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A b s t r a c t .  Anti dependences (write-after-read dependences) constrain 
the reordering of instructions and limit the effectiveness of instruction 
scheduling and software pipelining techniques for superscalar and VLIW 
processors. Repairing solves this problem: If the definition of a variable 
is moved before a previous use of that variable, compiler-generated re- 
pair code reconstructs the value that the definition destroyed. Repair- 
ing features several potential advantages over register renaming, another 
technique for removing anti dependences: less register pressure, less loop 
unrolling and fewer move instructions. 
Key Words: anti dependence, repairing, register renaming, instruction- 
level parallelism, speculative execution 

1 I n t r o d u c t i o n  

Computer designers and computer architects have been striving to improve 
uniprocessor performance since the invention of computers. The next step in 
this quest for higher performance is the exploitation of significant amounts of 
instruction-level parallelism. Therefore, superscalar and VLIW (very large in- 
struction word) machines have been designed, which can execute several instruc- 
tions in parallel. In order to use these resources the instructions are reordered by 
the hardware [Tho64, Tom67, PHS85, Soh90] or by compiler techniques like basic 
block instruction scheduling [LDSM80, HG83, GM86, EK92], trace scheduling 
[Fis81, El185] and software pipelining [RG81, Lam88, Ran94]. To ensure cor- 
rectness, the order between dependent instructions must be maintained, which 
restricts reordering and parallelism. 

Dependences exist between writes and reads (data flow dependences), reads 
and writes (anti dependences) and between writes (output dependences) to the 
same register or memory location. In this paper, we will discuss only dependences 
through registers. We will also concentrate on anti dependences. Although the 
techniques discussed here can be used to eliminate output dependences, (partial) 
dead code elimination [KRS94, BC94] is more appropriate for this purpose. 

Another problem for exploiting significant amounts of instruction-level par- 
allelism is the limited amount of registers (e.g., _< 32 integer registers on all 
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popular architectures). By contrast, functional units tend to become abundant; 
compilers will have a hard time utilizing all of them all the time. 

We discuss anti dependences and existing techniques for dealing with them in 
Section 2. In Section 3 we introduce a new technique, that often reduces register 
pressure, but usually pays for this with more instructions: repairing. In Section 4 
we demonstrate the advantages of repairing with a small example. Finally, we 
show the potential of repairing with empirical data derived from instruction 
traces of real-life applications (Section 5). 

2 A n t i  D e p e n d e n c e s  

Anti dependences (and output dependences) are, in some sense, false depen- 
dences. They are not caused by the data flow between instructions, but by 
reusing registers. Several methods for dealing with anti dependences have been 
proposed: 

2.1 Register Renaming 

Anti dependences can be removed (or at least moved) by register renaming 
[PW86]. This technique can be implemented in hardware [Tom67, PHS85, Soh90] 
and as compiler optimization [PW86, Lam88]. Note that only compiler-based 
renaming techniques can increase the reordering freedom for the compiler. 

p flow dependence . . . . . . .  ,- anti dependence 

Fig. 1. Register renaming 

Figure 1 shows how register renaming works: Originally, register x is used in 
two live ranges, resulting in two anti dependences, one from each use (read) of 
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the first live range to the definition (write) of the second live range. Register 
renaming transforms the second live range such that  it uses the register x ~. 

Renaming has two restrictions: 

- Renaming the whole second live range may be impossible, because one of 
the uses requires a specific register (e.g., to satisfy the calling convention). 

- Renaming does not work, if the two dynamic live ranges involved are stati- 
cally the same live range (e.g., a live range in a loop). 

Both problems can be solved by moving x r to x as soon as the first live 
range no longer needs x (at the cost of an additional move instruction). The 
second problem can also be solved by separating the live ranges statically by 
code replication (e.g., loop unrolling). 1 

2.2 Rematerialization 

Instead of renaming one of the live ranges such that  the definition of the sec- 
ond does not destroy the value used in the first live range, the compiler can 
reconstruct the value of the first live range just before the value is used. Rema- 
terialization reconstructs the value by simply recomputing it. Rematerialization 
of constants has been proposed [CAC+81] and successfully used [BCT92] as an 
alternative to spilling in register allocation. 

Figure 2 shows, how the scheduler can rematerialize a constant (in instruction 
i) .  In this example, rematerialization moved instruction 3 down across 4 and 5, 
which originally (anti-) depend on 3. The resulting code still contains antidepen- 
dences, but they are different and may hinder scheduling less (if this arrangement 
were not profitable, the compiler would use rematerialization differently or not 
at all). 

