
Removing Anti Dependences by Repairing

M. Anton Ertl Andreas Krall
{an$on, andi}~mips, complang, tuwien, ac. at

Institut fiir Computersprachen
Technische Universit~t Wien

Argentinierstrafle 8, A-1040 Wien, Austria
anion, andi~mips, complang, tuwien, ac. at

http:/Iw~, complang, tuwien, ac. at/home, html
Tel.: (+43-1) 58801 4474
Fax.: (+43-1) 505 78 38

A b s t r a c t . Anti dependences (write-after-read dependences) constrain
the reordering of instructions and limit the effectiveness of instruction
scheduling and software pipelining techniques for superscalar and VLIW
processors. Repairing solves this problem: If the definition of a variable
is moved before a previous use of that variable, compiler-generated re-
pair code reconstructs the value that the definition destroyed. Repair-
ing features several potential advantages over register renaming, another
technique for removing anti dependences: less register pressure, less loop
unrolling and fewer move instructions.
Key Words: anti dependence, repairing, register renaming, instruction-
level parallelism, speculative execution

1 I n t r o d u c t i o n

Computer designers and computer architects have been striving to improve
uniprocessor performance since the invention of computers. The next step in
this quest for higher performance is the exploitation of significant amounts of
instruction-level parallelism. Therefore, superscalar and VLIW (very large in-
struction word) machines have been designed, which can execute several instruc-
tions in parallel. In order to use these resources the instructions are reordered by
the hardware [Tho64, Tom67, PHS85, Soh90] or by compiler techniques like basic
block instruction scheduling [LDSM80, HG83, GM86, EK92], trace scheduling
[Fis81, El185] and software pipelining [RG81, Lam88, Ran94]. To ensure cor-
rectness, the order between dependent instructions must be maintained, which
restricts reordering and parallelism.

Dependences exist between writes and reads (data flow dependences), reads
and writes (anti dependences) and between writes (output dependences) to the
same register or memory location. In this paper, we will discuss only dependences
through registers. We will also concentrate on anti dependences. Although the
techniques discussed here can be used to eliminate output dependences, (partial)
dead code elimination [KRS94, BC94] is more appropriate for this purpose.

Another problem for exploiting significant amounts of instruction-level par-
allelism is the limited amount of registers (e.g., _< 32 integer registers on all

34

popular architectures). By contrast, functional units tend to become abundant;
compilers will have a hard time utilizing all of them all the time.

We discuss anti dependences and existing techniques for dealing with them in
Section 2. In Section 3 we introduce a new technique, that often reduces register
pressure, but usually pays for this with more instructions: repairing. In Section 4
we demonstrate the advantages of repairing with a small example. Finally, we
show the potential of repairing with empirical data derived from instruction
traces of real-life applications (Section 5).

2 A n t i D e p e n d e n c e s

Anti dependences (and output dependences) are, in some sense, false depen-
dences. They are not caused by the data flow between instructions, but by
reusing registers. Several methods for dealing with anti dependences have been
proposed:

2.1 Register Renaming

Anti dependences can be removed (or at least moved) by register renaming
[PW86]. This technique can be implemented in hardware [Tom67, PHS85, Soh90]
and as compiler optimization [PW86, Lam88]. Note that only compiler-based
renaming techniques can increase the reordering freedom for the compiler.

p flow dependence ,- anti dependence

Fig. 1. Register renaming

Figure 1 shows how register renaming works: Originally, register x is used in
two live ranges, resulting in two anti dependences, one from each use (read) of

35

the first live range to the definition (write) of the second live range. Register
renaming transforms the second live range such that it uses the register x ~.

Renaming has two restrictions:

- Renaming the whole second live range may be impossible, because one of
the uses requires a specific register (e.g., to satisfy the calling convention).

- Renaming does not work, if the two dynamic live ranges involved are stati-
cally the same live range (e.g., a live range in a loop).

Both problems can be solved by moving x r to x as soon as the first live
range no longer needs x (at the cost of an additional move instruction). The
second problem can also be solved by separating the live ranges statically by
code replication (e.g., loop unrolling). 1

2.2 Rematerialization

Instead of renaming one of the live ranges such that the definition of the sec-
ond does not destroy the value used in the first live range, the compiler can
reconstruct the value of the first live range just before the value is used. Rema-
terialization reconstructs the value by simply recomputing it. Rematerialization
of constants has been proposed [CAC+81] and successfully used [BCT92] as an
alternative to spilling in register allocation.

