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ABSTRACT Reactive Promela/RSPIN is an extension to the protocol 
validator Promela/SPIN. It enhances the simulation and verification ca- 
pabilities of SPIN by allowing modular specifications to be analysed while 
alleviating the state-space explosion problem. Reactive Promela is a simple 
reactive language. The tool RSPIN is a preprocessor for SPIN which trans- 
lates a Reactive Promela specification into a corresponding Promela speci- 
fication. The main function performed by RSPIN is to combine configura- 
tions of Reactive Promela automata into Promela proctypes. The translated 
specification can then be simulated and verified using SPIN. We present 
our ideas first in a formal setting then we discuss their implementation in 
Reactive Promela and RSPIN concrete syntax and tool. 

1 Introduction 

When considering the problem of specification, (de)composition is a central 
issue. Promela provides for two styles of composition of automata:  loosely 
coupled (communicat ion is by FIFO queues) and tightly coupled (commu- 
nication is by rendezvous). A third style, the synchronous reactive style, 
has been widely advocated and used in the literature and in industry. 

In the synchronous reactive style, a configuration of au tomata  reacts to 
external events in a synchronous way: a collection of external events is 
treated thoroughly by the configuration before another collection of events 
is taken and processed. In other words, the reactive configuration reacts 
to input events, and it is only at the end of the reaction that  new inputs 
can be considered and processed. This kind of processing is valid when the 
speed of a reaction is higher than  the delay between two consecutive input 
events. 

The reactive style allows for powerful decomposition of specifications, 
beyond what is possible with merely rendezvous between automata .  Fur- 
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thermore, it reduces the state space explosion by constraining parallelism 
between automata.  

Whereas Holzmann in [Hol91] proposes ways of reducing the complex- 
ity of systems (by incremental composition, minimization, generalization, 
atomic sequences, layering and structuring techniques, and so on), this is 
not a feature of the Promela language in itself. Instead it is a guideline for 
how to use the language for large, complex systems. 

This paper describes an extension to Promela, whereby reactive pro- 
cesses can be defined and instantiated. A reactive process is a configura- 
tion of synchronously composed automata.  Besides the linguistic extension, 
this paper  also describes a translation mechanism of reactive processes into 
Promela processes. This translation has been implemented in a preproces- 
sor to SPIN,  called R S P I N  which translates a specification in Reactive 
Promela into an equivalent one in Promela. 

In order to reason about the extension and about the translation from 
Reactive Promela to Promela we use a formalisation of an essential subset 
of Promela (see section 2). In section 3 we formalise the reactive extension 
model. In section 4 we use these models to formalise the translation algo- 
rithms. Section 5 then presents a concrete syntax for Reactive Promela with 
an example. The same section also introduces the R S P I N  tool through 
an example which demonstrates the mapping from Reactive Promela to 
Promela. 

2 Promela State Machines 

The subset of Prome/a that  consider can be formally defined using the fol- 
lowing settings. We consider first a set L of elementary Promela instructions 
(with typical elements l): 

L ::= ~reaq I v = Exp  I c!Exp I c?v 

These instructions correspond to test, assignment, send, and receive in- 
structions. The send and receive instructions are to bounded channels c. 
We consider simple channels containing FIFO sequences of simple values. 

2.1 P S M  processes  

We consider PSM processes (with generic element P)  as follows: P is a 
tuple (S, s, T, E)  where: 

�9 S is a set of states; 

�9 s is either the initial state or the current state; 

�9 T C S x L x S is a transition relation; 
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E is the environmen~ of variables in P. It consists of a set of (untyped) 
variables V (ranging over values in the set V A L )  and a mapping of 
each variable v E V to a value val E V A L .  

We use a dot-notation to access elements of the tuple representing P. P .T  
is the transition relation T of PSM process P and P.E  is the environment 
of P.  

2 . 2  S e m a n t i c s  o f  P S M  processes  

We give the semantics of a PSM process P by a translation function from 
PSM into a Labeled Transition Syslem (LTS) defined by: ( P S M  • F • 

P S M )  1. A PSM transition (P, or, P ') ,  also written P ~ ~ P ' ,  means 
that  P can perform action a to become P ' .  