Rematerialization reduces the lifetime of the result of a computation, but  it 
may increase the lifetime of the source operands. This may cause higher register 
pressure and more loop unrolling. A simple way to avoid this problem is to re- 
materialize only constants, because they have no input operands. This approach 
is used by [BCT92]. 

3 R e p a i r i n g  

Like rematerialization, repairing reconstructs the value that  was in the register 
before it was overwritten by the definition of the second live range. In contrast 
to rematerialization, repairing reconstructs the value from downstream values 
using the inverse operation. 

In Figure 3, the value of the first live range is used to compute y in instruc- 
tion 2. Later, y is used to reconstruct that  value in register x r using the inverse 
operation ~ (instruction 5). 

To apply this transformation, the following conditions must be satisfied: 

1 The combination of register renaming and loop unrolling is known as modulo variable 
expansion [Lam88]. 
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, flow dependence . . . . . . .  .- anti dependence 

Fig.  2. Rematerialization of a constant 

- Another value has been computed from the value destroyed by the second 
definition. 

- This computation is invertible. This includes arithmetic and logic operations 
like add (with modulo arithmetic), subtract,  rotate, exclusive or, negation 
and bitwise complement, but not multiply or floating point operations, which 
can lose information. 

At first sight, repair code seems to make the program worse, especially when 
compared to register renaming, which (apparently) costs nothing but  a few loop 
unrollings. But in many cases the repair code can use an otherwise unused exe- 
cution unit, can be combined [NE89] with other operations or optimized in some 
other way. 

Repairing also introduces new data  flow dependences (2 -+ 2 -~ 3 in Fig- 
ure 3). These dependences pose no problem to the scheduler. It can chose be- 
tween repairing and other methods depending on the way in which it wants 
to arrange the instructions 2, 3 and 4. The data  dependences introduced by 
repairing just mean that  repairing cannot be used for certain arrangements. 
Fortunately, for those arrangements where repairing offers the greatest benefits 
(i.e., the scheduler wants to move instruction 3 far down), it can be applied. 

The potential advantages of repairing over register renaming are: 

less r e g i s t e r  p r e s s u r e  Repairing often uses one register less between the time 
when the value is destroyed and the time when it is repaired. 

less l oop  u n r o l l i n g  If the lifetime of a variable is l cycles, and a loop iteration 
is initiated every s cycles, then at least [l/s] values for the variable must 
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, flow dependence . . . . . . .  ~- anti dependence 

Fig. 3. Repairing using the inverse operation (~)  

be kept alive concurrently. The loop must be unrolled that many times in 
order to to address the values in different registers. Repairing shortens the 
lifetime of registers, which in turn lowers [I/s] and the unrolling factor. 

fewer move ins t ruc t ions  Unless the compiler performs an unhealthy amount 
of code replication, register renaming introduces move instructions at control 
flow joins. These moves can often be avoided with repairing. 

However, repairing also has a potential for making a program worse. Apart 
from adding an operation, it can also lengthen the lifetime of the values that 
are needed for the reconstruction. The result of the operation to be inverted 
(y in Figure 3) is used elsewhere anyway, and keeping it alive for repairing is 
certainly better (with respect to register pressure) than keeping the original 
value alive; but lengthening the lifetime of the other operand (a in Figure 3) can 
cause higher register pressure than register renaming. Of course, if the operation 
needs only one operand in a register (i.e., the operation is unary or it has an 
inline (small constant) operand), repairing is guaranteed to be profitable with 
respect to register pressure. 

In some cases, the repairing operation and the operation using this repaired 
value can be combined [NE89], providing the benefits of repairing without any 
cost. For example: additions or subtractions with immediate operands can be 
combined with additions, subtractions and comparison instructions with an im- 
mediate operand or with memory instructions; negations can be combined with 
additions or subtractions. Figure 4 shows an example, where the scheduler moves 
an sw instruction down. 

In comparison with remateriaiization, repairing results in less register pres- 
sure in the worst case: Both extend the live ranges of the values necessary for 
the reconstruction down to the instruction performing the reconstruction. But 
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addu $5, $4, 8 
addu $5, $4, 8 

addu $5, $4, 8 addu $4 . . . .  
:=~ ==~ addu $4 . . . .  

sw $3,  4 ($4)  . . .  
addu $4, . . .  repairing subu $6, $5, 8 combining . . .  

sw $3, 4($6) sw $3, -4($5) 

Fig. 4. Repairing used with combining (MIPS assembly) 

rematerialization can extend them down all the way from the instruction that 
computed the value to be rematerialized originally, whereas repairing can extend 
one (a in Figure 3) down from the invertible instruction (which uses the value to 
be repaired and is therefore later than the instruction that computed that value) 
and the other down from the last instruction that uses the value computed by 
the invertible instruction (y in Figure 3), which is even later. In particular, re- 
pairing is guaranteed to be profitable (with respect to register pressure), if the 
repairing instruction needs only one register operand, whereas rematerialization 
is not always profitable for the analogous case. 

