
R e a c t i v e E F S M s
P r o m e l a / R S P I N

Elie N A J M *
Frank O L S E N *t

- R e a c t i v e

ABSTRACT Reactive Promela/RSPIN is an extension to the protocol
validator Promela/SPIN. It enhances the simulation and verification ca-
pabilities of SPIN by allowing modular specifications to be analysed while
alleviating the state-space explosion problem. Reactive Promela is a simple
reactive language. The tool RSPIN is a preprocessor for SPIN which trans-
lates a Reactive Promela specification into a corresponding Promela speci-
fication. The main function performed by RSPIN is to combine configura-
tions of Reactive Promela automata into Promela proctypes. The translated
specification can then be simulated and verified using SPIN. We present
our ideas first in a formal setting then we discuss their implementation in
Reactive Promela and RSPIN concrete syntax and tool.

1 Introduction

When considering the problem of specification, (de)composition is a central
issue. Promela provides for two styles of composition of automata: loosely
coupled (communicat ion is by FIFO queues) and tightly coupled (commu-
nication is by rendezvous). A third style, the synchronous reactive style,
has been widely advocated and used in the literature and in industry.

In the synchronous reactive style, a configuration of au tomata reacts to
external events in a synchronous way: a collection of external events is
treated thoroughly by the configuration before another collection of events
is taken and processed. In other words, the reactive configuration reacts
to input events, and it is only at the end of the reaction that new inputs
can be considered and processed. This kind of processing is valid when the
speed of a reaction is higher than the delay between two consecutive input
events.

The reactive style allows for powerful decomposition of specifications,
beyond what is possible with merely rendezvous between automata . Fur-

*Ecole Nationale Sup~rieure des T~lficommunications, 46, rue Barrault, 75013 Paris,
France, E-maih {najm,olsen}~res.enst.fr

?This author is now also affiliated with France Tclecom-CNET, PAA/TSA/TLR,
Issy-les-Moullncaux, Paris, France, E-mail" olsen(~ issy.cnet.fr

350

thermore, it reduces the state space explosion by constraining parallelism
between automata.

Whereas Holzmann in [Hol91] proposes ways of reducing the complex-
ity of systems (by incremental composition, minimization, generalization,
atomic sequences, layering and structuring techniques, and so on), this is
not a feature of the Promela language in itself. Instead it is a guideline for
how to use the language for large, complex systems.

This paper describes an extension to Promela, whereby reactive pro-
cesses can be defined and instantiated. A reactive process is a configura-
tion of synchronously composed automata. Besides the linguistic extension,
this paper also describes a translation mechanism of reactive processes into
Promela processes. This translation has been implemented in a preproces-
sor to SPIN, called R S P I N which translates a specification in Reactive
Promela into an equivalent one in Promela.

In order to reason about the extension and about the translation from
Reactive Promela to Promela we use a formalisation of an essential subset
of Promela (see section 2). In section 3 we formalise the reactive extension
model. In section 4 we use these models to formalise the translation algo-
rithms. Section 5 then presents a concrete syntax for Reactive Promela with
an example. The same section also introduces the R S P I N tool through
an example which demonstrates the mapping from Reactive Promela to
Promela.

2 Promela State Machines

The subset of Prome/a that consider can be formally defined using the fol-
lowing settings. We consider first a set L of elementary Promela instructions
(with typical elements l):

L ::= ~reaq I v = Exp I c!Exp I c?v

These instructions correspond to test, assignment, send, and receive in-
structions. The send and receive instructions are to bounded channels c.
We consider simple channels containing FIFO sequences of simple values.

2.1 P S M processes

We consider PSM processes (with generic element P) as follows: P is a
tuple (S, s, T, E) where:

�9 S is a set of states;

�9 s is either the initial state or the current state;

�9 T C S x L x S is a transition relation;

351

E is the environmen~ of variables in P. It consists of a set of (untyped)
variables V (ranging over values in the set V A L) and a mapping of
each variable v E V to a value val E V A L .

We use a dot-notation to access elements of the tuple representing P. P .T
is the transition relation T of PSM process P and P.E is the environment
of P.

2 . 2 S e m a n t i c s o f P S M processes

We give the semantics of a PSM process P by a translation function from
PSM into a Labeled Transition Syslem (LTS) defined by: (P S M • F •

P S M) 1. A PSM transition (P, or, P ') , also written P ~ ~ P ' , means
that P can perform action a to become P ' .