The following notations are used in the rules: 

�9 E ~- Ex p  ~ val denotes that the expression Exp evaluates to val in 
the environment E. 

�9 E ~ (v : val) denotes an environment E obtained from E by updating 
variable v to val. 

The translation from PSM to LTS is given by the following set of SOS 
rules: 

TEST 

(s, ~rea~, s') E T E ~- pred --* True 

( S , s , T , E )  r ~ ( S , s ' , T , E )  

ASSIGNMENT 

( s , v = E x p ,  s ' ) E T  E ~ - E x p - - + v a l  

(S, s, T, E) e , (S, s', T, E El) (v :  val)) 

SEND 

(s, c!Ezp, s I) E T E F Exp  --* val 

c!val 
( S , s , T , E )  , ( S , s ' , T , E )  l. ,, 

1where F ::= �9 [ c!val [ c?val, with a typical element a. 
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RECEIVE 

(s, c?v, s') �9 T 
c?val 

(S, s, T, E)  , (S, s', T, E @ (v:  val)) 

2.3 A tomic  P S M  processes 

We now consider a larger subset of Promela containing the atomic{...} 
construct. Consequently, our model is extended to reflect this construct. We 
define atomic PSM processes 2 (with typical element Q is a triple (P, II, ~) 
where: 

�9 P is a PSM process. 

�9 II is a partioning of P.S into a set of disjoint non-empty sets of states, 
i.e. Vpl,p2 �9 II : Pl CIP2 ---- ~ where Pl �9 P.S, p2 �9 P.S. Note that  
there may be some states in P.S that are not in any parti t ion p �9 II. 

�9 a = l  0 I ~P  I T p i s t h e  current alomie section o f P .  I 0 denotes 
that  P is not in an atomic section, I p denotes that  P has entered 
atomic section p but  is not yet active, and T p denotes that  P is active 
(executing a sequence of atomic steps) in p. 

2.4 Semant ics  o f  atomic P S M  processes 

The semantics of atomic PSM processes is given by two rules. We use the 
function II(s) defined by II(s) = p e II (for s �9 p) and II(s) = 0 (for s 

Up .p). 

DEACTIVATED-ATOMIC-SEQUENCE 

p a , p, (II(P'.s)r V II(P'.s)=0) 

(P, II, i P) (~ , (P ' ,  II, J. n (P ' . s ) )  
or 

(n, H, T P) , (P ' ,  II, J. N(P ' .s))  

2we do allow for non-atomic  PSM processes as a special  case where Q -- (P, 0, ~ 0). 
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A C T I V A T E D - A T O M I C - S E Q U E N C E  

p a p i  , p r  I I ( P ' . s ) = p  

( P , n , . [ p )  c~ , ( P ' , n ,  t p )  

(P,n, Tp) c~ , (P',II, Tp) 

Figure 1 illustrates the rules and shows the different cases for activa- 
t ion/deact ivat ion of atomic sequences. The transitions numbered (1) to (6) 
correespond to the first rule (DEACTIVATED-ATOMIC-SEQUENCE) ,  
whereas transitions (7) and (8) correspond to the second rule (ACTIVATED-  
ATOMIC-SEQUENCE) .  

t p Leave  atomir . - - e  atomir �9 .,t �9 
J ~ n - - ~ _ _ f i , - - = = ' ~  ~=. ',,, (5) c ~  t "~ 

/ " ~ ' ( I  ,~ .  . section n - -  

l [  ~ [2} ~ .  . . . . .  %_ K (8]  Atomic I ~ I 

LI ~ +6) ~uen~/ . "--- (4) F-mi~h.tomic 
sequence/ t I x ~ Change atomic 

(3) Non atomic Exit  atomic section X x j section 
- " ~ p  , ~  1 

FIGURE 1. Allowable atomic transitions. 

2.5 P S M  specifications 

We now turn to complete PSMs. A PSM specification is a pair (Procs, Charts) 
where: 

�9 Procs is a set of atomic PSM processes; 

�9 Charts is a set of bounded FIFO channels. If the length of the chan- 
nel is zero then communication is by rendez-vous, else it is by asyn- 
chronous message passing. 