In the preceding discussion we always wrote about "extending live ranges". Of 
course, repairing and rematerialization can be applied to these live ranges, too, 
where appropriate; still, on average, a longer live range will cause higher cost, 
be it register pressure, reconstruction or move instructions, or loop unrolling. 

The most important application of repairing will be compiler-based spec- 
ulative execution. Global code reordering techniques like trace scheduling and 
software pipelining move instructions up before branches. This is only legal, 
if the destination register of the moved instruction is dead on the other path. 
However, by inserting repair code in the other path the compiler can lift this 
restriction (see Figure 5). Note that instruction 2 need not reside in front of the 
branch from the beginning--it may have moved up, too. 

The actual algorithm for repairing depends on the scheduling framework. E.g, 
a trace scheduling JEll85] compiler would first schedule a trace without restric- 
tions from anti dependences, then (in the bookkeeping phase) it would determine 
the applicability and profitability of renaming, repairing and rematerialization 
for each anti dependence, and apply the least costly applicable transformation, 
and finally it would allocate the registers. 

4 E x a m p l e  

We demonstrate the advantages of repairing with a small example. Figure 6 
shows the C function strlen, which computes the length of a zero-terminated 
string. Figure 7 shows the assembly language output of a compiler for the MIPS 
R3000. We have changed the register names to make the program more readable. 

Figure 8 shows a version of the loop that is software-pipelined using register 
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i n t  s t r l e n ( c h a r  *s) { 
char  *t  = s ;  
whi le  (*s != ' \ 0 ' )  

s++; 

return s-t; 
} 

Fig .  6. The  C funct ion str len 

# 1 i n t  s t r l e n ( c h a r  *s) { 
s t r l e n :  

# 2 char  *t  = s; 
move t , s  # t=s 

# 3 while (*s != '\0') 

Ib tO,O(s)  # tO=*s 

beqz tO,end # while (tO != '\0') 

loop: 

#4 

end: 

# 5 

s++; 

addu s,s,1 # s++ 

Ib tO,O(s) # tO=*s 

bnez tO,loop # while (tO != '\0') 

return s-t; 

subu vO,s,t # return_value = s-t 

j ra # return 

Fig .  7. MIPS R3000 assembly language source of str len 
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move t , S  
ibo tO,O(s) addul sl,s,l 
lbl t l , 0 ( s l )  addu2 s2,sl,l 

loop: lbn t2,0(s2) addun+l s3,s2,1beqzn-2 tO,end 
lbn+l t3,0(s3) addun+2 s,sS,1 beqzn-i tl,endl 
ibn+2 tO,O(s) addun+3 sl,s,1 beqzn t2,end2 
ibn+3 tl,0(sl) addun+4 s2,s1,1 bnezn+1 tS,loop 

move s,s3 
end: subu vO,s,t j ra 
end1: move s,sl b end 
end2: move s,s2 b end 

Fig. 8. Software pipelined version of strlen with register renaming 

renaming. 2 We assume a load latency of 2, a branch latency of 1, and a pro- 
cessor that  has enough resources to execute one line of Figure 8 per cycle. The 
indices of the instructions indicate the iteration the instruction belongs to. This 
example nicely demonstrates the disadvantages of register renaming. The addus 
are executed speculatively three iterations in advance and therefore their results 
live four cycles (they are used in the off-loop arms). Therefore the number of 
different registers necessary for s and the loop unrolling factor is Ills] - 4. The 
result of the lb  lives for only three cycles, but  since the unrolling factor is four, 
we must give four registers to it, too 3. At the exit of the loop move instructions 
have been generated to reunite the s values into one register. 

~ove t,s 
lbo t0 ,0 ( s )  addul s,s,l 
Ibl tl,0(s) addu2 s,s,1 

loop: ibn t2,0(s) addun+l s,s,lbeqzn-2 tO,end 
lbn+l t0 ,0 (s )  addun+2 s , s ,1  beqzn-1 t l , e n d  
lbn+~ t l , 0 ( s )  addun+3 s , s ,1  bnezn t2,100p 

end: subu s,s,3 
subu vO,s,t j ra 

Fig. 9. Software pipelined version of strlen with repair code 

Figure 9 shows another version of the loop, this time software-pipelined with 
repairing and register renaming, s satisfies the conditions for repairing with the 
inverse operation and can safely be destroyed by incrementing it. Therefore s 
needs only one register. It does not pay off to destroy and repair the results of 
the lbs, so we have to use register renaming in this case. Since these results live 
for three cycles, the loop is unrolled three times. At the off-loop path, s has to 

2 For simplicity, we assume that the loads cannot have exceptions. Speculative execu- 
tion of trapping instructions is discussed in, e.g., [EK94]. 