Figure 2 shows, how the scheduler can rematerialize a constant (in instruction
i) . In this example, rematerialization moved instruction 3 down across 4 and 5,
which originally (anti-) depend on 3. The resulting code still contains antidepen-
dences, but they are different and may hinder scheduling less (if this arrangement
were not profitable, the compiler would use rematerialization differently or not
at all).

Rematerialization reduces the lifetime of the result of a computation, but it
may increase the lifetime of the source operands. This may cause higher register
pressure and more loop unrolling. A simple way to avoid this problem is to re-
materialize only constants, because they have no input operands. This approach
is used by [BCT92].

3 R e p a i r i n g

Like rematerialization, repairing reconstructs the value that was in the register
before it was overwritten by the definition of the second live range. In contrast
to rematerialization, repairing reconstructs the value from downstream values
using the inverse operation.

In Figure 3, the value of the first live range is used to compute y in instruc-
tion 2. Later, y is used to reconstruct that value in register x r using the inverse
operation ~ (instruction 5).

To apply this transformation, the following conditions must be satisfied:

1 The combination of register renaming and loop unrolling is known as modulo variable
expansion [Lam88].

36

X

i

i
I
i

T

, flow dependence- anti dependence

Fig. 2. Rematerialization of a constant

- Another value has been computed from the value destroyed by the second
definition.

- This computation is invertible. This includes arithmetic and logic operations
like add (with modulo arithmetic), subtract, rotate, exclusive or, negation
and bitwise complement, but not multiply or floating point operations, which
can lose information.

At first sight, repair code seems to make the program worse, especially when
compared to register renaming, which (apparently) costs nothing but a few loop
unrollings. But in many cases the repair code can use an otherwise unused exe-
cution unit, can be combined [NE89] with other operations or optimized in some
other way.

Repairing also introduces new data flow dependences (2 -+ 2 -~ 3 in Fig-
ure 3). These dependences pose no problem to the scheduler. It can chose be-
tween repairing and other methods depending on the way in which it wants
to arrange the instructions 2, 3 and 4. The data dependences introduced by
repairing just mean that repairing cannot be used for certain arrangements.
Fortunately, for those arrangements where repairing offers the greatest benefits
(i.e., the scheduler wants to move instruction 3 far down), it can be applied.

The potential advantages of repairing over register renaming are:

less r e g i s t e r p r e s s u r e Repairing often uses one register less between the time
when the value is destroyed and the time when it is repaired.

less l oop u n r o l l i n g If the lifetime of a variable is l cycles, and a loop iteration
is initiated every s cycles, then at least [l/s] values for the variable must

37

--q

, flow dependence ~- anti dependence

Fig. 3. Repairing using the inverse operation (~)

be kept alive concurrently. The loop must be unrolled that many times in
order to to address the values in different registers. Repairing shortens the
lifetime of registers, which in turn lowers [I/s] and the unrolling factor.

fewer move ins t ruc t ions Unless the compiler performs an unhealthy amount
of code replication, register renaming introduces move instructions at control
flow joins. These moves can often be avoided with repairing.

However, repairing also has a potential for making a program worse. Apart
from adding an operation, it can also lengthen the lifetime of the values that
are needed for the reconstruction. The result of the operation to be inverted
(y in Figure 3) is used elsewhere anyway, and keeping it alive for repairing is
certainly better (with respect to register pressure) than keeping the original
value alive; but lengthening the lifetime of the other operand (a in Figure 3) can
cause higher register pressure than register renaming. Of course, if the operation
needs only one operand in a register (i.e., the operation is unary or it has an
inline (small constant) operand), repairing is guaranteed to be profitable with
respect to register pressure.

In some cases, the repairing operation and the operation using this repaired
value can be combined [NE89], providing the benefits of repairing without any
cost. For example: additions or subtractions with immediate operands can be
combined with additions, subtractions and comparison instructions with an im-
mediate operand or with memory instructions; negations can be combined with
additions or subtractions. Figure 4 shows an example, where the scheduler moves
an sw instruction down.

In comparison with remateriaiization, repairing results in less register pres-
sure in the worst case: Both extend the live ranges of the values necessary for
the reconstruction down to the instruction performing the reconstruction. But

38

addu $5, $4, 8
addu $5, $4, 8

addu $5, $4, 8 addu $4
:=~ ==~ addu $4

sw $3, 4 ($4) . . .
addu $4, . . . repairing subu $6, $5, 8 combining . . .

sw $3, 4($6) sw $3, -4($5)

Fig. 4. Repairing used with combining (MIPS assembly)

rematerialization can extend them down all the way from the instruction that
computed the value to be rematerialized originally, whereas repairing can extend
one (a in Figure 3) down from the invertible instruction (which uses the value to
be repaired and is therefore later than the instruction that computed that value)
and the other down from the last instruction that uses the value computed by
the invertible instruction (y in Figure 3), which is even later. In particular, re-
pairing is guaranteed to be profitable (with respect to register pressure), if the
repairing instruction needs only one register operand, whereas rematerialization
is not always profitable for the analogous case.