2.6 Semantics of  P S M  specifications 

We use the following notations in the rules: Int(Q) means that  Q is inter- 
ruptible (i.e. for Q = (P, II, a) : a = { 0), l(c) gives the current number  
of values (messages) in channel c, ~ c  gives the length of channel e, and 
head(c) gives the value at the head of the channel c. 
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SPEC-ASYNCH-SEND 

c!v 
Qi , Q~ V j r  l ( c ) < # c  # c r  

(Chans, Procs) , ( C h a n s ' ,  Procs') 

Iwhere Procs' = ( P r o c s -  {Procs'}) U Q~ 
Chans' = Chans - {c(vl, . . . ,  vn)} U {c(vl, . . ., vn*, v)} ) 

SPEC-ASYNCH-RECEIVE 

c9.v 
Q, ~ Q~ Vj r i : In t (Qj)  l(c) > O head(c) = v 

where 

(Chans, Procs) , (Chans' ,Procs')  

Procs' = (Procs - {Procs'}) U Q~ 
Chans' = Chans - {c(vl, . . ., vn, v)} U {c(vl , .  . ., v,~)} ) 

SPEC-RENDEZ-VOUS 

c!v c?v 
Qi , Q~ Qj , Q~ V k r  

(Chans, Procs) , (Chans, Procs') 

[ where P r o c s ' = ( P r o c s - { P r o c s ' } ) u O : u Q ~  ] 

# c = O  

The condition that even process Qj is interruptible is a very strict inter- 
pretation of atomic instructions. It prevents rendez-vous communication if 
the two processes involved are both in an atomic sequence. The rule does 
permit Q~ to leave, exit or change atomic section while Qj starts an atomic 
section. 

SPEC-INTERNAL 

Qi e ~ Q~ Vj ~s i : In t (Qj)  

(Chans, Procs) , ( C h a n s ,  Procs') 

( where Procs' = ( procs - { e~ocs'}) u Q: ) 
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3 Reactive State Machines 

Here we present  the  Reactive State  Machine  (RSM) ,  a fo rma l i sa t ion  of  our  
p r o p o s e d  ex tens ion  to  Promela.  

Like we d id  for PSMs,  we give the  s y n t a x  and  semant ics  in an inc remen ta l  
fash ion ,  s t a r t i n g  wi th  R S M  automata,  then  R S M  processes, and  f inal ly  we 
give t he  seman t i c s  of  comple te  R S M  specifications. The  set of  ins t ruc t ions  
L is t he  s ame  as the  set used in sect ion 2. 

3 .1  R S M  a u t o m a t a  

In  the  R S M  m o d e l  a process  can be decomposed  into  a conf igura t ion  of  
R S M  automata.  A n  RSM a u t o m a t o n ,  A, is a tup le  (S, s, spred,  T,  E ,  I )  
where:  

* S is a set of  s ta tes  p a r t i o n e d  into  two dis joint  subsets3:  

- S S  C S a set of  stable states 

- T S  C S a set of t rans i tory  s tates  

�9 s is e i ther  the  init ial  state E S S  or the  current state. 

�9 spred  : s ---* ( T r u e ,  F a l s e }  is a funct ion  to  de te rmine  if  a give s t a t e  is 
s t abe l  or t r ans i to ry ,  spred(s )  = T r u e  if  s E S S  and spred(s)  = F a l s e  
if  s E T S .  

�9 T C S • L • S is a transi t ion relation 

�9 E is the  env ironment  of var iables  in A. 

�9 I is an interface 4 consis t ing of: 

-- Pin a set of  inports 

- Pout a set of  outports 

A we l l - formed  RSM a u t o m a t o n  has  the  following res t r ic t ions:  

�9 i f  (s, l, s I) E T and  s E S S  then  l is an inpu t  act ion.  

�9 i f  (s, l, s ' )  E T and  1 = c?x then  c E Pin. 

�9 i f  (s, l, s ' )  E T and  l = c!val then  c E Pout. 

