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ABSTRACT This paper illustrates the use of priorities in process algebras 
by a real-world example dealing with the design of a safety-critical network 
which is part of a railway signaling system. Priorities in process algebras 
support an intuitive modeling of distributed systems since undesired inter- 
leavings can be suppressed. This fact also leads to a substantial reduction 
of the sizes of models. We have implemented a CCS-based process algebra 
with priorities as a new front-end for the NCSU Concurrency Workbench, 
and we use model checking for verifying properties of the signaling system. 

1 Introduction 

Process algebras, e.g. CCS [13], provide a formal  framework for model- 
ing and verifying distributed systems. In the past decade, a number  of 
automat ic  verification tools for finite state systems expressed in process 
algebras have been developed [10], and their utility has been demonstrated 
by several case studies [1, 7]. Most of these case studies are based on pro- 
cess algebras tha t  provide simple mechanisms for modeling nondeterminism 
and concurrency. Many extensions to these plain languages have been pro- 
posed, including priorities [2, 6, 8, 14]. Priorities in particular are needed 
to model the often used concept of interrupts, especially in hardware and 
communicat ion protocols. 

This paper  presents a case s tudy of a real-world system which shows 
the benefits of priorities for modeling and verifying distributed systems. 
Our example is based on a case study by Glenn Bruns [5] dealing with 
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the design of a safety-critical part  of a network used in British Rail's Solid 
State Interlocking (SSI) [11], a system which controls railway signals and 
points. Bruns modeled and verified a high-level design of the system that 
abstracted from low-level implementation details. He used plain CCS for 
modeling the system, a temporal  logic for specifying properties of the sys- 
tem, and the Edinburgh Concurrency Workbench [10] for verifying that  
these properties hold for the model. 

We investigate an elaboration of Bruns' case study using a process al- 
gebra with priorities [8]. We augment his model in two ways based on key 
concepts of the SSI system described in the original design document [11]. 
First we add an error-recovery scheme that  is invoked when a communi- 
cation link fails, and second we add a backup line in order to make the 
system fault-tolerant. In both cases the use of priorities enables the devel- 
opment of elegant and intuitive models. We also show that,  by eliminating 
invalid interleavings, priorities can dramatically cut the number of states 
and transitions in our systems. This is particularly significant since the 
large complexity of practical problems often prevents their automatic ver- 
ification. We verify our models by showing that  several safety properties 
hold using the NCSU Concurrency Workbench. This verification tool is a 
re-implementation of the Edinburgh Concurrency Workbench that  offers 
similar functionality, but is faster, able to handle larger systems, and gives 
diagnostic information when a verification routine returns false. 

The remainder of the paper is structured as follows. In Section 2 we 
present the process algebra with priorities that  we use in this paper. Sec- 
tion 3 gives an introduction to the railway signaling system and presents 
our models. Section 4 discusses our verification results. Finally, we give our 
conclusions and directions for future work in Section 5. 

2 A Process Algebra with Priorities 

The process algebra with priorities we consider in this paper is based on 
the language proposed in [8]. We extend this language with a multilevel pri- 
ority scheme but disallow the prioritization and deprioritization operator. 
Therefore, our process algebra is basically CCS [13] where priorities, mod- 
eled by natural  numbers, are assigned to actions. We use the convention 
that  smaller numbers mean higher priorities; so 0 is the highest priority. In- 
tuitively, visible actions represent potential synchronizations that  a process 
may  be willing to engage in with its environment. Given a choice between 
a synchronization on a high priority and one on a low priority, a process 
should choose the former. 

Formally, let { Ak ] k E iN } denote a family of pairwise-disjoint, count- 
ably infinite sets of labels. Intuitively, Ak contains the "ports" with priority 
k that  processes may synchronize over. Then the set of actions .Ak with pri- 
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ority k may be defined by Ak =dr AkUAkU{rk}, where Ak =df { ] I A E hk } 
and rk ~ Ak. The set of all ports A and the set of all actions ,4 are defined 
by U{ A~ I k E 1~ } and U{ Ak [ k E I~ }, respectively. For better readabil- 
ity we write a:k if a E At and r:k for rk. An action A:k E At may be thought 
of as representing the receipt of an input on port A which has priority k, 
while ~:k E At constitutes the deposit of an output on A. The invisible 
actions r:k represent internal computation steps with priority k. In what 
follows, we use c~:k, fl:k,.., to range over .4 and a:k, b:k,.., to range over 
A. We also use A:k to represent elements in .4t \ {r:k} and extend - to all 

visible actions A:k by ~:k =dr A:k. Finally, if L C_ ,4 \ { T:k [ k E N } then 
Z = { ~:k [ A:k E L }. For the sake of simplicity, we also write r E M where 
M C_ A if r:k E M for some k E 1~. 

