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ABSTI~ACT We define Ehrenfeucht-Fra~ss~ games which exactly capture 
the expressive power of the extremal fixed point operators of modal mu- 
calculus. The resulting games have significance, we believe, within and out- 
side of concurrency theory. On the one hand they naturally extend the it- 
erative bisimulation games associated with Hennessy-Milner logic, and on 
the other hand they oiler deeper insight into the logical role of fixed points. 
For this purpose we also define second-order propositional modal logic to 
contrast fixed points and second-order quantifiers. 

1 Introduction 

This paper further explores the technical contribution that  games can make 
to understanding concurrency. We define Ehrenfeucht-Fra'iss6 games which 
exactly capture the expressive power of the extremal fixed point operators 
of modal mu-calculus. The resulting games have significance, we believe, 
within and outside of concurrency theory. On the one hand they naturally 
extend the iterative bisimulation games associated with Hennessy-Milner 
logic, and on the other hand they offer deeper insight into the logical role 
of fixed points. For this purpose we also define second-order propositional 
modal logic to contrast  fixed points and second-order quantifiers. 

There is something very appealing about trying to understand concur- 
rency and interaction in terms of games. They are a very striking metaphor 
for the dialogue that  a concurrent component can engage in with its envir- 
onment. One example is [14] where a denotational semantics for concurrent 
while programs is presented whose domains are built from strategies. An- 
other is the use of games for understanding linear logic [1]. Within process 
calculi, bisimulation equivalence has been pivotal. A number of authors has 
noted that  it is essentially game theoretic [3, 18, 16] (and [15] extends this 
description to bisimulations that  are sensitive to causality). In this paper 
we build on this game view of bisimulation. In previous work [17] we showed 
that  local model checking of finite or infinite state processes can be viewed 
as a game, without loss of structure. In the finite state case this provides an 
alternative perspective from the use of automata,  as it also yields fast model 
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checking algorithms: furthermore, these games are definable independently 
of model checking as graph games which can be reduced to other combin- 
atorial games (and in particular to the very important  simple stochastic 
games [6]). 

These concerns have practical repercussions. A guiding principle is to 
find clear theoretical foundations which can, at the same time, enhance 
tool development. Games can be naturally animated within a tool. They  
also offer the potential  for effective machine user interaction. For instance, 
in the model checking case not only do they allow a user to know that  a 
process has a property, but  also why it has it. Games also allow a user 
to know why a process fails to have a property. In both these cases the 
justification can be given as a winning strategy (which is polynomial in the 
size of the model checking problem). Therefore, if a user believes incorrectly 
tha t  a process has a property then she may become convinced otherwise 
by playing and losing the model checking game against the machine which 
holds a winning strategy. These techniques are currently being implemented 
in the Edinburgh Concurrency Workbench. Similar comments apply to the 
bisimulation game. 

Section 2 is a warm up, where we present some well known concepts in a 
game theoretic fashion. In section 3 we describe modal mu-calculus and the 
notion of fixed point depth. Section 4 contains the fixed point games and the 
main theorem whose proof is delayed until section 6. In section 5 we present 
second-order modal logic and its games, and discuss its relationship with 
modal mu-calculus. The work reported here for modal logic has benefited 
from the large literature on games and logic, and in particular from [9, 18] 
for Ehrenfeucht-FraYss6 games for first-order logic, [4] for their extension to 
first-order logic with fixed points, and [8] for their extension to (monadic) 
second-order logic. 

2 Bisimulation games 

Assume a process calculus such as CCS, with the proviso x that  all processes 
are built from a fixed finite set of actions .A. Let E0 and F0 be two such 
processes. We define the game G~ Fo) as played by two participants, 
players I and II. Player I wants to show that  Eo and F0 are distinguishable 
within n steps whereas player II wishes to demonstrate that  they cannot be 
differentiated. (The superscript 0 will be explained in section 4.) A play of 
the game ~~ (Eo, F0) is a finite sequence of pairs (E0, F o ) . . .  (Era, -tim) whose 
length m is at most n. If part  of a play is (E0, Fo) . .  �9 (Ei, Fi) with i < n then 
the next  move is initiated by player I from the two possibilities in figure 1. 
Player I always chooses first, and then player II, with full knowledge of 

1This proviso comes into play in Theorem 1 of section 4 (and also in section 5). 
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(a) : 

[4: 

Player I chooses a transition Ei --% Ei+l, and then 
player II chooses a transition with the same label Fi --~ Fi+I. 