The following notations are used in the rules:

�9 E ~- Ex p ~ val denotes that the expression Exp evaluates to val in
the environment E.

�9 E ~ (v : val) denotes an environment E obtained from E by updating
variable v to val.

The translation from PSM to LTS is given by the following set of SOS
rules:

TEST

(s, ~rea~, s') E T E ~- pred --* True

(S , s , T , E) r ~ (S , s ' , T , E)

ASSIGNMENT

(s , v = E x p , s ') E T E ~ - E x p - - + v a l

(S, s, T, E) e , (S, s', T, E El) (v : val))

SEND

(s, c!Ezp, s I) E T E F Exp --* val

c!val
(S , s , T , E) , (S , s ' , T , E) l. ,,

1where F ::= �9 [c!val [c?val, with a typical element a.

352

RECEIVE

(s, c?v, s') �9 T
c?val

(S, s, T, E) , (S, s', T, E @ (v: val))

2.3 A tomic P S M processes

We now consider a larger subset of Promela containing the atomic{...}
construct. Consequently, our model is extended to reflect this construct. We
define atomic PSM processes 2 (with typical element Q is a triple (P, II, ~)
where:

�9 P is a PSM process.

�9 II is a partioning of P.S into a set of disjoint non-empty sets of states,
i.e. Vpl,p2 �9 II : Pl CIP2 ---- ~ where Pl �9 P.S, p2 �9 P.S. Note that
there may be some states in P.S that are not in any parti t ion p �9 II.

�9 a = l 0 I ~P I T p i s t h e current alomie section o f P . I 0 denotes
that P is not in an atomic section, I p denotes that P has entered
atomic section p but is not yet active, and T p denotes that P is active
(executing a sequence of atomic steps) in p.

2.4 Semant ics o f atomic P S M processes

The semantics of atomic PSM processes is given by two rules. We use the
function II(s) defined by II(s) = p e II (for s �9 p) and II(s) = 0 (for s

Up .p).

DEACTIVATED-ATOMIC-SEQUENCE

p a , p, (II(P'.s)r V II(P'.s)=0)

(P, II, i P) (~ , (P ' , II, J. n (P ' . s))
or

(n, H, T P) , (P ' , II, J. N(P ' .s))

2we do allow for non-atomic PSM processes as a special case where Q -- (P, 0, ~ 0).

353

A C T I V A T E D - A T O M I C - S E Q U E N C E

p a p i , p r I I (P ' . s) = p

(P , n , . [p) c~ , (P ' , n , t p)

(P,n, Tp) c~ , (P',II, Tp)

Figure 1 illustrates the rules and shows the different cases for activa-
t ion/deact ivat ion of atomic sequences. The transitions numbered (1) to (6)
correespond to the first rule (DEACTIVATED-ATOMIC-SEQUENCE) ,
whereas transitions (7) and (8) correspond to the second rule (ACTIVATED-
ATOMIC-SEQUENCE) .

t p Leave atomir . - - e atomir �9 .,t �9
J ~ n - - ~ _ _ f i , - - = = ' ~ ~=. ',,, (5) c ~ t "~

/ " ~ ' (I ,~ . . section n - -

l [~ [2} ~ %_ K (8] Atomic I ~ I

LI ~ +6) ~uen~/ . "--- (4) F-mi~h.tomic
sequence/ t I x ~ Change atomic

(3) Non atomic Exit atomic section X x j section
- " ~ p , ~ 1

FIGURE 1. Allowable atomic transitions.

2.5 P S M specifications

We now turn to complete PSMs. A PSM specification is a pair (Procs, Charts)
where:

�9 Procs is a set of atomic PSM processes;

�9 Charts is a set of bounded FIFO channels. If the length of the chan-
nel is zero then communication is by rendez-vous, else it is by asyn-
chronous message passing.

2.6 Semantics of P S M specifications

We use the following notations in the rules: Int(Q) means that Q is inter-
ruptible (i.e. for Q = (P, II, a) : a = { 0), l(c) gives the current number
of values (messages) in channel c, ~ c gives the length of channel e, and
head(c) gives the value at the head of the channel c.