In the preceding discussion we always wrote about "extending live ranges". Of
course, repairing and rematerialization can be applied to these live ranges, too,
where appropriate; still, on average, a longer live range will cause higher cost,
be it register pressure, reconstruction or move instructions, or loop unrolling.

The most important application of repairing will be compiler-based spec-
ulative execution. Global code reordering techniques like trace scheduling and
software pipelining move instructions up before branches. This is only legal,
if the destination register of the moved instruction is dead on the other path.
However, by inserting repair code in the other path the compiler can lift this
restriction (see Figure 5). Note that instruction 2 need not reside in front of the
branch from the beginning--it may have moved up, too.

The actual algorithm for repairing depends on the scheduling framework. E.g,
a trace scheduling JEll85] compiler would first schedule a trace without restric-
tions from anti dependences, then (in the bookkeeping phase) it would determine
the applicability and profitability of renaming, repairing and rematerialization
for each anti dependence, and apply the least costly applicable transformation,
and finally it would allocate the registers.

4 E x a m p l e

We demonstrate the advantages of repairing with a small example. Figure 6
shows the C function strlen, which computes the length of a zero-terminated
string. Figure 7 shows the assembly language output of a compiler for the MIPS
R3000. We have changed the register names to make the program more readable.

Figure 8 shows a version of the loop that is software-pipelined using register

39

IX (-

I x (- 1 t

1
l y<- xopa 2 I

d I ~-x

= control flow

\) /

I Xte - 1 I

1
l y e xopa 2}

1
Ix . - ,I

Ix<- Y~P a ~1

1

F i g . 5. R e p a i r i n g app l i ed to s p e cu l a t i v e e x e c u t i o n (con t ro l flow g r a p h)

i n t s t r l e n (c h a r *s) {
char *t = s ;
whi le (*s != ' \ 0 ')

s++;

return s-t;
}

Fig . 6. The C funct ion str len

1 i n t s t r l e n (c h a r *s) {
s t r l e n :

2 char *t = s;
move t , s # t=s

3 while (*s != '\0')

Ib tO,O(s) # tO=*s

beqz tO,end # while (tO != '\0')

loop:

#4

end:

5

s++;

addu s,s,1 # s++

Ib tO,O(s) # tO=*s

bnez tO,loop # while (tO != '\0')

return s-t;

subu vO,s,t # return_value = s-t

j ra # return

Fig . 7. MIPS R3000 assembly language source of str len

40

move t , S
ibo tO,O(s) addul sl,s,l
lbl t l , 0 (s l) addu2 s2,sl,l

loop: lbn t2,0(s2) addun+l s3,s2,1beqzn-2 tO,end
lbn+l t3,0(s3) addun+2 s,sS,1 beqzn-i tl,endl
ibn+2 tO,O(s) addun+3 sl,s,1 beqzn t2,end2
ibn+3 tl,0(sl) addun+4 s2,s1,1 bnezn+1 tS,loop

move s,s3
end: subu vO,s,t j ra
end1: move s,sl b end
end2: move s,s2 b end

Fig. 8. Software pipelined version of strlen with register renaming

renaming. 2 We assume a load latency of 2, a branch latency of 1, and a pro-
cessor that has enough resources to execute one line of Figure 8 per cycle. The
indices of the instructions indicate the iteration the instruction belongs to. This
example nicely demonstrates the disadvantages of register renaming. The addus
are executed speculatively three iterations in advance and therefore their results
live four cycles (they are used in the off-loop arms). Therefore the number of
different registers necessary for s and the loop unrolling factor is Ills] - 4. The
result of the lb lives for only three cycles, but since the unrolling factor is four,
we must give four registers to it, too 3. At the exit of the loop move instructions
have been generated to reunite the s values into one register.