Player I chooses a transition Fi a ~ Fi+l, and then 
player II chooses a transition with the same label Ei ~ ~ Ei+l. 

FIGUB.E 1. Game moves 

player r s  selection, must choose a corresponding transition from the other 
process. 

A player wins a play if her opponent becomes stuck: player I wins the 
play (Eo,Fo)...  (Ei, Fi), i < n, when she can choose a transition from 
Ei (or from Fi) and there is no corresponding transition from the other 
process Fi (or Ei), and player II wins if the processes Ei and Fi are both  
deadlocked. Player II also wins if the play reaches length n, for then player 
I has been unable to distinguish the initial processes within n steps. 

A strategy for a player is a set of rules which tells her how to move 
depending on what has happened previously in the play. A player uses the 
strategy lr in a play if all her moves in the play obey the rules in lr. The 
strategy lr is a winning strategy if the player wins every play in which she 
uses It. For each game G~ F0) one of the players has a winning strategy, 
and this strategy is history free in the sense that  the rules do not need to 
appeal to moves that  occurred before the current game configuration. If 
player II has a winning strategy for G~ F0) then we say that  E0 and 
F0 are (0, n)-game equivalent, which we abbreviate as E0 .~o F0. 

E x a m p l e  1 Consider the two similar vending machines 

U d el l p . ( lp . t ea .U  + l p . co f f ee .U )  

V d_ee l p . l p . t e a .V  + l p . l p . c o f f e e . V  

Although U ~0 V, player I has a winning strategy for the game G~ V) 
and so U ~0 V. [] 

E x a m p l e  2 Let Cli+l de=f t i ck .C / i ,  i > 0. Therefore Cli+l is a clock that  

ticks i + 1 times before terminating. Let  C/d_ef t i c k .  Cl be a clock that  ticks 
forever. Assume that  Clock is ~{Cl~ : i >_ 1} and Clock' is Clock + C1. 
Although Clock' can tick forever which Clock cannot do, for every n > 0, 
Clock' ..~o Clock. [] ?2 

Game equivalence and iterated bisimulation equivalence are intimately 
related. For each n > 0, let ~n be the following relation on processes [13]: 
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E "~o F for all E and F. 
E ~n+l  F iff for each action a E .4, 

if E --5+ E I then 3F ' .  F _2_, F '  and E '  ~n F ' ,  and 

i f F - ~ F  I t h e n 3 E ' . E  ~ E  I a n d E  I - ~ n F ' .  

F a c t  1 E ~ ~  F iff E . ~ F .  

Another way of understanding these equivalences uses Hennessy-Milner 
logic. Let M be the following family of modal formulas where a ranges over 
A: 

r ::= t t  I:e:  I ~1 A ~2 I v I[a]  I (a)r 

The inductive stipulation below states when a process E has a modal prop- 
erty d~, written E ~ ~. If E fails to satisfy ~ then this is written E ~ ~. 

E tt Eef  
E ~ A ~  if[ E ~ ~ and E ~ iI~ 
E ~ V ~  iff E ~ r  or E ~ I ,  
E ~ [a]/b iff VF. if E ~ F then F ~ r 
E ~ ( a } r  iff 3 F . E  ~ F a n d F ~  

The modal depth of a formula 4~, md(~) ,  is the maximum embedding of 
modal operators, and is defined as follows: 

m d ( t t )  = 0 = m d ( f f )  
md(di A q~) = max(md(O),md(gQ} = md(O V O) 
md([a]4~) = 1 + md(4~) = md((a}4~) 

Assume that  Mk is the sublogic (~  : r E M and md(r  < k}. 

F a c t 2  E ~ ~  F iff VC e Mn. E ~ ~ iff F ~ q~. 

An easy corollary is that  the relations .~~ n > 0, on processes constitute 
a genuine hierarchy. 

F a c t  3 I f  m < n then ~ ~  C N ~  

A binary relation 7~ between processes is a bisimulation relation provided 
that  whenever ETIF, for all a C Jr: 

if E ~ ) E I then 3 F  j. F - -~  F t and E~T~F ~, and 
if F ~ F I then 3E  I. E - ~  E I and E'TtFq 

Two processes E and F are bisimulation equivalent, written E .~ F ,  if there 
is a bisimulation 7~ relating them. To capture -~ (instead of the i terated 
bismulation relations ~n)  using games the notion of game is extended to 
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encompass plays that may continue forever. Let ~~ F0) be such a game. 
If part of a play is (E0, F0). . .  (Ei, Fi) then the next move is initiated by 
player I from the two moves in figure 1. Again a player wins if her opponent 
becomes stuck. Also player II wins if the play has infinite length. For each 
game G~ F) one of the players has a (history free) winning strategy, 
and if it is player II then we write E ~ o  F. 