354

SPEC-ASYNCH-SEND

c!v
Qi , Q~ V j r l (c) < # c # c r

(Chans, Procs) , (C h a n s ' , Procs')

Iwhere Procs' = (P r o c s - {Procs'}) U Q~
Chans' = Chans - {c(vl, . . . , vn)} U {c(vl, . . ., vn*, v)})

SPEC-ASYNCH-RECEIVE

c9.v
Q, ~ Q~ Vj r i : In t (Qj) l(c) > O head(c) = v

where

(Chans, Procs) , (Chans' ,Procs')

Procs' = (Procs - {Procs'}) U Q~
Chans' = Chans - {c(vl, . . ., vn, v)} U {c(vl , . . ., v,~)})

SPEC-RENDEZ-VOUS

c!v c?v
Qi , Q~ Qj , Q~ V k r

(Chans, Procs) , (Chans, Procs')

[where P r o c s ' = (P r o c s - { P r o c s ' }) u O : u Q ~]

c = O

The condition that even process Qj is interruptible is a very strict inter-
pretation of atomic instructions. It prevents rendez-vous communication if
the two processes involved are both in an atomic sequence. The rule does
permit Q~ to leave, exit or change atomic section while Qj starts an atomic
section.

SPEC-INTERNAL

Qi e ~ Q~ Vj ~s i : In t (Qj)

(Chans, Procs) , (C h a n s , Procs')

(where Procs' = (procs - { e~ocs'}) u Q:)

355

3 Reactive State Machines

Here we present the Reactive State Machine (RSM) , a fo rma l i sa t ion of our
p r o p o s e d ex tens ion to Promela.

Like we d id for PSMs, we give the s y n t a x and semant ics in an inc remen ta l
fash ion , s t a r t i n g wi th R S M automata, then R S M processes, and f inal ly we
give t he seman t i c s of comple te R S M specifications. The set of ins t ruc t ions
L is t he s ame as the set used in sect ion 2.

3 .1 R S M a u t o m a t a

In the R S M m o d e l a process can be decomposed into a conf igura t ion of
R S M automata. A n RSM a u t o m a t o n , A, is a tup le (S, s, spred, T, E , I)
where:

* S is a set of s ta tes p a r t i o n e d into two dis joint subsets3:

- S S C S a set of stable states

- T S C S a set of t rans i tory s tates

�9 s is e i ther the init ial state E S S or the current state.

�9 spred : s ---* (T r u e , F a l s e } is a funct ion to de te rmine if a give s t a t e is
s t abe l or t r ans i to ry , spred(s) = T r u e if s E S S and spred(s) = F a l s e
if s E T S .

�9 T C S • L • S is a transi t ion relation

�9 E is the env ironment of var iables in A.

�9 I is an interface 4 consis t ing of:

-- Pin a set of inports

- Pout a set of outports

A we l l - formed RSM a u t o m a t o n has the following res t r ic t ions:

�9 i f (s, l, s I) E T and s E S S then l is an inpu t act ion.

�9 i f (s, l, s ') E T and 1 = c?x then c E Pin.

�9 i f (s, l, s ') E T and l = c!val then c E Pout.

3where S = SS u ST a~ad SS r ST = $
4where P i n N P o u t = $.

356

3.2 S e m a n t i c s o f R S M au toma ta

The semantics of an RSM automaton is given by the same rules as for a
PSM process.

3.3 R S M processes

An RSM process R is a tuple (A, I , L) where:

�9 A i s

�9 / a n

�9 L i s

a set of RSM au toma ta { a l , . . . , an}

interface ~ consisting of:

Cin a set of input channels

Cout a set of output channels

a set of links taking the following three forms:

Li,t a set of internal links represented by the tuple ((al, Pi), (aj, pj)),
where Pi 6 ai.Pout and pj 6 aj.Pin.

Lout a set of external output links represented by the tuple
((ai,pi), (*,pj)) , where Pl 6 ai.Pout and pj 6 Cont.

Li. a set of external input links represented by the tuple ((. , Pi), (aj, pj)),

where p~ 6 Ci. and pj 66 aj .Pi..

Some other definitions:

�9 the state of an RSM process R is the tup le R.s = (a l . s , . . . , a n . s) ,
where:

- the initial state is defined as the tuple (a l . s 0 , . . . , an.so)

- a state s = (s l , . . . , s n) is a stable state iff Vsl : spredi(si) =
True.

- a s tate s = (s l , . . . , sn) is a transitory state iff qsi :spredi(si) =
False.