3where S = SS u ST a~ad SS r ST = $ 
4where P i n  N P o u t  = $. 
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3.2 S e m a n t i c s  o f  R S M  au toma ta  

The semantics of an RSM automaton  is given by the same rules as for a 
PSM process. 

3.3 R S M  processes 

An RSM process R is a tuple (A, I ,  L) where: 

�9 A i s  

�9 / a n  

�9 L i s  

a set of RSM au toma ta  { a l , . . . ,  an} 

interface ~ consisting of: 

Cin a set of input channels 

Cout a set of output channels 

a set of links taking the following three forms: 

Li,t a set of internal links represented by the tuple ((al, Pi), (aj, pj)), 
where Pi 6 ai.Pout and pj 6 aj.Pin. 

Lout a set of external output links represented by the tuple 
((ai,pi), (*,pj)) ,  where Pl 6 ai.Pout and pj 6 Cont. 

Li.  a set of external input links represented by the tuple (( . ,  Pi), (aj, pj)), 

where p~ 6 Ci. and pj 66 aj .Pi.. 

Some other definitions: 

�9 the state of an RSM process R is the tup le  R.s = ( a l . s , . . . , a n . s ) ,  
where: 

- the initial state is defined as the tuple ( a l . s 0 , . . . ,  an.so) 

- a state s = ( s l , . . . , s n )  is a stable state iff Vsl : spredi(si) = 
True. 

- a s tate  s = ( s l , . . . ,  sn) is a transitory state iff qsi :spredi(si) = 
False. 

3. 4 S e m a n t i c s  o f  R S M  processes 

We add the predicate stable(R) = R.s is a stable state, and give the SOS 
rules for RSM processes: 

Swhere Ci. n Cout = 0 
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RSM-PROC-EXT-SEND 

g!val 
' ( ( a i , g ) , ( . , c ) ) E L o u t  eEGou t  a i ) a i 

c!val 
( A , I , L )  , ( A ' , I , L )  

C A = a l , . . . , a i , . . . , a n  1 where A' = a l , . . . , a ~ , . . . , a n  

RSM--PROC-EXT-RECEIVE 

g?v 
ai ~ a i ( ( . , c ) , ( a i , g ) )  E Lin c E Ci,~ s tab l e ( (A , I ,L ) )  

c?.v 
( A , I , L )  ~ ( A ' , I , L )  

(whe re  A = a l , . . . , a i , . . . , a n  1 
_Z ~ a l , . . . , a ~ , . . . , a n  

where 

RSM-PROC-SYNCH 

g!val h?v 
I ' aj , aj ( (a i , h ) , (a j , g ) )  E Lint ai ~ a i 

( A , I , L )  e ~ ( A ' , I , L )  

A = a l ' ' ' " a i ' " " a J ' ' ' " a n  1 
A'  = a l , . . . ,  a ~ , .  . . ,  a~ , . . . ,  an 

A synchronisation between automata  ai and aj is possible only if ai can 
send a message on outport  p, a1 can receive a message on inport q, and 
there is a link between (ai,p) and (aj, q). 

RSM-PROC-INTERNAL-ACTION 

ai ) a i 

( A , I , L )  e , ( A ' , I , L )  

C A=al,...,ai,...,an ) I where A' ~ al,  . . ., a i , . . ., an 

3 . 5  R S M  sp ec i f i ca t i ons  

An RSM specification is a triple (RProcs ,  Procs,  Chans)  where: 
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�9 RProcs  is a set of RSM processes; 

�9 Procs is a set of atomic PSM processes; 

�9 Chans  is a set of channels. 

3 .6  S e m a n t i c s  o f  R S M  spec i f ica t ions  

The semantics of RSM specifications can simply be given using the rules for 
PSM specifications where the predicate In t (R)  is defined on RSM process 
R by In t (R)  = stable(R). 

4 Translat ing RSMs to PSMs  

In the translation of an RSM specification to a PSM specification, each 
RSM process is translated to a PSM process through a technique of au- 
tomata combination. The next section shows how we use these techniques 
to extend Promela  with reactive processes (rproctypes), and R S P I N  a tool 
which performs the translation of reactive processes to Promela processes 
(proctypes). 