~ove t,s
lbo t0 ,0 (s) addul s,s,l
Ibl tl,0(s) addu2 s,s,1

loop: ibn t2,0(s) addun+l s,s,lbeqzn-2 tO,end
lbn+l t0 ,0 (s) addun+2 s , s ,1 beqzn-1 t l , e n d
lbn+~ t l , 0 (s) addun+3 s , s ,1 bnezn t2,100p

end: subu s,s,3
subu vO,s,t j ra

Fig. 9. Software pipelined version of strlen with repair code

Figure 9 shows another version of the loop, this time software-pipelined with
repairing and register renaming, s satisfies the conditions for repairing with the
inverse operation and can safely be destroyed by incrementing it. Therefore s
needs only one register. It does not pay off to destroy and repair the results of
the lbs, so we have to use register renaming in this case. Since these results live
for three cycles, the loop is unrolled three times. At the off-loop path, s has to

2 For simplicity, we assume that the loads cannot have exceptions. Speculative execu-
tion of trapping instructions is discussed in, e.g., [EK94].

3 We could have saved the one register by unrolling lcm(4, 3) = 12 times [LamB8].

41

be repaired to its proper value, s has been destroyed by incrementing thrice.
Therefore the repair code consists of three decrements that have been combined
into one decrement by three. In summary, repairing saves four registers (44%),
one loop iteration (25%) and some other code as well.

5 P o t e n t i a l

This section shows how important repairing is for real-world programs. We pro-
duced traces (up to 100,000,000 instructions) of various applications and counted
the antidependences in them and how many of them can be removed with various
forms of repairing.

This trace-based method has some disadvantages: it does not see all antide-
pendences that the compiler has to consider (in particular, it does not see an-
tidependences to off-trace instructions), and it treats all antidependences equal,
no matter how important or unimportant they are for the compiler. The advan-
tage of this method is that it is independent from the compiler; if, in contrast,
we implemented repairing in a compiler and presented empirical data based on
experiments with this compiler, the results would strongly depend on the sched-
uler and on the register allocator of that compiler. Note that the results we
present do not depend much on the compiler; although the compilers we used
performed register allocation, this has little influence, because almost every use
of a value causes an antidependence, independent of the register allocator, and
the uses themselves are also quite independent of the register allocator (as long
as moves and spilling are minor factors). Our empirical data supports this view:
you cannot tell from the data which compiler produced the code.

The applications used are: abalone, a board game; agrep, an approximate
pattern matcher; drips, a filter used in typesetting; gcc-ccl, a part of the GNU
C compiler; gzip, a compression program; and sicstus, a Prolog interpreter. All
programs were compiled for the Alpha architecture under OSF/1, either with
gcc-2.7.0 (abalone, gcc-ccl, sicstus) or with cc-3.1.1 (the other programs).

Figure 10 shows the results. The column instructions displays the trace length,
anti dep/inst, the number of anti dependences per instruction, and the next three
columns display what portion of these anti dependences can be eliminated with
various forms of repairing: repairing comprises all forms of repairing, one reg.
operand are those forms of repairing that are guaranteed to be profitable with
respect to register pressure, and combinable are those cases where the repairing
code can be combined with the instruction that uses the repaired value (and
therefore repairing is for free, in addition to being profitable).

18%-34% of all antidependences can be removed with repairing. Only about
half of them (8.6%-16.6%) are guaranteed to be profitable with respect to regis-
ter pressure according to our simple one-register-operand criterion, so it is prob-
ably a good idea to invest a little more in profitability analysis. 4.1%-12.6% of
the anti dependences can be repaired for free, providing the benefits of repairing
without any cost.

42

program
abalone
agrep
dvips
gcc-ccl
gzip
sicstus

anti dep./ one reg.
instructions inst. repairable operand combinable
100,000,000 1.25 30.1% 15.8% 8.1%
29,251,288 1.35 34.0% 8.6% 4.2%
51,155,896 1.22 1 8 . 2 % 10.9% 4.1%

100,000,000 1.17 2 5 . 7 % 16.6% 12.6%
100,000,000 1.37 27.2% 14.1% 4.8%
91,433,314 1.16 31.8% 15.8% 10.7%

Fig. 10. Portion of anti dependences that can be removed with various forms of
repairing

Compilers for register-starved architectures (in particular, the 386 architec-
ture) can employ repairing of combinable instructions now to reduce the register
pressure. For other architectures, there are probably still a few years left until
register pressure becomes a significant problem. The large amount of parallel
units available by then will make any form of repairing attractive that reduces
register pressure.

6 C o n c l u s i o n s

We have introduced repairing, a compiler technique that can remove anti de-
pendences and reduce register pressure: If an instruction writing to a register is
moved up across an instruction reading from that register, repairing reconstructs
the destroyed value from derived values using the inverse operation.

Repairing often has advantages over other techniques for removing anti de-
pendences: Repairing produces less register pressure and it produces shorter live
ranges, requiring less loop unrolling or fewer move instructions.