Fact  4 E ,.~o F iff E ,,, F. o o  

Example  3 Player I has a winning strategy for G ~ (Clock', Clock). She first 

chooses the (t ick) move, Clock' tic~ Cl, and so player II has to respond 

with a transition Clock ~ Cli, for some i _> 0. So after i further moves the 
game configuration becomes (Cl, Clo), and so player I wins. This example 
also shows that ~ C ,~~ n for any n. [] 

3 M o d a l  m u - c a l c u l u s  

Modal mu-calculus, modal logic with extremal fixed points, introduced by 
Kozen [12], is a very expressive propositional temporal logic with the abil- 
ity to describe liveness, safety, fairness and cyclic properties of processes. 
Formulas of the logic,/~M, given in positive form are defined as follows 

: : =  t'c I f f  I Z I ~1Ar I I I (a>r I vz.  

where Z ranges over a family of propositional variables, and a over A. The 
binder vZ is the greatest whereas #Z is the least fixed point operator. 

When E is a process let P(E) be the smallest transition dosed set con- 
taining E: that is, if F E 79(E) and F .  a ~ F '  then F'  6 P(E). Let P range 
over (non-empty) transition dosed sets. We extend the semantics of modal 
logic of the previous section to encompass fixed points. Because of free 
variables we employ valuations Y which assign to each variable Z a subset 
Y(Z) of processes in P. Let ~)[~/Z] be the valuation Y' which agrees with 1; 
everywhere except possibly Z when 1;'(Z) = E. The inductive definition of 
satisfaction below stipulates when a process E has the property ~ relative 
to V, written E ~v  r 

E t t  E 
E ~ v Z  iff EE~)(Z)  
E ~ v  ~ A k~ iff E ~ v  ~ and E ~ v  ~2 
E ~ v c ~ V ~  iff E ~ v ~ o r E ~ v ~  
E ~ v [ a ] r  iff VF . i fE  % F t h e n F ~ v r  
E ~ v ( a ) ~  iff BF.E a > F a n d F ~ v r  
E ~ v v Z . @  iff B E C ' P ( E ) . E E E a n d V F E E .  F~v[e /z ]  
E ~v #Z. ~ iff VE C__ P(E).if (VF E P(E). F ~vIe/z] ~ implies F 6 E) 

then E E E 
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The stipulations for the fixed points follow directly from Tarski-Knaster, as 
a greatest fixed point is the union of all postfixed points and a least fixed 
point is the intersection of all prefixed points. The clause for the least fixed 
point can be slightly simplified as follows: E ~ v  #Z. �9 iff 

Vg c P ( E ) .  if E r 8 then 3F E "P(E). F r ,~ and F ~vIE/Z] 

A formula ~ is closed if it does not contain any free variables: in which 
case E ~ v  r iff E ~ v '  ~ for any valuations V and V I. Notice that  closed 
formulas are dosed under negation. 

There is a large li terature on the use of # M  for specifying and verifying 
temporal  properties of processes. Here our concern is with trying to under- 
stand the role of fixed points in #M.  Characterizing the expressive power 
of particular formulas of #M is no easy matter.  We shall show that  there 
is an algebraic characterization which generalizes the well known results of 
the previous section. 

We define the sublogics # M  k to be the set of dosed formulas whose modal 
depth is at most n and whose fixed point depth is at most k. In particular, 
# M  ~ = Mn. The modal depth of 6,  md(@), is the maximum embedding of 
modal operators, and extends the definition from the previous section: 

m d ( t t )  = 0 = m d ( f f )  -= 
rod(4 A ~)  = max{md(4 ) ,md(~ )}  = m d (4  V k~) 
md([a]4) = 1 + m d ( 4 )  = md((a)4)  
md(vZ.  6) = md(~)  = md(#Z.  6) 

md(Z)  

Similarly, the fixed point depth of 4,  written fd(4),  is the maximum em- 
bedding of fixed point operators: 

fd(t t )  = 0 : fd(f f )  = 
fd(4 ^ m) = max{fd(4) , fd(m)} = fd(4 V m) 
fd([a]4) = fd(4) = fd(<a)4) 
fd(vZ. 4)  -= 1 + f d ( 4 )  = fd(#Z. 4)  

fd(Z) 

Let #Mn k = {r : r E # M  is closed and fd(4)  < k and md(4)  < n}. 