The algorithm for au tomata  combination uses s tandard state space search 
techniques to create the global s tate graph representing the combined au- 
tomaton.  The only main difference is that  the combined au tomaton  is 
t r immed from all transitions start ing from transitory state vectors and 
having external inputs. 

Once the combined au tomaton  have been obtained we use another algo- 
r i thm to part ion it into disjoint atomic sections. The purpose is to make 
each possible reaction of the combined automaton atomic. We should note 
here that  the intended behaviour of atomic reactions is only valid when 
communication is by asynchronous FIFO channels 6. 

We can now give the partioning algorithm, using the notation s - * ---* s ~ 
to denote the fact tha t  there exists a pa th  from state s to transitory state 
s ~, traversing only transitory states. The algorithm is then: 

For every stable state s, n(s) = 01 {s} u {s'Is - �9 s'} 

We must  show tha t  II(s) does not create overlapping partitions. We claim 
that:  

8In t he  ~ S P I N  tool  t he re  is a n  op t i on  which  p reven t s  t he  p a r t i o n i n g  f rom t a k i n g  
p lace  (on  a global  or  a pe r  p rocess  bas is ) .  T h i s  gives t he  u se r  m o r e  flexibility to  decide 
w h e t h e r  to  allow r e n d e z - v o u s  c o m m u n i c a t i o n  for reac t ive  processes .  
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vsl,s2 : n(s l )n  II(s2) = 0 

The  proof  is obta ined by induct ion on the length of  paths  8 1  - -  �9 - ' ~  

s and s2 - �9 ~ s and using the fact tha t  t ransi t ions of  RSM a u t o m a t a  are 
restr icted (syntact ical ly)  so tha t  this condit ion holds: 

If  ((Sl, /1,  s), (s2,12, s)) E T x T,  and if s is a t rans i tory  state, 
then  (s l ,  11) = (s2, 12). 

5 R e a c t i v e  P r o m e l a  a n d  R S P I N  

We now present Reactive Promela ,  our proposed extension to Promela, and 
the associated R S P I N  tool. 

5.1 Syntax of Reactive Promela 

The  syn tax  of  Reactive Promela strongly resembles tha t  of  Promela, since 
the a im is to make it as easy as possible to use the extension. The  only new 
keywords added in Reactive Promela  are the following: 

automaton in inport link 

outport rproctype external 

Below we present the par ts  of  the Reactive Promela g r a m m a r  where it 
extends the Promela grammar .  First, a few words on the nota t ion.  The  
new keywords are displayed in capitals (RPROCTYPE), tokens and Promela 
keywords are enclosed within apostrophes ( ' : '  and ' g o t o ' ) ,  names (refer- 
ences) are displayed in lowercase letters within < . . .  > (<rproc_name>)  
and non- terminals  in lowercase letters ( r  p roc ) .  Also, { . . .  }+ means  one 
or more  of  the enclosed unit  and { . . .  }* means zero or more  units. Units  
enclosed by [ . . .  ] are optional.  

In Reactive Promela, the old process definition: proc : : =  PROCTYPE . . .  
is replaced by: p r o c  : : =  p _ p r o c  [ r _ p r o c ,  where p _ p r o c  is the usual 
Promela process, and r _ p r o r  is the Reactive Promela process defined by: 

r_proc ::= RPROCTYPE <rproc_name> 
(~ r_interface ~) ~ r_body 

r_interface : := {r_port_decl}* 

r_port_decl ::= INPORT <port_name> [ OUTPORT <port_name> 
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r_body ::= 
automaton ::= 

a_interface ::= 
a_port_decl ::= 

I 
] 
] 

port_init ::= - 

a_body ::= 

a_stmnt :'= 

links ::= 

link ::= 
port ::= 

{automaton}+ links 
AUTOMATON <autom_name> 
'(' a_interface ')' a_body 

{a_port_der 
EXTERNAL INPORT <port_name> 
EXTERNAL OUTPORT <port_name> 
INPORT <port_name> port_init 
OUTPORT <port_name> port_init 

'-' '{' type_list '}' 

'{' {one_decl I a_stmnt}+ '}' 