The syntax of our language is defined by the following BNF. 

P ::= nil I a:k.P I P + P I Pi P 

Pil l  [ P \ L  I C ~f  P [ P ~P 

Here f is a relabeling, a mapping on `4 which satisfies f(r :k)  = r:k for all k E 
N and f(~:k) = f(a:k) for all a:k E `4\{ r:k [ k E N }. Moreover, a relabeling 
preserves priority values, i.e. for all a:k E A \  { r:k [ k E N} we have f(a:k) = 
b:k for some b:k E At. Further, L C `4 \ { r:k [ k E N }, and C is a constant 
whose meaning is given by a defining equation. Additionally, we include the 
disabling operator ~ which is closely related to the corresponding operator 
in LOTOS [4]. 

We adopt the usual definitions for closed terms and guarded recursion. 
We call the closed guarded terms processes. 7 9 represents the set of all 
processes and is ranged over by P, Q . . . . .  Note that  our framework allows 
an infinite number of priority levels although there is a maximum priority. 

The semantics of our language is given by a labeled transition system 
(79,`4, .... ,) where 79 is the set of processes, and ~ _C 79 x `4 x 79 defined 

in Table 1 is the transition relation. We will write P a:t  p~ instead of 
(P, a:k, P~} E ,, and we say that  P may engage in action a with priority 
k and thereafter behaves like process Pq 

The presentation of the operational rules requires initial action sets 
which are inductively defined on the syntax of processes, as usual. Intu- 
itively, I t (P )  denotes the set of all initial actions of P with priority k, 
I<k(P) the set of all initial actions of P with a higher priority than k, and 
I(P) the set of all initial actions of P.  Moreover, we define I<0(P) =df S- 
Note that  the initial action sets are independently defined from the transi- 
tion relation ----* ; so the transition relation is well-defined. 

Intuitively, a:k.P may engage in action c~ with priority k. The summation 
operator + denotes nondeterministic choice. The process P +Q may behave 
like process P (Q) if Q (P) does not preempt it by performing a higher 
prioriti~,ed v-action. The restriction operator \L prohibits the execution of 
actions in L U L and may be seen as permitting the scoping of actions. P[f] 
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TABLE 1. Operational semantics 

a:k.P _T~ p 

P - ~  P', $ it I<l,(Q) implies P + Q 22~ p, 
~:k s Q 22~ Q,, r it I<k(P) implies P + Q ----* Q 

p a~ p,, ~" it I<k(PlQ ) i m p l i e s  P~Q a_~ P'IQ 
Q --~ Q', r it I<k(P]Q) implies PIQ ~-~ PIQ' 

"~:k I P - ~  P~, Q --~ Q , r it I<k(P]Q) implies PIQ ~ P'IQ' 
P ~ P', f(a:k) =/3:/~ implies P[J] fl-~ P~[]] 
P ~ P', a:k it (L U -L) implies P\L ~ P'\L 
p 2L~ p' ,  r it I<k(Q } implies P ~Q - ~  P'  ~Q 

Q a_~ QS, ~- it I<k(P) implies P ~Q a:k Q, 
P - ~  P', C de--I P implies C ~ 1  )' 

behaves exactly as process P where the actions are renamed according 
to f .  The process P[Q stands for the parallel composition of P and Q 
according to an interleaving semantics with synchronized communication 
on complementary actions on some priority level k resulting in the internal 
action r:k. However, if Q (P) is capable of engaging in a higher prioritized 
internal action or in a synchronization, then lower prioritized actions of P 
(Q) are preempted. The process P ~Q behaves like P and, additionally, it is 
capable of disabling P by engaging in Q. The side conditions ensure that its 
semantics is consistent with that of the summation operator. In practice, Q 

de f  
is often an interrupt handler. Finally, C = P denotes a constant definition, 
i.e. C is a recursively defined process that  is a distinguished solution to the 
equation C = P.  The side conditions of the operationM semantic rules 
guarantee that high-priority v-actions have preemptive power over low- 
priority actions. The reason that high-priority visible actions do not have 
priority over low-priority actions is that  visible actions only indicate the 
potential of a synchronization, i.e. the potential of progress, whereas v- 
actions describe complete synchronizations, i.e. real progress, in our model. 