4 F i x e d  p o i n t  g a m e s  

It  is our intention to characterize the families #M~ in terms of games which 
generalize those of section 2. We define the game Gnk(E0, F0) as played by 
the two participants, players I and II. For this game we assume k distinct 
colours C1 , . . . ,  Ck. A play of the game Gk (Eo, F0) is a finite sequence of pairs 
(Eo, Fo)... (Era, Fro) whose length m is at most k+n. More precisely, there 
are two kinds of moves the (a) and [a] moves as in figure 1, and the new 
/z and v moves: a play contains no more than k fixed point moves, and 
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(a) : If  l < n then player I chooses a transition E~ --% Ei+~, and then 
player II chooses a transition with the same label F~ --% Fi+l. 

[a] : If I < n then player I chooses a transition F~ a) F i + I  ' and then 
player II chooses a transition with the same label E~ a ) Ei+l.  

12: If j < k then player I obtains the next colour s and paints 
a subset of 7~(E~) which includes E~ the colour Cj+I, and then 
player II paints a subset of 7~(Fi) which includes Fi colour Cj+I, 
and then player I chooses F~+I E P(Fi) which is coloured Cj+a, 
and then player II chooses Ei+l e 7~(E~) which is coloured Cj+I. 

# :  If j < k then player I obtains the next colour C~+1 and paints 
a subset of 7~(Fi) which excludes El the colour Cj+I, and then 
player II paints a subset of P(Ei )  which excludes F i colour Cj+I, 
and then player I chooses Ei+l e P (E i )  not coloured Cj+I, 
and then player II chooses Fi+l E P(FI)  not coloured Cj+x. 

FIGURE 2. Fixed point game moves 

n modal moves. If part  of a play is (E0, F0 ) . . .  (E~, Fi) with i < k + n, 
and the number of modal moves so far is l and the number of fixed point 
moves is j ,  then the next move is initiated by player I from the applicable 
moves in figure 2. In the case of the fixed point moves, player I first colours 
a subset of the reachable processes from one of the pair of processes in 
the current game configuration with the next available colour, and with 
full knowledge of what player I has done, player II colours a subset of the 
reachable processes with the same colour from the other process. There is 
an asymmetry in the colouring between v and #, as to whether the current 
processes are coloured. Next player I, also with full knowledge of what has 
been coloured so far, picks a reachable process from the set that  player II 
was responsible for colouring: again there is an asymmetry, in the v case she 
chooses a coloured process and in the Iz case an uncoloured one. Finally 
player II, with knowledge of all the choices so far, chooses a reachable 
process tha t  player I was responsible for (in the • case a coloured process, 
and in the ~ case an uncoloured one). Notice that  a process may end up 
with multiple colours. 

A play of Gn k (E, F )  involves at most k fixed point moves and n modal 
moves. A game is played until one of the players wins, or until there are 
no more available moves. The conditions for winning are given in figure 3 
where we assume that  (E0, F0) . . .  (El, Fi) is (part of) a play with I modal 
moves and j fixed point moves. The important  new condition is preservation 
of colours, as given by clause 3 for a win for player I. This means that  for 
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Player I wins  
1. I f l < n a n d E i  a ) E ,  b u t _ ~ 3 F , . F i ~ F , .  
2. I f l < n a n d F i  a F ' b u t ~ 3 E ' . E i - ~ E ' .  
3. If E~ is coloured Ch,h < j, and F~ is not coloured Ch. 

Player II wins  
1. If Ei and Fi are both  deadlocked and condition 3 above does not hold. 
2. If the play has ended, 1 = n and j = k, and 3 above does not hold. 

FIGURE 3. Winning conditions 

player II to win, she has to make sure that  whenever the game configuration 
reaches (E, F)  then the colours of E are included in the colours of F 2. 

For each game Gk (E, F )  one of the players has a winning strategy (which 
is no longer history free, as it depends on previous colouring moves). If 
player II has a winning strategy for ~ ( E ,  F)  then we say that  E and F 
are (k, n)-game equivalent, which we write as E - ~  F.  