<port_name> '?' {<var_name>Iconst}+ 
<port_name> '!' {a_expr}+ 
<label_name> ':' a_stmnt 
'goto' <label_name> 
<var_name> '=' aexpr 
'if' options 'fi' 
'do' options 'od' 

LINK '{' {link}+ '}' 

port '=>' {port}+ 
<port_name> IN <autom_name> 

The body of an automaton is defined as a_body, which is the same as 
body in Promela except that  a_body only allows (for the time being) a 
subset of the rules of Promela (listed in the rule for a stmat) .  We have 
not shown the rule for a expr  but it allows most of the usual Promela 
expressions, at least for arithmetic and boolean operations. 

To introduce the Reactive Promela language and the syntax shown above, 
we give a simple example of a Reactive Promela specification. It consists of 
a single rproctype which encapsulates two automata. Figure 2 below shows 
the specification in a graphical notation for Reactive Promela. 

The graphical syntax makes it very easy to visualize a Reactive Promela 
specification, and it would certainly be interesting for the user to write or 
view a specification using a graphical interface. The textual syntax repres- 
nting the diagram of figure 2 is: 

#define NO 0 
#define YES I 

chan il : [I0] of { int, int }; 
than oi = [10] of { bool }; chan 02 : [I0] of{ int,int }; 
chan ii = [I0] of { int }; chan 12 = [10] of { int }; 
chan 13 = [10] of { int }; chan 14 = [10] of { int }; 

rproctype A 
/* external interface definition */ 
(inport ii, 13; outport oi, 11, 12) 

{ 
automaton autl 
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rproctype AO 0 automaton aut20 laut~176 autl I I o 2 , c ~ ' ~ / ' ~  I 
I~176 I ''~"'b I I ( . . . . . .  i ~176 I 
, . , . .~ ,  I I la+~'~ ,~  

| "o'a'~ I I "~~ ~:~0 -I - 
I ? ' '  ,o~,0 ~ 

r 

ol o2 
I ! fll ~ 

FIGURE 2. A simple rproctype decomposed into two automata. 

{ 

/* interface definition */ 
(external inport il; external outport oi; 
outport p = { int, int }) 

int a, b; 

stableO: 
il?a,b -> i~ 

:: [a > b] -> ol!NO; goto stableO 
:: [a <= b] -> of!YES; p!a,b; goto stable1 
fi; 

stablel: skip 
} 

automaton aut2 
/* interface definition */ 
(external inport 13, 14; external outport 02, 11, 12; 
inport p = { int, int }) 

{ 
int a, b, c, d, MAX = I0; 

stableO: 
p?a,b -> if 

:: [a+b > MAX] -> 11!a+b; goto stablel 
:: [a+b <= MAX] -> 12!a+b; goto stablel 
fi; 
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stablel: 
if 
:: 13?c -> o2!c; goto stableO 
:: 14?d -> o2!d; goto stable2 
fi 

stable2: skip 

link ~ p in autl => p in aut2 

...other rproctypes() and other Promela proctypes() 

5.2 Reactive S P I N  

In order to realistically check the correctness of a specification, tool support  
is essential. Instead of writing a simulator/verifier f rom scratch we propose 
to perform a mapping  of Reactive Promela constructs into corresponding 
ones in Promela. For this purpose we present R S P I N ,  a preprocessor tool 
that  translates a Reactive Promela specification into an equivalent Promela 
specification. 

One of the most  impor tant  aims we hope to achieve through the Reactive 
Promela extension is to provide a way to reduce the state-space explosion 
problem. There are two ways in which this is done. We have already seen in 
section 4 that  the state space generated by combining RSM au toma ta  is not 
the full crossproduct of reachable states. The other means of reducing the 
state space is the use of Promela's a t o m i c ( . . .  } construct to implement  the 
parti t ioning function H(s). The effect of this is that  the proctypes generated 
by R S P I N  reacts to inputs in an atomic fashion. This means that  during 
simulation or verification, other proctypes are blocked until the reaction is 
over. 