3. 4 S e m a n t i c s o f R S M processes

We add the predicate stable(R) = R.s is a stable state, and give the SOS
rules for RSM processes:

Swhere Ci. n Cout = 0

357

RSM-PROC-EXT-SEND

g!val
' ((a i , g) , (. , c)) E L o u t eEGou t a i) a i

c!val
(A , I , L) , (A ' , I , L)

C A = a l , . . . , a i , . . . , a n 1 where A' = a l , . . . , a ~ , . . . , a n

RSM--PROC-EXT-RECEIVE

g?v
ai ~ a i ((. , c) , (a i , g)) E Lin c E Ci,~ s tab l e ((A , I ,L))

c?.v
(A , I , L) ~ (A ' , I , L)

(whe re A = a l , . . . , a i , . . . , a n 1
_Z ~ a l , . . . , a ~ , . . . , a n

where

RSM-PROC-SYNCH

g!val h?v
I ' aj , aj ((a i , h) , (a j , g)) E Lint ai ~ a i

(A , I , L) e ~ (A ' , I , L)

A = a l ' ' ' " a i ' " " a J ' ' ' " a n 1
A' = a l , . . . , a ~ , . . . , a~ , . . . , an

A synchronisation between automata ai and aj is possible only if ai can
send a message on outport p, a1 can receive a message on inport q, and
there is a link between (ai,p) and (aj, q).

RSM-PROC-INTERNAL-ACTION

ai) a i

(A , I , L) e , (A ' , I , L)

C A=al,...,ai,...,an) I where A' ~ al, . . ., a i , . . ., an

3 . 5 R S M sp ec i f i ca t i ons

An RSM specification is a triple (RProcs , Procs, Chans) where:

358

�9 RProcs is a set of RSM processes;

�9 Procs is a set of atomic PSM processes;

�9 Chans is a set of channels.

3 .6 S e m a n t i c s o f R S M spec i f ica t ions

The semantics of RSM specifications can simply be given using the rules for
PSM specifications where the predicate In t (R) is defined on RSM process
R by In t (R) = stable(R).

4 Translat ing RSMs to PSMs

In the translation of an RSM specification to a PSM specification, each
RSM process is translated to a PSM process through a technique of au-
tomata combination. The next section shows how we use these techniques
to extend Promela with reactive processes (rproctypes), and R S P I N a tool
which performs the translation of reactive processes to Promela processes
(proctypes).

The algorithm for au tomata combination uses s tandard state space search
techniques to create the global s tate graph representing the combined au-
tomaton. The only main difference is that the combined au tomaton is
t r immed from all transitions start ing from transitory state vectors and
having external inputs.

Once the combined au tomaton have been obtained we use another algo-
r i thm to part ion it into disjoint atomic sections. The purpose is to make
each possible reaction of the combined automaton atomic. We should note
here that the intended behaviour of atomic reactions is only valid when
communication is by asynchronous FIFO channels 6.

We can now give the partioning algorithm, using the notation s - * ---* s ~
to denote the fact tha t there exists a pa th from state s to transitory state
s ~, traversing only transitory states. The algorithm is then:

For every stable state s, n(s) = 01 {s} u {s'Is - �9 s'}

We must show tha t II(s) does not create overlapping partitions. We claim
that:

8In t he ~ S P I N tool t he re is a n op t i on which p reven t s t he p a r t i o n i n g f rom t a k i n g
p lace (on a global or a pe r p rocess bas is) . T h i s gives t he u se r m o r e flexibility to decide
w h e t h e r to allow r e n d e z - v o u s c o m m u n i c a t i o n for reac t ive processes .

359

vsl,s2 : n(s l)n II(s2) = 0

The proof is obta ined by induct ion on the length of paths 8 1 - - �9 - ' ~

s and s2 - �9 ~ s and using the fact tha t t ransi t ions of RSM a u t o m a t a are
restr icted (syntact ical ly) so tha t this condit ion holds:

If ((Sl, /1, s), (s2,12, s)) E T x T, and if s is a t rans i tory state,
then (s l , 11) = (s2, 12).

5 R e a c t i v e P r o m e l a a n d R S P I N

We now present Reactive Promela , our proposed extension to Promela, and
the associated R S P I N tool.

5.1 Syntax of Reactive Promela

The syn tax of Reactive Promela strongly resembles tha t of Promela, since
the a im is to make it as easy as possible to use the extension. The only new
keywords added in Reactive Promela are the following:

automaton in inport link

outport rproctype external

Below we present the par ts of the Reactive Promela g r a m m a r where it
extends the Promela grammar . First, a few words on the nota t ion. The
new keywords are displayed in capitals (RPROCTYPE), tokens and Promela
keywords are enclosed within apostrophes (' : ' and ' g o t o ') , names (refer-
ences) are displayed in lowercase letters within < . . . > (<rproc_name>)
and non- terminals in lowercase letters (r p roc) . Also, { . . . }+ means one
or more of the enclosed unit and { . . . }* means zero or more units. Units
enclosed by [. . .] are optional.