E x a m p l e  1 Player I has a winning strategy for ~(Clock',  Clock). Recall 

the behaviour of these processes. Clock ~ Cli and Clock' tir Cl~, for 

any i. However it is also the case that  Clock' ~ Cl and Cl t i~  Cl. Player 
I's winning strategy consists of making an initial u move. She paints Clock' 
and Cl with the colour C1. Player II must respond by painting Clock and 
a subset E C { Cli : i > 0} the colour C1. If ~: is nonempty then player 
I chooses the least member of it (with respect to i), and otherwise she 
chooses Clock. Player II must now choose either Clock' or Cl, and either 
way she will lose at the next step because player I will play a [ t ick] move, 

either Clock' tic~ Cl or C1 tic~ Cl, and player II is either stuck or unable 
to avoid condition 3 for a player I win. [] 

The main theorem is the following which generalizes Fact 2 of section 2. 

T h e o r e m 1  E,,,~ F iff V~ �9 #M~.E ~ v  ~ if~ F ~ v  4. 

The proof of this result is presented in section 6, where game playing has to 
be extended to cope with open formulas to provide an inductive mechanism. 
It shows tha t  there is an exact correspondence between game playing of 
length (k, n) and having the same properties in #M~. A corollary (using 
known results [16]) is: 

F a c t  1 For each k and n, ,,~ C ,,~k $2" 

~The asymmetry here between E's and F's colours is because negated variables are 
not allowed in the logic 
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We hope that  Theorem I can be used it to provide a bet ter  understanding 
of how ~uM formulas express properties. It  is possible to define for each 
formula @ a signature which represents the sequences of possible moves 
in a game play. To understand the expressive power of �9 we need only 
examine those game plays that  belong to its signature. This may offer a 
means for defining filtrations for modal mu-calulus. We hope that  these 
games can be articulated on a machine on small processes and we look 
forward to examining the feasibility of implementing them. We also hope 
that  Theorem 1 may offer deeper insight into the logical role of fixed points, 
and the contrast between them and second-order quantifiers. In the next  
section we define second-order propositional modal logic for this purpose. 

An original motivation for this work on games is the issue of fixed point 
hierarchies. For each k we can define the set ~ M k = U{#Mn k : n > 0}. Is 
there a hierarchy of definability? For each k > 1 is there a formula @ E # M  & 
such that  for all @ E ~ M  k- l ,  @ is not  equivalent to ~?3 Using Theorem 1 
this reduces to questions about game equivalences (which appear to offer a 
finer analysis than automata,  see [2, 11]). The hierarchy question is more 
interesting when k in # M  k is alternation depth, instead of fixed point 
depth 4. Very recently Bra~lfield has shown that  there is a full alternation 
depth hierarchy using methods from descriptive set theory [5]. 

5 Second-order propositional modal logic 

We define second-order propositional modal logic, 2M, as an extension of 
modal mu-calculus, as follows: 

::----  t t  I Z A I[ ]V I 0 r  I VZ . r  

The modality [] is the reflexive and transitive closure of the family of 
modalities [a], a E .4, and is included so that  fixed points are definable 
within 2M: this proposal for 2M is due to Howard Barringer. Negation is 

def  included explicitly, and we assume the expected derived operators: f f  -- 
~tt, @i V ~2 de__f .~(.7~ 1 A "~r @1 --~ @2 de__f "~@1 V ~2, (a) r  de_._f -~[a]-~, 

O@ d=of -~O~@, and 3Z.@ d_ef -~VZ.-~@. 

As with modal mu-calculus we define when a process E has a property 
relative to r ,  writ ten E ~ r  @, where 12 is a valuation. The semantic 

clauses for t t ,  Z, A and [a] are as in section 3. The new clauses are: 

SFor instance, example 1 above shows that /~M 1 is more expressive than ~M ~ 
4Preliminary work suggests it is possible to characterize ~M~ in terms of games when 

k is alternation depth, but so far these games are very inelegant. 
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(a) : If  1 < n then player I chooses a transition Ei -2-4 Ei+l ,  and then 

player I I  chooses a transit ion with the same label Fi -24 Fi+l.  

[a] : If  l < n then player I chooses a transition Fi a > Fi+l,  and then 
player I I  chooses a transit ion with the same label Ei a > E~+I. 

