithm may settle on a path that is not minimal. 

In some applications (code generation, for example), it may not be important that we 
find a path that is not (quite) minimal. It may be the case, for example, that a heuristic 
that occasionally overestimates the actual cost has superior performance than a heuristic 



170 

that always plays safe. Furthermore, a heuristic that occasionally overestimates may only 
generate a non-minimum path in a very small number of cases. 

In our description of the A* algorithm we have used successor nodes and paths. Given 
a search graph G = (N, E,  no, Ng), the set of successor nodes Successor(n) E "P(N) 
of a node n E N,  where 7~(N) is the power set of N, can be defined as Successor(n) = 
{m E N [ (n, m) G E}. Note that if n E Ng then Successor(n) = O. Furthermore, the 
path Path(n) E N* to a node n E N,  where N* denotes sequences of elements from N, 
is a string of nodes non1 . . . n k  such that V1 < i < k : ni E Successor(hi_l) A nk = 
n, k > 0. Note that there may be more than 1 path that leads to a node. If Path(n) = 
nonx . . .  nk and m E Successor(n) then we can append the node m to the path Path(n) 
using the append operator ~.  We write Path(m) = Path(n) ~ m = non1 . . ,  nkm.  

Conceptually the A* algorithm can be quite straightforwardly applied to code gen- 
eration. The transformations in code generation are specified by rewrite rules. Each rule 
consists of a match pattern, result pattern, cost and an associated machine instruction. A 
node n is an expression tree. The initial node is the given expression tree. From a given 
node, we can compute successor nodes by transforming sub-trees that are matched by 
match patterns. If a match occurs, we rewrite the matched sub-tree by the corresponding 
result pattern. The aim is to rewrite the expression tree (node) into a goal using the least- 
expensive sequence of rules. The associated sequence of machine instructions forms the 
code that corresponds to the expression tree. 

4 Coupling A* to BURS 

In practice, the major problem in coupling A* and BURS is determining the successor 
nodes of a given node (in the search graph). In other words, given some term (expression 
tree), at what positions may we apply rewrite rules? We note that all rewrite rules that we 
apply must be correct, of course. A rewrite rule is correct if there is a path in the search 
graph from the resulting term (node) to a goal term (node). In this section we describe 
how a search graph for a BURS is initialised, and how successor nodes are computed. 

The search graph G = (N, E,  no, N 9) consists of a set of nodes N,  edges E and 
goal nodes Ng, and an initial node no. A node represents a state of the system, and is 
denoted by a quadruple (t, p, % t') where t is the current term, p is the current position 
in that term, r the local rewrite sequence applied at p, and t' the (chosen) input tree at p. 

The initial node no is given by the quadruple ( t I ,po,e ,  tzlpo). The term tl  is the 
input expression tree for which we want to generate code. The initial position P0 is the 
lowest left-most position in this tree, and is of the form 1 �9 1 �9 . . .  

Example 4.1 Consider our running example (Example 2.2). The initial node is the 
quadruple (+(0, +(c, c)), 1, e, 0). The lowest left-most position in tx = +(0, +(c, c)) is 
1, and tzll is 0. The set of goal terms is the singleton set {r}. [] 

To determine the search graph, we need to compute the successor nodes of a given 
node. This is carried out by the function Successor, which is shown in Figure 3. In this 
function we use the functions Next, Parent and Child to position ourselves in the search 
graph. Given a position p E Pos(t) \ {e} in a term t, Next(p, t) E ~I*+ is the next position 
in a post-order traversal of t. Note ~1+ is lq\{0}. The function Parent(p, t) E g,l*+ is the 
position of the parent o fp  in t, and Child(p, t) E [q+ is the child-number o f p  in t. If a 
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pos i t ion  p in tree t has ch i ldren  p-  1 , . . . ,  p .n  then the chiM-number of  pos i t ion  p . i  is i .  
Fur ther ,  Parent(e,t) ffi ChiM(e,t) ,- e, but  Next(e,t) is undefined,  for  any t.  No te  that  p = 
P arent(2,t ).Child(p,t ). 