The usuM definition of strong bisimulation - as introduced in [13] - is a 
congruence relation over P [8]. In the context of our process algebra with 
priorities we will refer to it as prioritized strong bisimulation. 

In the following case study, it is sometimes useful to have visible actions 
that  have preemptive power over lower prioritized actions. More precisely, 
such an action, e.g. a:k, is signaling that certain events have occurred, i.e. 
it plays the role of an atomic proposition. We give a:k preemptive power 
by inserting a r:k-loop at the origin states of transitions which are labeled 

de f  
by a:k. For example the process a:O.P is rewritten to C = a:O.P + r:O.C. 
For the sake of simplicity, we write ~r as a shorthand for C. 
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3 Modeling a Railway System 

In this section we model a network used in a safety-critical railway signaling 
system. The basic design is adapted from [5]. However, instead of CCS we 
use the process algebra of Section 2 as it allows a more intuitive modeling 
of the system. Further, we extend the model by an error-recovery scheme 
and a fault-tolerant network link in order to reflect the underlying design 
document [11] more precisely. Since in both cases interrupt mechanisms 
come into play, the use of a process algebra with priorities is needed for 
reflecting the design correctly. 

3.1 Solid State Interlocking 

Our example is embedded in British Rail's Solid State Interlocking (SSI) 
system [5, 11], which adjusts and controls signals and points along rail 
routes. Its aim is to prevent situations which may lead to a collision or 
derailment of trains. Therefore, a formal verification of the design of the 
SSI and its environment is of particular importance. 

I ~ga-spe~a l~t 

I ] 
IN) I 
@ @ 
FIGURE 1. The SSI environment - overview 

Figure 1 shows the basic design of the interlocking system, It consists of 
three different components: the SSI, several trackside functional modules 
(TFM),  and a high-speed link which connects the TFMs with the SSI. The 
SSI is the main logical unit of the system. It is connected to a control panel 
to which a signal operator can input her/his commands. The SSI checks 
the validity of those commands and sends them to the TFMs along the 
track via the high-speed link. A TFM connects a signal or a point to the 
network. Its task is to listen to the network in order to receive messages 
for adjusting its signal or point and to send status information about the 
signal or point to the SSI. 

The pat tern  of communication between the SSI and the TFMs is as 
follows. The SSI sends cyclically a message to each TFM. The message 
includes the TFM's  address and the status for the corresponding signal or 
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point (e.g. signal on/off).  After sending a message the SSI waits a short 
t ime for the addressed TFM to respond with the current state of its signal 
or point. This polling scheme reflects the safety-criticM design of the system 
since it leads to a quick detection of failures. For example, if the addressed 
TF M does not respond then either the TFM or the connection between the 
SSI and the TFM is broken. Moreover, if the corresponding signal or point 
has autonomously changed its state, it is forced to return to its proper 
state. The disadvantage of the polling scheme is its communication over- 
head, which necessitates an expensive high-speed network. This expense is 
even worse if the distance between some TFMs and the SSI is very large. 
Therefore, the question arises as to whether distant high-speed links can be 
connected via a low-grade link without violating safety requirements. Our 
case study will concentrate on this aspect of the SSI system since the use 
of a high-speed link is known to satisfy the requirements on the error-free 
delivery of commands and timely detection of failures [5]. 

.~-~p~ .i~-,p~l~ ~ " ~  

FIGURE 2. The slow-scan system - overview 

The integration of a low-grade link (LGL) is illustrated in Figure 2. It is 
connected to the SSI-side high-speed link via a SSI-side protocol converter 
(SPC) and to the TFM-side high-speed link via a TFM-side protocol con- 
verter (TPC).  Intuitively, the SPC is expected to behave like the TFMs on 
the other side of the LGL, i.e. to accept commands for those TFMs and 
to respond to the SSI with their current states, but the SPC occasionally 
sends these commands along the LGL and receives new status information 
about those TFMs. On the other side, the TPC should mimic a SSI. We 
refer to the part of the system which consists of SPC, LGL, and T P C  as 
the slow-scan system. In order not to violate safety conditions of the over- 
all system, the slow-scan system is expected to satisfy properties of the 
following kind. If the low-grade link fails, then the TPC (SPC) will detect 
the problem and stop sending messages to the TPC-side TFMs (SSI). The 
TFMs are also expected to change signals to red and to lock points in their 
current setting if they stop receiving messages. 
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3.2 The Slow-scan Model 