O : I f  q < p then player I chooses Ei+l E 7)(El), 
and then player I I  chooses Fi+a E P(F/) .  

[] : I f  q < p then player I chooses Fi+l E ~(Fi ) ,  
and then player I I  chooses Ei+l E P(Ei ) .  

3 : I f  j < k then player I paints a subset of 79(Ei) the colour Cj+I, 
and then player I I  paints a subset of 5O(Fi) the colour Cj+l. 

V : If  j < k then player I paints a subset of P(Fi )  the colour Cj+l, 
and then player I I  paints a subset of 7~(Ei) the colour Cj+I. 

FIGURE 4. Second-order game moves 

E ~ v - - , ~  iff E~=v  
E ~ v  D~ iff V F e T ~ ( E ) . F ~ v r  
E ~ v  VZ.~ iff VE C_ "P(E). E ~Vle/Z] 

Notice tha t  [] is definable in #M:  assuming Z is not free in ~, the formula 
rn~ is uZ. �9 h Aae.4[a]Z. The operator  VZ is a set quantifier, ranging over 
subsets of P (E) .  

There is a game theoretic characterization of 2M, which we briefly de- 
scribe. Let 2Mnk,v be the set of closed formulas whose modal  depth with 
respect to [a] modalities is n, and whose modal depth with respect to [] 
is p, and whose quantifier depth is k. A play of the game Gk,v(Eo, Fo) is 
a finite sequence of pairs (E0, F 0 ) . . .  (Era, Fro) whose length m is at most  
k + n -F p. Again we assume k distinct colours C1 , . . . ,  Ck. There are three 
kinds of moves, the (a) and [a] moves as in figure 2, the <> and [] moves, and 
the 3 and V moves. If  par t  of a play is (Eo, Fo). �9 �9 (E/, F/) with i < k+n+p, 
and the number  of (a), [a] moves so far is l, and the number  of quantifier 
moves is j ,  and the number  of O, [] moves is q, then player I initiates the 
next  move from those in figure 4. These moves are somewhat  simpler than  
for the fixed point games 5. A play of Gk,v(E, F )  involves at most  k quanti- 

~Notice that the fixed point moves can almost be built from 2M moves: for example, 
the u move is almost a 3 move followed by a [] move. 
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Player I wins 
1. I f l < n a n d E i  " ) E  ~but~3F~.Fi a~F ~. 
2. I f l < n a n d F ~  a ~ F  ~but~3E~.Ei a~E ~. 
3. If Ei is coloured Ch, h < j, and Fi is not coloured Ch. 
4. If Fi is coloured Oh, h _< j, and El is not coloured Ch. 

Player II wins 
1. If Ei and F~ are both deadlocked and the conditions 3 and 4 

above both fail to hold. 
2. If the play has ended, l = n, j = k, q -- p, and conditions 3 and 4 

above both fail to hold. 

FIGURE 5. Winning conditions 

tier moves, and n and p of the respective modal moves. The conditions for 
winning are given in figure 5 where we assume that (E0, F0) . . .  (Ei, Fi) is 
(part of) a play with l (a), [a] moves, q O, [] moves, and j quantifier moves. 
Notice the extra condition for a player I win, because in 2M quantification 
is permitted over negated variables. 

E and F are (k,n,p)-game equivalent, written as E ~ , p  F if player 
II has a winning strategy for G~,v(E,F). The following result, as with 
Theorem 1 of section 4, generalizes Fact 2 of section 2. 

Theorem 1 E "~,v f iff Vr e 2M~, v. E ~ v  r iff F ~ v  r 

The proof of this result follows closely that of the proof of Theorem 1 of 
section 4, presented in the next section. 

An important question is what the relationship is between closed formu- 
las of #M and 2M, with respect to particular families of models. Within 
2M we can define 3-colourability on finite connected undirected graphs. 
Consider such a graph. If there is an edge between two vertices E and F 
let E a ~ F and F a ) E. So in this case ,4 -- {a}, and 3-colourability is 
given by: 

3X. BY. 3Z. (~ A []((X --~ [a]-,X) A (Y -~ [a]-~Y) A (Z -~ [a]~Z))) 

where @, which says that every vertex has a unique colour, is 

r-I((X A -~Y A -~Z) V (Y A -~Z A -~X) V (Z A -~X A mY)) 

In contrast, modal mu-calculus can only express P graph properties (this 
follows from [10]). 