In Reactive Promela, the old process definition: proc : : = PROCTYPE . . .
is replaced by: p r o c : : = p _ p r o c [r _ p r o c , where p _ p r o c is the usual
Promela process, and r _ p r o r is the Reactive Promela process defined by:

r_proc ::= RPROCTYPE <rproc_name>
(~ r_interface ~) ~ r_body

r_interface : := {r_port_decl}*

r_port_decl ::= INPORT <port_name> [OUTPORT <port_name>

360

r_body ::=
automaton ::=

a_interface ::=
a_port_decl ::=

I
]
]

port_init ::= -

a_body ::=

a_stmnt :'=

links ::=

link ::=
port ::=

{automaton}+ links
AUTOMATON <autom_name>
'(' a_interface ')' a_body

{a_port_der
EXTERNAL INPORT <port_name>
EXTERNAL OUTPORT <port_name>
INPORT <port_name> port_init
OUTPORT <port_name> port_init

'-' '{' type_list '}'

'{' {one_decl I a_stmnt}+ '}'

<port_name> '?' {<var_name>Iconst}+
<port_name> '!' {a_expr}+
<label_name> ':' a_stmnt
'goto' <label_name>
<var_name> '=' aexpr
'if' options 'fi'
'do' options 'od'

LINK '{' {link}+ '}'

port '=>' {port}+
<port_name> IN <autom_name>

The body of an automaton is defined as a_body, which is the same as
body in Promela except that a_body only allows (for the time being) a
subset of the rules of Promela (listed in the rule for a stmat) . We have
not shown the rule for a expr but it allows most of the usual Promela
expressions, at least for arithmetic and boolean operations.

To introduce the Reactive Promela language and the syntax shown above,
we give a simple example of a Reactive Promela specification. It consists of
a single rproctype which encapsulates two automata. Figure 2 below shows
the specification in a graphical notation for Reactive Promela.

The graphical syntax makes it very easy to visualize a Reactive Promela
specification, and it would certainly be interesting for the user to write or
view a specification using a graphical interface. The textual syntax repres-
nting the diagram of figure 2 is:

#define NO 0
#define YES I

chan il : [I0] of { int, int };
than oi = [10] of { bool }; chan 02 : [I0] of{ int,int };
chan ii = [I0] of { int }; chan 12 = [10] of { int };
chan 13 = [10] of { int }; chan 14 = [10] of { int };

rproctype A
/* external interface definition */
(inport ii, 13; outport oi, 11, 12)

{
automaton autl

361

rproctype AO 0 automaton aut20 laut~176 autl I I o 2 , c ~ ' ~ / ' ~ I
I~176 I ''~"'b I I (. i ~176 I
, . , . .~ , I I la+~'~ ,~

| "o'a'~ I I "~~ ~:~0 -I -
I ? ' ' ,o~,0 ~

r

ol o2
I ! fll ~

FIGURE 2. A simple rproctype decomposed into two automata.

{

/* interface definition */
(external inport il; external outport oi;
outport p = { int, int })

int a, b;

stableO:
il?a,b -> i~

:: [a > b] -> ol!NO; goto stableO
:: [a <= b] -> of!YES; p!a,b; goto stable1
fi;

stablel: skip
}

automaton aut2
/* interface definition */
(external inport 13, 14; external outport 02, 11, 12;
inport p = { int, int })

{
int a, b, c, d, MAX = I0;

stableO:
p?a,b -> if

:: [a+b > MAX] -> 11!a+b; goto stablel
:: [a+b <= MAX] -> 12!a+b; goto stablel
fi;

362

stablel:
if
:: 13?c -> o2!c; goto stableO
:: 14?d -> o2!d; goto stable2
fi

stable2: skip

link ~ p in autl => p in aut2

...other rproctypes() and other Promela proctypes()

5.2 Reactive S P I N

In order to realistically check the correctness of a specification, tool support
is essential. Instead of writing a simulator/verifier f rom scratch we propose
to perform a mapping of Reactive Promela constructs into corresponding
ones in Promela. For this purpose we present R S P I N , a preprocessor tool
that translates a Reactive Promela specification into an equivalent Promela
specification.