In the following, we formally model the slow-scan system in three steps. 
First, we present the system as in [5] and discuss the advantages of priorities 
for modeling. In the second step, we augment our model with an error- 
recovery scheme and remodel the low-grade link in a full-duplex fashion. 
Finally, we show how the required fault-tolerance of the system [11] can be 
reflected in our design. 

oomm_tn 
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FIGURE 3. The LGL model 
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Tables 2 and 3 contain the model of the slow-scan system as it is accepted 
by the NCSU Concurrency Workbench where the symbol �9 introduces com- 
ments. The front end of the workbench for the process algebra with pri- 
orities was generated by the process algebra compiler PAC [9] and uses 
the following syntactical notations for expressions: b i  C P for the process 

algebra term C d_ef p ,  and ' a : k  for the action ~:k. 
Figure 3 shows the channels between the three parallel components of 

the slow-scan system; it also includes an additional clock. Since the correct 
behavior of our system depends on t ime constraints, which cannot be mod- 
eled in our process algebra directly (cf. [15]), we use the clock in our model 
to signal the progression of t ime to the SPC and T P C  via the channels mcs 
and met, respectively. 

The low-grade link is modeled by two parallel unidirectional links. Since 
we are concerned with the design of a system we choose a poor capacity 
(or bandwidth) link, capacity one for each direction, and we abstract  from 
message headers and contents. Moreover, the SPC and T P C  should be able 
to deliver a message to and get a message from the medium at a n y  time. 
If  no capacity in a link is left, a new message overwrites a message which 
is already in the medium,  and an overfull error occurs. Therefore, a link 
behaves for each direction as an input-enabled one-place buffer. Addition- 
ally, it offers the action ' ou tu  to its environment if the buffer is empty. 
With  respect to its reliability, we assume that  a link can fail because of 
a broken wire (action ' f a i l J i r e )  or if its buffering capacity is exceeded 
(action 'fail_overfull). I f  an error has occurred, the medium enters the 
error state C o m m F  in which it only accepts messages but  never delivers 
any messages. 
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TABLE 2. The slow-scan model (Part  1) 

* level O: fail_overfull, det, mcs, mct 

* level 1: - 

* level 2: out (c2, s2), fail_wire, comm_in, comm_out, star_in, star_out 

* level 3: in (cl, sl) 

* level 4: outu (c2u, s2u), tick 

* Sloe-scan system 

bi SS (SPC J LGL I TPC [ Clock)\{cl:3,c2:2,c2u:4,sl:3,s2:2,s2u:4, 

mcs:O,mct:O} 

* SSI-side protocol converter (SPC) 

bi SPC 

bi SPCO 

bi SPCI 

bi SPC2 

bi SPCF 

SPCO 

comm_in:2.'stat_out:2.SPCO + 'cI:3.SPCO + s2:2.SPCO + s2u:4.SPCO + 

mcs:O.'cl:3.SPC1 

comm_in:2.'stat_out:2.SPC1 § 'cl:3.SPCI + s2:2.SPCO + s2u:4.SPC1 § 

mcs:O.'cl:3.SPC2 

comm_in:2.'stat_out:2.SPC2 + 'c1:3.SPC2 + s2:2.SPCO + s2u:4.SPC2 + 

mcs:O.#'det:O.SPCF 

comm_in:2.SPCF + s2:2.SPCF + s2u:4.SPCF + mcs:O.SPCF 

The states of the SPC are parameterized by a t ime mark.  In each state 
the SPC is able to accept a message from the SSI (action torero_in) and, 
subsequently, of responding with the appropriate status information of the 
requested TFM (action ' s t a t _ o u t ) .  At least once every clock cycle (action 
'mcs) the SPC sends a message over the LGL to the T P C  (action ' e l )  
and increases its internal t ime-counter by changing its state from SPC0 to 
SPC1 or from SPC1 to SPC2. If  the SPC receives a message (action s2) 
from the T P C  within two t ime units, it resets its internM time-counter to 
0 by changing its s tate to SPC0. Otherwise, the SPC times out (action 
' d e t )  and enters the failure state SPCF. In this state the SPC never sends 
messages to the SSI or T P C  again, but it remains input-enabled. 