First we have 

Proposition 1 #M is a sublogic of 2M, 
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Proof :  There is a straightforward translation of # M  into 2M. Let Tr be 
this translation. The important  cases are the fixed points: Tr(uZ. 4) = 
3Z.(Z A D(Z -+ Tr(4)) )  and Tr(pZ. 4) = VZ.([:](Tr(4) --+ Z) -+ Z). [] 

When models are restricted to binary (or n-ary, n _> 1) trees, the closed 
formulas of 2M are translatable into #M.  This follows because /~M is 
then equi-expressive to tree automata  [7], and 2M is easily codable into 
$2S. However this is not the case for processes, as pointed out by Perdi ta  
Stevens. 2M formulas can distinguish between bisimilar processes which 
p M  formulas are unable to do. 

6 Proof of the main theorem 

In this section we prove Theorem 1 of section 4, that  E and F are (k, n)- 
game equivalent iff they have the same #M~ properties. (The proof of The- 
orem 1 of the previous section has a similar structure.) To prove this result 
inductively we need to understand open formulas of modal mu-calculus. 
Therefore we let pM~(X1,.. . ,  Xm) be the set of modal mu-calculus for- 
mulas with fixed point depth k and modal depth n which also may contain 
occurrences of any free variable X~, for 1 < i < m. Because .4 is finite each 
#Mk(X1,. . . ,  Xm) is finite up to logical equivalence. 

P r o p o s i t i o n  1 For each k, n and m the set #Mkn(x1,..., Xm) is finite 
up to logical equivalence. 

Proof :  A straightforward induction on k + n. [] 

k E - -  We generalize the game Gk(E0,F0) to Gn(0 ,U~,F0 ,V~)  where Ui is 
a sequence of sets of processes U1,... Urn and Vi is a similar sequence 
V1,. . .  Vm. The colours for the generalized game are C1, . . - ,  g in , . . - ,  Cm+~. 
The colours C1, . . . ,  Cm are in use at the start  of the game, and vertices U~ 
and V/ are coloured Ci- The game is played as before (with k fixed point 
moves and n modal moves) but with Cm+l as the initial available colour. 
The winning conditions are as before: note however that  condition 3 for 
player I's win extends to the colours in use at the start of play. 

T h e o r e m  1 Player II has a winning strategy for ~k (E, "U~, F, V~) iffV4 C 
ItMkn(Xi,... Xra). if E ~V[U,/~,] 4 then F ~v[v,/x,] 4. 

Proof :  Suppose player II has a winning strategy for Gk(E0,~i ,  F0,Vi).  
By induction on k + n we show \/4 E PMkn(X1,... Xm). if E ~V[U,/'~] 4 
then F ~v[V~/'~] 4. The base ease is when k + n = 0. So 4 is a boolean 
combination o f t t ,  f f ,  and the variables Xj,  1 <_ j _< m. As player II has a 
winning strategy, we know that  for each such variable Xj, if E ~v[U~/-~] Xj 
then F ~v[V~/-~] Xj (for otherwise player I would win by the winning 

condition 3). So the result follows. For the general case, assume it holds for 
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k + n _< I. Assume that  k + n = l + 1. We proceed by subinduction on r 
If r is t t  or f f  then it is clear. If it is Xj then the proof is as in the base 
case. The cases r A r and r V r are routine. Suppose r is [a]~, and 
E ~v[U~/~,] r If E is unable to perform a then, as player II has a winning 
strategy, F is also unable to do an a and so F ~ v ~ , / ~ ]  r Assume that  

E has an a transition. Consider any transition F _2__} F t (and there is 
at least one otherwise player I would win the game). Let player I choose 
this transition as her move which is a [a] move. Player II must respond 
with E - ~  E ~ for some E ~ in such a way that  player II has a winning 
strategy for ~k fE' Ui, F~,V~). By the induction hypothesis, as k + (n ~ n - - 1  k , 

1) = l, Vr E pMkn_l(X1,.. .Xm), if E ~vIU,/~,] r then F ~v[Y,l's 
r The formula k~ is in #Mkn_l(X1,. . .Xm), and E ~ ~v[U~/'~,] ~ and so 