One of the most impor tant aims we hope to achieve through the Reactive
Promela extension is to provide a way to reduce the state-space explosion
problem. There are two ways in which this is done. We have already seen in
section 4 that the state space generated by combining RSM au toma ta is not
the full crossproduct of reachable states. The other means of reducing the
state space is the use of Promela's a t o m i c (. . . } construct to implement the
parti t ioning function H(s). The effect of this is that the proctypes generated
by R S P I N reacts to inputs in an atomic fashion. This means that during
simulation or verification, other proctypes are blocked until the reaction is
over.

However, it must be noted tha t the use of atomic reactions is valid only
if the channels used are of length greater than zero. In other words, rendez-
vous communicat ion is not possible during a reaction. To allow more flex-
ibility we make the encapsulation of reactions as atomic sequences to be
optional on a per rproctype basis.

To illustrate how au tomata are combined we present a par t of a Reactive
Promela specification for the HDLC protocol 7. To model the protocol in
Reactive Promela we decompose it into five au toma ta two of which are

7The example is taken from a course in protocol specification given by F, lie Najm
at ENST. Modelisation and validation of this example will be presented in more detail
elsewhere.

363

shown in figure 3 (the ~IYansmitter and the Window) s. This example shows
the benefit of decomposition: each au tomaton that make up the rproctype
(i.e. the protocol) have a simple and clearly defined role, but we can still
t reat and reason about it as a whole.

~ 1 I-~ CF!Xon ,~'~
/ VA=va , ~ ~ = V A] I

I

w,v, .,F.,,=vs
/ Iv,-v,+, w I I1_ " A~ v'-v'>''l

~.utomaton\ ; , -- c~" .(~CF'Xo")b automaton
rransmitter0~, ~F " " Window()

~ r automata rproctype H DLCO

FIGURE 3. The transmitter and the window automata of the HDLC rproctype.

The t ransmi t te r can receive a message from the upper protocol (on inport
UE). From this it creates a frame (the structure F) which it sends to the
window (on outport W) as well as to the retransmit ter and the acknowledger
(on outpor t RA). The window's responsibility is to manage the sequence
numbers. When the window is saturated, it notifies the t ransmit ter and
the upper protocol layer (on outport CF) that no more messages can be
sent, until one is acknowledged. From the receiver (not shown) it receives
a message (on inport C) that indicate that the last frame acknowledged.

After combining the two au tomata in the figure above we get the result
shown in figure 4. In the textual syntax the combined au tomaton would be
represented as a Promela proctype9:

proctype combined_Transmitter_Window()
(

Frame F; /* .ith fields: type, D, NS */
int Window_VS, Transmitter_VS, VA, va, f;

sO:

SThe t h r ee a u t o m a t a no t s h o w n are the Retransrnitter, t h e Receiver a n d t he
Ackno~ledger.

9We ignore t h e th ree o t he r a u t o m a t a r ep r e sen t i ng the HDLC protocol .

364

VAfva

[va>VA] [ONindow_VS.VA)< St l C?va , , - v v ~ , , ~) w-v. I

O F , f : ~ l i ''~
,~V,n,_v,.v.,--~ i 'N~"'n'~ w

. , , , ,,--m..v .v.+,
Window_V,S='rmnsmitter_V~ ~k RAIF

FIGURE 4. The resulting automaton ~fter combining the transmitter aad the
window.

if

:: atomic {

UE?M -> F.type=I; F.D=M; F.NS=Window_VS;

Transmitter_VS=Transmitter_VS+l;

RA!F; Window_VS=Transmitter_VS+l;

if

:: [(Window_VS-VA)==f] -> CF!Xoff; goto sl

:: [(Window_VS-VA)<f] -> goto sO

fi
}

:: atomic {

}

fi

sl:

C?va -> ...

. . ,

atomic {

C?va -> . . .
. . .

}

We can make a few observat ions abou t this combined au tom a ton . Fi rs t

365

we note that the number of states has not increased significantly. This is
because the combination process combines transitions and interleaves whole
reactions rather than interleaving all transitions.

The stable states of the combined automaton is a subset of the crossprod-
uct between the stable states of the individual automata. In figure 4 we
note that the combined automaton has got two stable states. Stable state
sO corresponds to the case where the window is not saturated and where
the transmitter is waiting for a new message from the upper protocol layer.
In this state the combined automaton is free to send more messages. The
other one, s l , is when the window is saturated and transmission blocked.