However, it must  be noted tha t  the use of atomic reactions is valid only 
if the channels used are of length greater than zero. In other words, rendez-  
vous communicat ion is not possible during a reaction. To allow more flex- 
ibility we make the encapsulation of reactions as atomic sequences to be 
optional on a per rproctype basis. 

To illustrate how au tomata  are combined we present a par t  of a Reactive 
Promela specification for the HDLC protocol 7. To model the protocol in 
Reactive Promela we decompose it into five au toma ta  two of which are 

7The example is taken from a course in protocol specification given by F, lie Najm 
at  ENST. Modelisation and validation of this example will be presented in more detail 
elsewhere. 
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shown in figure 3 (the ~IYansmitter and the Window) s. This example shows 
the benefit of decomposition: each au tomaton  that  make up the rproctype 
(i.e. the protocol) have a simple and clearly defined role, but  we can still 
t reat  and reason about  it as a whole. 

~ 1  I-~ CF!Xon ,~'~ 
/ VA=va , ~ ~ = V A  ] I 

I 

w,v,  .,F.,,=vs 
/ Iv,-v,+, w I I1_ " A~ v'-v'>''l 

~.utomaton\ ; , -- c~" .(~CF'Xo")b automaton 
rransmitter0~, ~F " "  Window() 

~ r  automata rproctype H DLCO 

FIGURE 3. The transmitter and the window automata of the HDLC rproctype. 

The t ransmi t te r  can receive a message from the upper protocol (on inport 
UE). From this it creates a frame (the structure F) which it sends to the 
window (on outport  W) as well as to the retransmit ter  and the acknowledger 
(on outpor t  RA). The window's responsibility is to manage the sequence 
numbers.  When the window is saturated, it notifies the t ransmit ter  and 
the upper  protocol layer (on outport  CF) that  no more messages can be 
sent, until one is acknowledged. From the receiver (not shown) it receives 
a message (on inport  C) that  indicate that  the last frame acknowledged. 

After combining the two au tomata  in the figure above we get the result 
shown in figure 4. In the textual  syntax the combined au tomaton  would be 
represented as a Promela proctype9: 

proctype combined_Transmitter_Window() 
( 

Frame F; /* .ith fields: type, D, NS */ 
int Window_VS, Transmitter_VS, VA, va, f; 

sO: 

SThe  t h r ee  a u t o m a t a  no t  s h o w n  are  the  Retransrnitter, t h e  Receiver a n d  t he  
Ackno~ledger. 

9We ignore  t h e  th ree  o t he r  a u t o m a t a  r ep r e sen t i ng  the  HDLC protocol .  
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VAfva 

[va>VA] [ONindow_VS.VA)< St l C?va , , - v v ~ , , ~ )  w-v. I 

O F , f : ~ l  i ''~ 
,~V,n,_v,.v.,--~ i 'N~"'n'~ w 

. , , ,  ,,--m..v .v.+, 
Window_V,S='rmnsmitter_V~ ~k RAIF 

FIGURE 4. The resulting automaton ~fter combining the transmitter aad the 
window. 

if 

:: atomic { 

UE?M -> F.type=I; F.D=M; F.NS=Window_VS; 

Transmitter_VS=Transmitter_VS+l; 

RA!F; Window_VS=Transmitter_VS+l; 

if 

:: [(Window_VS-VA)==f] -> CF!Xoff; goto sl 

:: [(Window_VS-VA)<f] -> goto sO 

fi 
} 

:: atomic { 

} 

fi 

sl: 

C?va -> ... 

. . ,  

atomic { 

C?va ->  . . .  
. . .  

} 

We can make  a few observat ions  abou t  this combined  au tom a ton .  Fi rs t  
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we note that the number of states has not increased significantly. This is 
because the combination process combines transitions and interleaves whole 
reactions rather than interleaving all transitions. 

The stable states of the combined automaton is a subset of the crossprod- 
uct between the stable states of the individual automata.  In figure 4 we 
note that  the combined automaton has got two stable states. Stable state 
sO corresponds to the case where the window is not saturated and where 
the transmitter is waiting for a new message from the upper protocol layer. 
In this state the combined automaton is free to send more messages. The 
other one, s l ,  is when the window is saturated and transmission blocked. 