18%-34% of all anti dependences can be removed by repairing, about half
of them are guaranteed to reduce register pressure (others may be profitable,
too), and 4.1%-12.6% of antidependences can be removed in a way that reduces
register pressure without increasing the number of executed instructions.

R e f e r e n c e s

[BC94]

[BCT92]

[CAC+81]

Preston Briggs and Keith D. Cooper. Effective partial redundancy elimina-
tion. In SIGPLAN '9~ Conference on Programming Language Design and
Implementation, pages 159-170, 1994.
Preston Briggs, Keith D. Cooper, and Linda Torczon. Rematerialization.
In SIGPLAN '92 Conference on Programming Language Design and Imple-
mentation, pages 311-321, 1992.
Gregory J. Chaitin, Marc A. Auslander, Ashok K. Chandra, John Cocke,
Martin E. Hopkins, and Peter W. Markstein. Register allocation via color-
ing. Computer Languages, 6(1):45-57, 1981. Reprinted in [Sta90].

43

[EK92]

[EK94]

[El185]

[Fis81]

[GM86]

[HG83]

[KRS94]

[Lam88]

[LDSM80]

[NE89]

[PHS85]

[PW861

[Rau94]

[RG81]

[Soh90]

[Sta90]

[Tho64]

[Tom67]

M. Anton Ertl and Andreas Krall. Instruction scheduling for complex
pipelines. In Compiler Construction (CC'92), pages 207-218, Paderborn,
1992. Springer LNCS 641.
M. Anton Ertl and Andreas Krall. Delayed exceptions - - speculative exe-
cution of trapping instructions. In Compiler Construction (CC '94), pages
158-171, Edinburgh, April 1994. Springer LNCS 786.
John R. Ellis. Bulldog: A Compiler for VLIW Architectures. MIT Press,
1985.
Joseph A. Fisher. Trace scheduling: A technique for global microcode com-
paction. IEEE Transactions on Computers, 30(7):478-490, July 1981.
Phillip B. Gibbons and Steve S. Muchnick. Efficient instruction schedul-
ing for a pipelined architecture. In SIGPLAN '86 Symposium on Compiler
Construction, pages 11-16, 1986.
John Hennessy and Thomas Gross. Postpass code optimization of pipeline
constraints. ACM Transactions on Programming Languages and Systems,
5(3):422-448, July 1983.
Jens Knoop, Oliver Riithing, and Bernhard Steffen. Partial dead code elimi-
nation. In SIGPLAN '9~ Conference on Programming Language Design and
Implementation, pages 147-158, 1994.
Monica Lain. Software pipelining: An effective scheduling technique for
VLIW machines. In SIGPLAN '88 Conference on Programming Language
Design and Implementation, pages 318-328, 1988.
David Landskov, Scott Davidson, Bruce Shriver, and Pattrick W. Mal-

let. Local microcode compaction techniques. ACM Computing Surveys,
12(3):261-294, September 1980.
Toshio Nakatani and Kemal Ebcio~lu. "Combining" as a compilation tech-
nique for VLIW architectures. In 22 nd Annual International Workshop on
Microprogramming and Microarchitecture (MICRO-22), pages 43-55, 1989.
Yale N. Patt, Wen-mei Hwu, and Michael Shebanow. HPS, a new microar-
chitecture: Rationale and introduction. In The 18 th Annual Workshop on
Microprogramming (MICRO-18), pages 103-108, 1985.
David A. Padua and Michael J. Wolfe. Advanced compiler optimizations
for supercomputers. Communications of the ACM, 29(12):1184-1201, De-
cember 1986.
B. Ramakrishna Ran. Iterative modulo scheduling: An algorithm for soft-
ware pipelining. In International Symposium on Microarehitecture (MICRO-
27), pages 63-74, 1994.
B. R. Rau and C. D. Glaeser. Some scheduling techgniques and an eas-
ily schedulable horizontal architecture for high performance scientific com-
puting. In 14th Annual Microprogramming Workshop (MICRO-14) , pages
183-198, 1981.
Gurindar S. Sohi. Instruction issue logic for high-performance, interrupt-
able, multiple functional unit, pipelined processors. IEEE Transactions on
Computers, 39(3):349-359, March 1990.
William Stallings, editor. Reduced Instruction Set Computers. IEEE Com-
puter Society Press, second edition, 1990.
J. E. Thornton. Parallel operation in Control Data 6600. In AFIPS Fall
Joint Computer Conference, pages 33-40, 1964.
R. M. Tomasulo. An efficient algorithm for exploiting multiple arithmetic
units. IBM Journal of Research and Development, 11(1):25-33, 1967.