Up to now, we have not discussed how priorities can be used in modeling 
the system. However, one has probably already noticed that  various parts  
of the model without priorities would be counterintuitive. For example,  if a 
link has no capacity for an additional message, it should favor output t ing 
a message over accepting a new one, as the latter immediately leads to the 
failure of the link. Similarly, a link should favor accepting a new message in- 
stead of signaling that  the buffer is empty. If the clock gives a new t ime pulse 
by performing the action ' t i ck, it should immediately inform the SPC and 
T P C  by performing the (interrupt) actions 'mcs and 'met .  In other words, 
no action should interfere between the actions ' t i c k  and 'mcs and the 
actions ' m c s  and 'mct .  Moreover, the actions ' d e t  and ' f a i l _ o v e r f u l l  
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T A B L E  3. T h e  s l o w - s c a n  m o d e l  ( P a r t  2) 

* T r a c k - s i d e  p r o t o c o l  c o n v e r t e r  (TPC) 

b i  TPC 
b i  TPCO 

b i  TPC1 

b i  TPC2 

b i  TPCF 

TPCO 
' c o m m _ o u t : 2 . s t a t _ i n : 2 . T P C O  + ' s I :3 .TPCO + c2:2.TPCO + c2u:4.TPCO + 

m c t : O . ' s l : 3 . T P C 1  
' comm_ou t :2 . s ta t_ in :2 .TPC1 + ' s l : 3 . T P C 1  + c2:2.TPCO + c2u:4.TPC1 + 

m c t : O . ' s l : 3 . T P C 2  

' c o e R _ o u t : 2 . s t a t . i n : 2 . T P C 2  + ' s l : 3 . T P C 2  + c2:2.TPCO + c2u:4.TPC2 + 

m c t : O . ~ d o t : O . T P C F  

s t a t _ i n : 2 . T P C F +  c2:2.TPCF + c2u:4.TPCF + mct:O.TPCF 

* Low g r a d e  l i n k  (LGL) 

bi LGL C o m m [ c l : 3 / i n : 3 , c 2 : 2 / o u t : 2 , c 2 u : 4 / o u t u : 4 ]  I 

Comm[s l :31 in:3 , s2 :2 /ou t :2 , s2u:4 /ou tu:4]  

b i  Coam 

bi  CossO 
bi  Comsl 

b i  Cosn~ 

Com,O 
i n : 3 . C o ~ l  + 'outu:4 .ConmO + ' f a i l _ e i r e : 2 . C o m m F  
in:3.g'fail_ovorfull:O.CommF § 'out:2.Co~O + 'fail_eire:2,CoM~F 

in:3.ConenF+'outu:4.ConmF 

* Clock  

b i  Clock  ' r  

are signaling failures which have already occurred, i.e. they should not be 
delayed. Finally, the failing of the LGL is always possible, i.e. no action of 
the LGL should be able to preempt the action ' f a i l _ w i r e .  

Based on these observations, we give the actions ' f a i l _ o v e r f u l l  and 
' d o t  - which can be viewed as atomic propositions - overall preemptive 
power in our model, i.e. they are translated to # ' f a i l _ o v e r f u l l : 0  and 
to # ' d o t  :0, respectively. The actions 'mcs and 'met are also assigned the 
highest priority. Thus, they cannot be prevented by any action in the sys- 
tem, and the atomicity of the above mentioned action sequences is guar- 
anteed. Moreover, in the LGL, ' ou t  should have a higher priority than in,  
and in a higher one than 'ou tu .  The action ' t i c k  is assigned to the lowest 
priority level, reflecting our design decision to adopt the maximal  progress 
assumption of real-time process algebra [15]. This assumption states that  
t ime may only proceed if the system cannot engage in a communication. 
Finally, ' f a i l _ w i r e  is assigned the highest priority-level with respect to 
the actions of the LGL. These observations lead to the priority scheme of 
actions for the slow-scan model which is summarized in the beginning of 
Table 2. 
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3.3 The Recovery Model 

The slow-scan model represents a substantial abstraction from reality since 
it is not  capable of recovering from a failure. Therefore, we augment the 
slow-scan model by an error-recovery scheme. Moreover, we change the 
design of the medium to a more realistic full-duplex version. 