E x a m p l e  4.2 In the term t = + (0, + (c, c)) ,  we  have  Next(1,t) ~ 2.1, Next(2.1 ,t) ~ 2.2, 
Next(2.2,0 ffi 2 and Next(2,t) ffi e. Fur the rmore ,  Parent(2.1,t) ffi 2 and ChiM(2.1 ,t) = 1. [] 

J[ con ( ( z ,  v ) , - ~ ) :  m s ;  
t, g : T~; 
v ( t ) :  P(T~ x (R x IN;)* • T~); 

fune Successor (t :Tz ,  p : IN~., 7" : (R  x IN~_)*, it: T~) 
: "P(Tz x IN~. x ( n  x IN~_)* x Tz)  

[[ var S : T'(T~: x IN; x (R x IN;)* x T~;); 

rune Match(p' ." N+,* t' : T~) : boolean 
l[ var  Z : P ( T z ) ;  

it' : Tz; 
b : boolean ; 

b :=  (p' = e); 
Z(t) :=  {it  [ (it, 7",ot) 6 V(tlearem(p,)) A it[Child(p,)= t' }; 
d o Z # O  A "~b: 4[[ choose i t ' 6 Z ;  

Z := Z \ {it'}; 
b :-- (V 1 _< i < Child(p') : tt 1,-  tlparen,(p'). ~) 

11 
od; 
return b 

]1; 
ie(p = ~) v ~iatch@, tip) ----* S := 0 

(p # e) A Match(p, tip ) -----, S :=  Successor(t, Next(p), e, tl~gext(p)) 
f l ;  
for all r 6 R 
do for all p' 6 Pos(it) 

do for all (it, v(r ,p ' )7 . ' ,  or) 6 V(t[p) ( ,  this is a loop over 7.' and ot . )  
do if  -~Match(p, ot) - -~ skip 

J Match(v, or) -----, S := S U { (<~,v')t, p, 7.0",V'), it) } 
It 

off 
od 

od; 
return S 

]l 
]1. 

Fig. 3. The successor function that computes a set of new search nodes. 
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The basic idea behind the successor function is the following. If we can add a rewrite 
step ((r,p') in the algorithm) to a local rewrite sequence (r) at the current position 
(p), and there exists a rewrite sequence (~'(r, p')T') whose output tree (ot) matches a 
corresponding child of an input tree (it') of the parent (of p), and all the 'younger' 
siblings of the current position also match corresponding children of the same input tree, 
then we have found a successor node. The function Successor is called recursively, using 
the next post-order position, for as long as the sub-term at the current position, and all 
the 'younger' siblings of the current position, match corresponding children of an input 
tree of the parent. The function Match carries out the task of matching a node (sub-tree) 
and its siblings with the children of an input tree of the parent. 

When the algorithm reaches the root position, p -- e, the recursion will stop, and 
the function Match will always yield true. The algorithm will return with the empty set 
when it reaches the root position and the term t ENg.  

Example 4.3 Consider our running example again. Let us compute the successor nodes 
of the initial node, i.e. we compute Successor(+(O, +(e, c)), 1, e, 0). Because p # e and 
Match(l, t I1) - true, we recursively call the function again with the next position, 
p = 2.1. That is, we call Successor( +( O, +( c, c) ), 2.1, ~, c). Again, because p # 
and Match(2.1, t 12.1) - true, we recursively call Successor( +( O, +( c, c) ), 2.2, e, c). 
The recursion now stops because Match(2.2, tl2.2) -false. We therefore let S := 0, 
and inspect all the triples of V(t [z.2) (see Example 2.9). The triple (c, rerr, r) satis- 
fies the loop condition, and since Match(2.2, r) = true, we generate the search node 
(+(0, +(c, a)), 2.2, r6, c). The call of Successor for p = 2.2 is now complete, so we 
need to inspect the triples associated with the previous position, V(t  I~.1). The triple 
(c, r6rr, r) (again) satisfies the loop condition, Match(2.1, r) .. true, and we generate 
the search node (+ (0, + (a, c)), 2.1, r6, c). The call o f Successor for p = 2-1 is also now 
complete. Inspecting the triples associated with the initial position, V(tll), we find that 
triple (0, rsr6, a/satisfies the loop condition, and that Match(l, a) - true. We therefore 
generate the search node (+(c, +(c, c)), 1, rs, 0). The result of the above computations 
is that we have generated 3 new search nodes from the initial node, namely: 