Communications between the transmitter and the window is reduced to
assignment to variables (e.g. the send statement W!VS in the transmitter
and the corresponding receive statement in the window T?VS is reduced to
the assignment Window_VS=Transmitter_VS). Since the variable VS exists
in both the transmitter and in the window it is prefixed with the automa-
ton name in the combined automaton. A more interesting case is where
the window notifies both the transmitter and the upper protocol layer that
it is saturated. This is an example of a communication with more than
one receiver. Between the transmitter and the window this is a pure syn-
chronization which takes the combined automaton to stable state s l (the
saturation state). But we still need to notify the upper layer: therefore the
combined automaton keeps the send action CF!Xoff. All other communi-
cation actions than those sent between the two automata in figure 4 are
kept as they were.

To demonstrate more clearly the benefit provided by Reactive Promela's
decomposition technique we would have had to show the combined au-
tomaton for all the five au tomata in the HDLC protocol model have been
(unfortunately too big to fit conveniently on one page).

6 Conclusion

In this paper we have presented a formalisation of a subset of Promela and
of a reactive extension. Then we introduced the Reactive Promela language
and its associated tool RSPIN. The language belongs to the family of
synchronous reactive formalisms and allows a system to be decomposed into
a reactive part containing configurations of synchronously communicating
automata and a pro-active part containing Promela proctypes.

In relation to the other languages in the synchronous reactive family,
Reactive Promela is an imperative language, similar to RC [Bou91], Esterel
[BG92], [JLI%M], and SL [BdS95]. These languages are distinguished by the
notions of stale and sequences of statements that lead from one state to

366

another. In contrast, in the data-flow languages like Lustre [CPHP85] and
Signal [Gue86], the reaction to input events is evaluated as the solution of
a set of equations. There are also some at tempts to combine the imperative
and data-flow approach, e.g. the language ArgoLus as described in [JLRM].

In Reactive Promela, like in the latest version of Esterel and in SL, we
disallow hypotheses to be made about the presence or absence of a signal
during the reaction. This means that a signal can only be taken into account
after it has appeared. In Reactive Promela dynamic behavior is represented
as extended finite automata, while Esterel and SL are special kinds of
process algebras. There are two other major differences between Esterel
and SL on one side and Reactive Promela on the other: The first is tha t
Esterel and SL use broadcast communication while in Reactive Prome/a
communication is via point-to-point channels. The second difference is tha t
in Reactive Promela, reactions are triggered by one input event, while in
Esterel and SL reactions are triggered by an arbitrary set of input events.

The R S P IN tool translates rproctypes into Promela proctypes, so that
a Reactive Promela specification can be simulated and verified with SPIN.
No modifications to the SPIN tool are needed to do this.

We also have some ideas for extensions to Reactive Promela/RSPIN.
The next probable extensions are handle Promela code in RS P IN and to
make a graphical interface for X-Windows which would allow the Reac-
tive Promela user to write and view automata. A very useful tool for the
user of R S P I N would be one which allows traces produced by SPIN to
be "mapped to" the initial Reactive Promela specification. Other exten-
sions might include an emacs mode for editing Reactive Promela speci-
fications. More theoretical issues include the possibility for an rproctype
to react to collections of inputs instead of to exactly one input. More
work is needed on how properties of Reactive Promela specifications can
be proven, although it seems that most of the S P IN techniques should
be applicable (i.e. special labels, assertions and LTL-formulae). We will
also look into how the partial-order reduction methods introduced in re-
cent versions of SP IN can be used with Reactive Promela specifications,
although we can conjecture that Reactive Promela provides this one kind
of such reductions "for free": as we have seen in previous sections, R S P I N
does not consider all the interleavings of transitions. Instead one interleav-
ing is chosen since the set of outputs generated by the reaction will be
the same. For more information on partial order reduction methods see
[dSdS95, Pe194, GKPP95, Val90, WG93, God94].

7 R E F E R E N C E S

[AFg0] C. Andr~ and L. Fancelli. A mixed (asynchronous / syn-
chronous) implementation of a real-time system. In Euromicro
90, Amsterdam, 1990.

367

[BB91]

[BCGH93]

[BdS95]

[Ber93a]

[Ber93b]

[BG91]

[BG92]

[BN83]

[Bou91]

[CPHP85]

[dSdS95]

G. Berry and A. Benveniste. The synchronous approach to
reactive and real-time systems. Another Look at Real Time
Programming, Proceedings of the IEEE, 79:1270-1282, 1991.