TABLE 4. The recovery model (Part 1) 

* Low g r a d e  l i n k  (LGL) 

b i  LGL CommOO[cl:3/in:3,sl:3/in':3,c2:2/out:2,s2:2/out':2, 
c2u:4/outu:4,s2u:4/outu':4,ok:llonline:1] 

b i  CommO0 

b i  CommlO 

b i  Co~O1 

b i  C o ~ l l  

bi CommF 

in:3.CommlO + ~outu:4.Co.mO0 + in):3.Comm01 + ~outu':4.CommO0 + 

~fail_wire:2.CemmF + ~onllne:l.CommO0 

in:3.#~fail_overfull:O.CemmF + 'out:2.CommO0 + in':3.Co~all + 

'outu':4.CommlO + ~fai1_wire:2.CommF + 'online:l.Co~lO 

in:3.Co~11 + 'outu:4.CommOl + in~:3.$'fail_overfull:O.CommF + 

'eut':2.CommO0 § 'fail_wire:2.ConuaF + ~online:l.Comm01 

in:3.@'fail_overfull:O.CemmF + 'out:2.Co~Ol + 

in':3.$'fail_overfull:O.CommF + ~eut':2.CemmlO + 

'fail_~ire:2.Co.waF + ~enline:l.Cemmll 

in:3.CemmF + ~outu:4.CemmF + in~:3.CommF + 'outu~:4.CommF + 

'repaired:2.CommO0 

Full-duplex media have the property that if one direction fails then the 
other should also be considered as unreliable. In the remainder of this 
section, the action names of both directions of the link will only differ by 
a trailing prime. As long as the full-duplex medium which is modeled in 
Table 4 provides service, i.e. it is in one of the states Comm00, Comml0,  
Comm01, or C o m m l l ,  an ' o n l i n e  ( ' ok )  is signaled to the environment. 
In contrast to the slow-scan model, a broken medium can be repaired in 
the recovery model. This is modeled by the action ' r e p a i r e d  which is 
enabled in the failure state CommF and allows the LGL to reset to its 
initial state Comm00. The recovery of the system as modeled in Table 5 
works as follows. If the SPC (TPC) is in its failure state SPCF (TPCF)  
and detects that  the medium has been repaired by receiving the action ok 
(on l ine ) ,  it sends one interrupt (action ' r e s e t )  to the clock and another 
(action ' i n i t )  to the TPC (SPC). The invoked interrupt handler of the 
clock resets the clock. The handler of the TPC (SPC) agrees to that  request 
by sending an acknowledgment (action ' ack_s back to the SPC (TPC),  
signaling its reinitialization (action ' r e c o v e r e d ) ,  and resetting itself to its 
initial state. Since we are dealing with abstract models, we leave it open to 
an implementation how to send interrupt signals between SPC, TPC,  and 
the clock; e.g. one could use the already repaired line. 
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TABLE 5. The recovery model (Part 2) 

* l e v e l  O: f a i l _ o v e r f u l l ,  d e t ,  r e c o v e r e d ,  mcs, met 
* l e v e l  1: o n l i n e  (ok ) ,  i n i t ,  a c k _ i n i t ,  r e s e t  
* l e v e l  2 :  out  ( c2 ,  s 2 ) ,  f a i l _ w i r e ,  r e p a i r e d ,  
* comm_in, corm_out ,  s t a r _ i n ,  s t a r _ o u t  
* l e v e l  3 :  i n  ( c l ,  s l )  
* l e v e l  4: ou tu  (c2u,  s 2 u ) ,  t i c k  

* S l o w - s c a n  s y s t s s  

bi SS (SPC I LGL I TPC I C l o c k ) \ { c l : 3 , c 2 : 2 , c 2 u : 4 , s l : 3 , s 2 : 2 , s 2 u : 4 , m c s : O ,  

m c t : O , o k : l , i n i t : l , a c k _ i n i C : l , r e s e t : l }  

* S S I - s i d s  p r o t o c o l  c o n v e r t e r  (SPC) 

b i  SPC 
~ 1 7 6 1 7 6  

b i  SPCF 

SPCO [> ( i n i t : l . ' a c k _ i n i t : l . # ' r e c o v e r e d : O . S P C  + a c k _ i n i t : l . S P C )  

coeea_in:2.SPCF + s2:2 .SPCF + s2u:4.SPCF + mcs:O.SPCF + 

o k : l . ' r e s e t : l . ' i n i t : l . n i l  

* T r a c k - s i d e  p r o t o c o l  c o n v e r t e r  (TPC) 

b i  TPC 

bi TPCF 

TPCO [> ( i n i t : l . ' a c k _ i n i t : l . # ' r e c o v e r e d : O . T P C  + a c k _ i n i t : l . T P C )  

s t a t _ i n : 2 . T P C F  + c2:2 .TPCF + c2u:4.TPCF + mct:O.TPCF + 
o k : l . ' r e s e t : l . ~ i n i t : l . n i l  