3 We could have saved the one register by unrolling lcm(4, 3) = 12 times [LamB8]. 
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be repaired to its proper value, s has been destroyed by incrementing thrice. 
Therefore the repair code consists of three decrements that have been combined 
into one decrement by three. In summary, repairing saves four registers (44%), 
one loop iteration (25%) and some other code as well. 

5 P o t e n t i a l  

This section shows how important repairing is for real-world programs. We pro- 
duced traces (up to 100,000,000 instructions) of various applications and counted 
the antidependences in them and how many of them can be removed with various 
forms of repairing. 

This trace-based method has some disadvantages: it does not see all antide- 
pendences that the compiler has to consider (in particular, it does not see an- 
tidependences to off-trace instructions), and it treats all antidependences equal, 
no matter how important or unimportant they are for the compiler. The advan- 
tage of this method is that it is independent from the compiler; if, in contrast, 
we implemented repairing in a compiler and presented empirical data based on 
experiments with this compiler, the results would strongly depend on the sched- 
uler and on the register allocator of that compiler. Note that the results we 
present do not depend much on the compiler; although the compilers we used 
performed register allocation, this has little influence, because almost every use 
of a value causes an antidependence, independent of the register allocator, and 
the uses themselves are also quite independent of the register allocator (as long 
as moves and spilling are minor factors). Our empirical data supports this view: 
you cannot tell from the data which compiler produced the code. 

The applications used are: abalone, a board game; agrep, an approximate 
pattern matcher; drips, a filter used in typesetting; gcc-ccl, a part of the GNU 
C compiler; gzip, a compression program; and sicstus, a Prolog interpreter. All 
programs were compiled for the Alpha architecture under OSF/1, either with 
gcc-2.7.0 (abalone, gcc-ccl, sicstus) or with cc-3.1.1 (the other programs). 

Figure 10 shows the results. The column instructions displays the trace length, 
anti dep/inst, the number of anti dependences per instruction, and the next three 
columns display what portion of these anti dependences can be eliminated with 
various forms of repairing: repairing comprises all forms of repairing, one reg. 
operand are those forms of repairing that are guaranteed to be profitable with 
respect to register pressure, and combinable are those cases where the repairing 
code can be combined with the instruction that uses the repaired value (and 
therefore repairing is for free, in addition to being profitable). 

18%-34% of all antidependences can be removed with repairing. Only about 
half of them (8.6%-16.6%) are guaranteed to be profitable with respect to regis- 
ter pressure according to our simple one-register-operand criterion, so it is prob- 
ably a good idea to invest a little more in profitability analysis. 4.1%-12.6% of 
the anti dependences can be repaired for free, providing the benefits of repairing 
without any cost. 
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program 
abalone 
agrep 
dvips 
gcc-ccl 
gzip 
sicstus 

anti dep./ one reg. 
instructions inst. repairable operand combinable 
100,000,000 1.25 30.1% 15.8% 8.1% 
29,251,288 1.35 34.0% 8.6% 4.2% 
51,155,896 1.22 1 8 . 2 %  10.9% 4.1% 

100,000,000 1.17 2 5 . 7 %  16.6% 12.6% 
100,000,000 1.37 27.2% 14.1% 4.8% 
91,433,314 1.16 31.8% 15.8% 10.7% 

Fig. 10. Portion of anti dependences that can be removed with various forms of 
repairing 

Compilers for register-starved architectures (in particular, the 386 architec- 
ture) can employ repairing of combinable instructions now to reduce the register 
pressure. For other architectures, there are probably still a few years left until 
register pressure becomes a significant problem. The large amount of parallel 
units available by then will make any form of repairing attractive that reduces 
register pressure. 

6 C o n c l u s i o n s  

We have introduced repairing, a compiler technique that can remove anti de- 
pendences and reduce register pressure: If an instruction writing to a register is 
moved up across an instruction reading from that register, repairing reconstructs 
the destroyed value from derived values using the inverse operation. 

Repairing often has advantages over other techniques for removing anti de- 
pendences: Repairing produces less register pressure and it produces shorter live 
ranges, requiring less loop unrolling or fewer move instructions. 

18%-34% of all anti dependences can be removed by repairing, about half 
of them are guaranteed to reduce register pressure (others may be profitable, 
too), and 4.1%-12.6% of antidependences can be removed in a way that reduces 
register pressure without increasing the number of executed instructions. 
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