F~ ~v[V~/~,] ~" Hence for each F ~ such that  F --~ F ~, F ~ ~v[Y~/~,] 
�9 , and therefore F ~v[V~/~] [a]qL The case r is (a)~ is similar. Next 

suppose r is vZ. k~. As E ~ v [ ~ / ~ ]  vZ. k~, therefore 3E C_ P(E) .  E E E 
and VE ~ E E. E ~ ~'~[U~/'~,][z/z] ~" Consider the game play where player I 
makes a v move and colours E (containing E) with the next available colour 
Cm+l. As player II has a winning strategy she can respond by colouring a 
set ~" (containing F)  with C,~+~ in such a way that  for any choice F ~ ~ Y 
there is an E ~ ~ E such that  player II has a winning strategy for the 
game G~-I (E', Uis F ' , ~ i Y ) .  Via the induction hypothesis, it follows that  
VF ~ ~ .T. F ~ ~v[~d~d[.r/z] k~, and as F ~ .T, it follows by the semantic 
clause tha t  F ~ v [ ~ / ~ ]  ~Z. @ as required. The final case r is #Z. �9 is 
similar. 

For the other half of the theorem, suppose that  Vr ~ #M~n(X~,... Xm). 
if E ~v[U~/~] r then F ~ v [ - ~ / ~ ]  4}. We show that  player II has a win- 

ning strategy for G~n(E,'Ui,F,~i). It is in this half of the proof that  we 
appeal to the restriction that  ,4 is a finite set. Again the proof is by induc- 
tion on k + n. The base case is k + n = 0. Player I can only win if E is 
coloured ~ and F is not. But this contradicts that  if E ~[-ff~/~,] Xj then 
F ~ [ ~ / ~ ]  Xj.  Suppose it holds for k + n < I. Consider the game where 
k + n = 1 + 1 and assume that  player I has a winning strategy. There are 
four cases according to the initial move that  player I makes under her win- 
ning strategy. First, is a (a) move, and so n :> 1. Suppose player I chooses 
E - ~  E ~. If there are no available transitions from F then there is a contra- 
diction, as E ~v[U~/~] ( a ) t t  and F ~=~[V~/~,] ( a ) t t  (and as n > 1, ( a ) t t  

#M~(X1, . . .  X,~)). Otherwise assume that  { F ' :  F - ~  F '}  = {F~,. . .}.  
We know that  player I can win each game ~n~_~(E',Ui, F / ,~ i ) .  By the in- 
duction hypothesis there are formulas r  ~ #M~n_~(X~,...Xm) such 
that  E ~ ~v['~,/~d r and F~ ~ [ ~ / ~ ]  r However there are only finitely 

many different #Mn~_~ (X~, . . .  Xm) formulas (up to logical equivalence). So 
E '  ~v[U~/'~',] A r and F~ [;/=v[V,/~,] A qh and A r ~ I.tM~n-~(X~, . . .  Xrn). 
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But then E ~v['ff~/~,] (a) A Ct and F ~s (a) A ~t where (a)A (~t 
E #Mkn(X1,...Xm) which is a contradiction. So player I cannot have a 
winning strategy with initial (a) move. The second case, an initial [a] 
move, is similar. The third case is that player I chooses a u move, so 
k >_ 1, and she colours s C_ P(E) (containing E) with Cm+l For every 
colouring choice for player II ~'1,... with F E ~:l player I can choose 
Ft E ~t such that for every choice by player II of Etj E E, player I has 
a winning strategy for ~k-l(Elj,UiE, Ft,ViJ:l). Hence by the induction 
hypothesis there are formulas (~tl,(~t2,... for the choice by player I of 
Ft �9 ~t such that Etj ~v['ff, l~,][E/z] ~t3 and Ft ~=v[V,l~,][y,/z] Ct~. Each 
Ctj �9 #Mnk-l(X1,... Xm, Z). There are only finitely many such formulas 
up to equivalence. Hence, for all E �9 E, E ~v[-ff,/-~,][e/z] At(Vj (btj), 
and so, as E �9 E, E ~v[U~/~,] vZ. At(Vj (~tj), and by definition we 
know that F ~=v[V,/-~,] uZ. At(Vj ~ti) even though uZ. At(Vj (~tj) �9 
I~Mkn(X1,... Xm). This contradicts that player I has a winning strategy 
with an initial v move. The final case is when player I makes a # move, 
and the argument is similar. [] 

Theorem 1 of section 4 is a corollary of this result, in the case when m -- 0, 
and using the observation that closed formulas of #M are closed under 
negation. 

Acknowledgement :  Thanks to Faron Moller and Perdita Stevens for com- 
ments on an earlier draft. 
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