* Clock  

b i  C lock  ClockO [> r e s e t : l . C l o c k  

b i  ClockO ' t i c k : 4 . ' m c s : O . ' m c t : O . C l o c k O  

If a link has been repaired, the system should reset itself immediately. 
Therefore, all actions involving the recovery scheme are interrupt actions. 
However, they should not be able to interfere with the atomicity of the 
clock signals (actions 'raes and 'met). Therefore, the actions ok, o n l i n e ,  
i n i t  and a c k . k n i t  are assigned to priority level one. The action ' r e p a i r e d  
should never be preempted by any communication in which the buffer is 
involved, so it gets the priority value two. Finally, the action ' r e c o v e r e d  
is handled as the other 'atomic propositions' ' d e t  and ' f a i l _ o v e r f u l l .  

3.4 The Fault-tolerant Model 

We now turn our attention to modelingfault-tolerance which is an essential 
requirement of the SSI [11]. We have already modeled an error-recovery 
scheme for the medium, which ensures fault-tolerance on a software-level. In 
practice, the hardware of the system is also replicated in order to guarantee 
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FIGURE 4. The Iault-toler~nt model 

TABLE 6. The fault-toler&nt model (Part 1) 

comm_out 

smtm 

* level O: fail_overfull, det, recovered, mcs, mct 
* level I: online (ok, ok'), init, ack_init, switch, ack_switch, reset 

* level 2: out (c2, s2), out' (c2', s2'), fail_wire, repaired, 
* comm_in, comm_out, star_in, stat_out 
* l e v e l  3 :  in  ( c l ,  e l ) ,  i n '  ( c l ' ,  e l ' )  
* level 4: outu (c2u, s2u), outu' (c2u', s2u'), tick 

* S l o w - s c a n  s y s t e m  

bi SS (SPC [ LGL [ TPC [ Clock)\(cl:3,c2:2,c2u:4,sl:3,s2:2,s2u:4, 
cl':3,c2':2,c2u':4,sl':3,s2':2, 
s2u':4,mcs:O,mct:O,ok:l,ok':l, 
init:l,ack_init:l,reset:l, 
seitch:l,ack_switch:l) 

bet ter  safety-critical behavior [11]. Therefore, we explicitly duplicate the 
da ta  pa th  in our design. The new situation is depicted in Figure 4, where 
the LGL consists of the usual link and a spare link whose corresponding 
actions are annotated by a prime. Our fault-tolerant model, where the 
'p r ime '  states of the SPC and T P C  indicate that  the system works on the 
second line, behaves as follows. If a failure of the currently used line is 
detected by the SPC (TPC),  i.e. it is in its failure state, and the other line 
is 'up ' ,  then the SPC (TPC) signals its wish to switch the line to the T P C  
(SPC) by performing the action ' switch. The interrupt handlers react on 
tha t  request (action ' a ck_swi t ch )  in the same fashion as in the recovery 
model.  Tables 6 and 7 summarize the necessary changes to our model. 

Ideally, we assume the switch to be atomic in the design of the slow- 
scan system, i.e. SPC and T P C  switch to the new link at the same time. 
Using priorities, this can be modeled by giving the actions s w i t c h  and 
aek_swi tch  the same priority as the interrupt actions i n i t ,  ack_. ini t ,  and 
ok.  
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T A B L E  7.  T h e  f a u l t - t o l e r a n t  m o d e l  ( P a r t  2)  

* S S I - s i d e  protoco l  converter (SPC) . . .  ( c h a n g e s  t o  TPC a n a l o g u e )  

b i  SPC 

b i  SPCF 

b i  SPC '  

b i  SPCO' 

b i  SPCF '  

SPCO [> ( i n i t : l . ' a c k _ i n i t : l . ~ ' r e c o v e r e d : O . S P C  + 

a c k _ i n i t : l . S P C  + 

s w i t c h : l . ~ a c k _ s w i t c h : l . ~ ' r o c o v e r e d : O . S P C  ~ + 
ack_switch:l.SPC ~) 

c o m a _ i n : 2 . S P C F +  e 2 : 2 . S P C F  + e 2 u : 4 . S P C F  + m c s : O . S P C F  + 

o k : l . ' r e s e t : O . ~ i n i t : l . n i l  + o k ' : l . ' r e s e t : O . ' s w i t c h : l . n i l  