Albert Benveniste, Paul Caspi, Paul Le Guernic, and Nico-
las Halbwachs. Data-flow synchronous languages. Rapport
de recherche 2089, INRIA, Unit~ de recherche INRIA Sophia-
Antipolis, France., October 1993.

Frdd~ric Boussinot and Robert de Simone. The sl syn-
chronous language. Rapport de recherche 2510, INRIA, Unit~
de recherche INRIA Sophia-Antipolis, France., Mars 1995.

G. Berry. Communicating reactive processes. In Proc.
20th ACM Conf. on Principles of Programming Languages,
Charleston, Virginia, 1993.

G. Berry. The semantics of pure esterel. In Proc Marktober-
dorf Intl. Summer School on Program Design Calculi, LNCS,
to appear. Springer-Verlag, 1993.

G. Berry and G. Gonthier. Incremental development of an hdlc
entity in Esterel. Comp. Networks and ISDN Systems, 22:35
49, 1991.

G. Berry and G. Gonthier. The Esterel synchronous program-
ming language: Design, semantics, implementation. Science Of
Computer Programming, 19(2):87-152, 1992.

S. Budkowski and E. Najm. Structured finite state automata.
a new approach for modelling distributed communication sys-
tems. In H. Rudin and C. H. West, editors, Protocol Specifica-
tion, Testing and Verification, HI. Elsevier Science Publishers
B.V (North-Holland), 1983.

F. Boussinot. Reactive c: An extension of c to program reac-
tive systems. Software-Practice and Experience, 21(4):401-428,
1991.

P. Caspi, D. Pilaud, N. ttalbwachs, and J. Plaice. Lustre, a
declarative language for programming synchronous systems. In
Proceedings of ACM Conference on Principles of Programming
Languages, ACM, 1985.

Monica Lara de Souza and Robert de Simone. Using po meth-
ods for verifying behavioural equivalences. In Proceedings of
FORTE'95, pages 59-74, October 1995.

368

[Fer89]

[GKPP95]

[God94]

[Gue86]

[Hal93]

[Hol91]

[JLRM]

[Mad92]

[MV89]

[Pe194]

[Plo81]

[RdS90]

[val90]

[WG93]

Jean-Claude Fernandez. Aldebaran: A tool for verification
of communicating processes. Rapport SPECTRE C14, Lab-
oratoire de G~nie In fo rma t ique - Institut IMAG, Grenoble,
September 1989.

R. Gerth, R. Kuiper, R. Peled, and W. Penczek. A partial order
approach to branching time model checking. In Proceedings of
ISTCS, pages 330-339, 1995.

Patrice Godefroid. Partial-Order Methods for the Verification
of Concurrent Systems: An Approach to the State-Explosion
Problem. PhD thesis, UNIVERSITE DE LIEGE, Facult~ des
Sciences Appliqu~es, 1994.

P. Le Guernic. Signal, a data-flow oriented language for signal
processing. 1EEE Trans. ASSP, 34(2):362-374, 1986.

N. Halbswachs. Synchronous Programming of Reactive Sys-
tems. Kluwer Academic Press, Netherlands, 1993.

Gerhard Holzmann. Design and Validation of Computer Pro-
tocols. Prentice-Hall, Englewood Cliffs, N.J., first edition, 1991.

M. Jourdan, F. Lagnier, P. Raymond, and F. Maraninchi. A
multiparadigm language for reactive systems.

E. Madelaine. Verification tools from the Concur project.
EATCS Bulletin, 47, 1992.

E. Madelaine and D. Vergamini. Auto: A verification tool
for distributed systems using reduction of finite automata net-
works. In Proc. FORTE'89 Conference, Vancouver, 1989.

D. Peled. Combining partial order reductions with on-the-
fly model-checking. In Proceedings of CAV'94, LNCS 818.
Springer-Verlag, 1994.

G. Plotkin. A structural approach to operational semantics.
Technical report, Comput. Sci. Dept., Aarhus Univ., 1981.

V. Roy and R. de Simone. Auto and autograph. In R. Kur-
shan, editor, proceedings of Workshop on Computer Aided Ver-
ification, New-Brunswick, June 1990. AMS-DIMACS.

A. Valmari. A stubborn attack on state explosion. LNCS 531.
Springer-Verlag, 1990.

P. Wolper and P. Godefroid. Partial order methods for tem-
poral verification. In Proceedings of Concur'93, LNCS 715.
Springer-Verlag, 1993.