{(+(0, +(c, a)), 2.2, re, c), (+(0, +(a,  c)), 2.1, r6, c), (+(c, +(c, c)), 1, rs, 0)} 

We can continue computing successors until all the goal nodes have been found. In 
Figure 4 we see the search graph for the expression tree +(0, +(c, c)). The nodes in the 
graph are the expression trees, and the edges are labelled with the rewrite steps and the 
positions at which they are applied. Note that there are a total of 11 paths leading from 
the initial node (the root node) to a goal node in Figure 4. [] 

In the example above, we have shown how the successor function shown in Figure 3 
can be used to compute the complete search graph. However, calling the successor 
function for each and every newly created node can result in a very large tree, and is 
wasteful as we only wish to find one least-cost path. The A* algorithm will compute 
successors of only those nodes that potentially lie on a least-cost path from the initial 
node to a goal node. The cost g(n) of a node n is simply the sum of the costs of the 
rewrite rules applied along the path to n. But what is the value of the heuristic cost 
h* (n)? In principle, of course, we cannot predict how much it will cost to rewrite a given 
node to a goal node. However, we can provide an (under) estimate of the cost. 
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Fig. 4. A complete search graph, and heuristic search graph (in shaded boxes) 

Example 4.4 The heuristic function that we use to 'predict' the cost for our running 
example is: 

h*(n)=3,(]+(x,y)]t+Jch),  x r  y r  

where n = (t,p, v, t~), and I s It denotes the number of sub-terms in t that match s. This 
heuristic function, which we obtain by inspection, predicts a cost that under-estimates, or 
is equal to, the actual cost. For example, h* = 0 for t -- a (the actual cost is 1), h* -- 3 
for t = +(0, c) (actual cost 4) and h* = 6 for t = +(c, a) (actual cost 6). [] 

Example 4.5 We now apply the A* search algorithm with the cost function f*(n) = 
g(n) + h* (n) to our running example. We begin by generating the (3) successors of the 
initial node, as shown in Example 4.3. The costs of these nodes are 0 + 15, 3 + 6 and 
3 + 6 (resp.). The second and third nodes are the cheapest; we choose the second, and 
compute its successors using the successor function. This results in +(0, +(r ,  c)) and 
+(0, +(a ,  a)), using rewrite steps (rr, 2.1) and (r6, 2.2). These nodes have costs 4 + 6 
and 6 + 3. Continuing on in this way we find a goal node in just 6 steps, having visited 
(computed) just 10 nodes in total. The resulting heuristic search graph is shown using 
shaded boxes in Figure 4. The cost of the path to the goal node is 9. [] 

Implementation 
The A* algorithm was straightforward to implement. The pattern-matching and 
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successor-function algorithms proved more difficult, requiring many intricate tree- 
manipulation routines to be written. In total, the system comprises approximately 3000 
lines of C code. The implementation has revealed the 'strength' of the theory. For exam- 
ple, we saw in Example 2.9 that there are only 3 local rewrite sequences at the root of 
the term +(0, +(c, c)). Before trimming, there are in fact 101 sequences. If we remove 
the restriction that sequences must be in strong normal form (in other words, we allow 
rewrite rules to be applied at all positions, not just rewriteable ones), then the number 
of (untrimmed) sequences is too large (>> 106) to be computed. The strong-normal-form 
restriction is therefore extremely powerful. TRSs for real machines have not yet been 
developed. 

5 Conclusions 

In this work we have reformulated BURS theory, and we have shown how this theory can 
be used to solve the pattern-matching problem in code generation. This is our first major 
result. The task of selecting optimal patterns is carried out by the A* algorithm. The 
interface between the BURS algorithm that generates patterns, and the A* algorithm that 
selects them, is provided by the successor algorithm. This important algorithm builds 
the search space. Combining BURS theory A* is our second major result. 

Term rewrite systems are a more powerful formalism than the popular regular tree 
grammars on which most code-generator-generator systems are based. The term rewrite 
system that underlies the BURS system is used to deduce a heuristic cost function. This 
cost function speeds up the search process. Optimality is guaranteed if the cost heuristic 
never over-estimates the actual cost of generating code. 

Future work will be mainly concerned with the development of term rewrite systems 
that describe real machines, and a systematic technique to construct the heuristic cost 
function. 
Acknowledgements: Gert Veldhuyzen van Zanten contributed many formative ideas. 
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