Communications between the transmitter and the window is reduced to 
assignment to variables (e.g. the send statement W!VS in the transmitter 
and the corresponding receive statement in the window T?VS is reduced to 
the assignment Window_VS=Transmitter_VS). Since the variable VS exists 
in both the transmitter and in the window it is prefixed with the automa- 
ton name in the combined automaton. A more interesting case is where 
the window notifies both the transmitter and the upper protocol layer that 
it is saturated. This is an example of a communication with more than 
one receiver. Between the transmitter and the window this is a pure syn- 
chronization which takes the combined automaton to stable state s l  (the 
saturation state). But we still need to notify the upper layer: therefore the 
combined automaton keeps the send action CF!Xoff. All other communi- 
cation actions than those sent between the two automata in figure 4 are 
kept as they were. 

To demonstrate more clearly the benefit provided by Reactive Promela's 
decomposition technique we would have had to show the combined au- 
tomaton  for all the five au tomata  in the HDLC protocol model have been 
(unfortunately too big to fit conveniently on one page). 

6 Conclusion 

In this paper we have presented a formalisation of a subset of Promela and 
of a reactive extension. Then we introduced the Reactive Promela language 
and its associated tool RSPIN.  The language belongs to the family of 
synchronous reactive formalisms and allows a system to be decomposed into 
a reactive part containing configurations of synchronously communicating 
automata  and a pro-active part containing Promela proctypes. 

In relation to the other languages in the synchronous reactive family, 
Reactive Promela is an imperative language, similar to RC [Bou91], Esterel 
[BG92], [JLI%M], and SL [BdS95]. These languages are distinguished by the 
notions of stale and sequences of statements that lead from one state to 
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another. In contrast, in the data-flow languages like Lustre [CPHP85] and 
Signal [Gue86], the reaction to input events is evaluated as the solution of 
a set of equations. There are also some at tempts to combine the imperative 
and data-flow approach, e.g. the language ArgoLus as described in [JLRM]. 

In Reactive Promela, like in the latest version of Esterel and in SL, we 
disallow hypotheses to be made about the presence or absence of a signal 
during the reaction. This means that  a signal can only be taken into account 
after it has appeared. In Reactive Promela dynamic behavior is represented 
as extended finite automata,  while Esterel and SL are special kinds of 
process algebras. There are two other major  differences between Esterel 
and SL on one side and Reactive Promela on the other: The first is tha t  
Esterel and SL use broadcast communication while in Reactive Prome/a 
communication is via point-to-point channels. The second difference is tha t  
in Reactive Promela, reactions are triggered by one input event, while in 
Esterel and SL reactions are triggered by an arbitrary set of input events. 

The R S P IN  tool translates rproctypes into Promela proctypes, so that  
a Reactive Promela specification can be simulated and verified with SPIN.  
No modifications to the SPIN tool are needed to do this. 

We also have some ideas for extensions to Reactive Promela/RSPIN. 
The next probable extensions are handle Promela code in RS P IN  and to 
make a graphical interface for X-Windows which would allow the Reac- 
tive Promela user to write and view automata.  A very useful tool for the 
user of R S P I N  would be one which allows traces produced by SPIN to 
be "mapped to" the initial Reactive Promela specification. Other exten- 
sions might include an emacs mode for editing Reactive Promela speci- 
fications. More theoretical issues include the possibility for an rproctype 
to react to collections of inputs instead of to exactly one input. More 
work is needed on how properties of Reactive Promela specifications can 
be proven, although it seems that  most of the S P IN  techniques should 
be applicable (i.e. special labels, assertions and LTL-formulae). We will 
also look into how the partial-order reduction methods introduced in re- 
cent versions of SP IN  can be used with Reactive Promela specifications, 
although we can conjecture that  Reactive Promela provides this one kind 
of such reductions "for free": as we have seen in previous sections, R S P I N  
does not consider all the interleavings of transitions. Instead one interleav- 
ing is chosen since the set of outputs generated by the reaction will be 
the same. For more information on partial order reduction methods see 
[dSdS95, Pe194, GKPP95,  Val90, WG93, God94]. 
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