SPCO ~ [> ( i n i t : l . ' a c k _ i n i t : l . ~ ' r e c o v e r o d : O . S P C '  + 

a c k _ i n i t : l . S P C  ~ + 
s w i t c h : l . ' a c k _ s w i t c h : l . ~ ' r e c o v e r e d : O . S P C +  

a c k _ s ~ t t c h : l . S P C )  

c o s s _ i n : 2 . ' s t a t _ o u t : 2 . S P C O '  + ' c l ' : 3 . S P C O '  + s 2 ' : 2 . S P C O '  + 

s 2 u ' : 4 . S P C O '  + m c s : O . ' c l ' : 3 . S P C 1  ' 

c o ~ _ i n : 2 . S P C F '  + s 2 ' : 2 . S P C F '  + s 2 u ' : 4 . S P C F '  + m c s : O . S P C F '  + 

o k ' : l . ' r e s e t : O . ' i n i t : l . n i l  + o k : l . ' r e s e t : O . ' s ~ i t c h : l . n i l  

* L o .  g r a d e  l i n k  (LGL) 

b i  L6L C o m m O O [ c l : 3 / i n : 3 , s l : 3 / i n ' : 3 , c 2 : 2 / o u t : 2 , s 2 : 2 / o u t ' : 2 ,  

c 2 u : 4 / o u t u : 4 , s 2 u : 4 / o u t u ' : 4 , o k : l / o n l i n e : l ]  I 

C o ~ O 0 [ c l ' : 3 / i n : 3 , s l ' : 3 / i n ' : 3 , c 2 ' : 2 / o u t : 2 , s 2 ' : 2 / o u t ' : 2 ,  

c 2 u ' : 4 / o u t u : 4 , s 2 u ' : 4 / o u t u ' : 4 , o k ' : l / o n l i n e : l ]  

3.5 State Space of the Models 

We have run the NCSU Concurrency Workbench on a SUN SPARC 20 
workstation to construct  and minimize the state spaces of our models. 
We refer to the slow-scan model as br tms .pccs ,  to the recovery model as 
r e c o v e r y ,  p e t s ,  and to the fault-tolerant model as f t o l e r a n t ,  p e t s .  More- 
over, we refer to the slow-scan model where the buffer has been replaced by 
the full-duplex version as b a s i c . p c c s .  The CCS models corresponding to 
bruns  .pccs  and b a s i c ,  pccs,  which are obtained by leaving out all priority 
values, are called b runs ,  ccs and b a s i c ,  ccs, respectively. Table 8 provides 
for each model the number of states and transitions of the corresponding 
transition system and the time (in seconds) needed for constructing it. 
The table also contains this information for the minimized (with respect 
to prioritized strong bisimulation) models (cf. "reduced state space"). 

Table 8 shows that  the number of states decreases by over 70% when 
using the calculus with priorities. Even more impressive is the reduction of 
transitions by approximately 85%. This results from the fact that  we are 
not able to model the a~omicity of action sequences and interrupts in plain 
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TABLE 8. Transition system sizes 

II Model [1 Global State  Space  R Reduced State Space l[ 
Name s tates  ] trans, t ime s tates  [ trans.  [ t ime 

U bruns.ccs 11 3: : :  I 17122 8 I] 3154 I 1 : : : :1  38 ]l 
bruns  . p c c s  2567 6 766 11 

I] basic.cca 1:::  I 4:: :  2 II 1021 I 4217 I 9 II 
b a s i c  . p c c s  2 287 713 3 

U recovery.pcc, I] 110012801 20 ]] 789 I 2233 ] 25 II 
II  toX.r  .pcc, II I1905 [ 33760 452 II 74s5 126164 I 552 II 

CCS. That  observation demonstrates the utility of priorities for the verifica- 
tion of distributed systems. The large reduction of the fault-tolerant model 
with respect to prioritized strong bisimulation is due to the symmetry  of 
its design. The minimization of b r a s s ,  cos and b a s i c ,  cos with respect to 
observational equivalence reduces the model to 2057 states / 8280 transi- 
tions and 698 states / 2293 transitions, respectively. We are currently im- 
plementing an algorithm to compute prioritized observational equivalence. 
The adaption of the corresponding observational equivalence [14] is not 
suitable for automated verification tools since the weak transition relation 
is parameterized with (arbitrary) sets of actions. However, we have devel- 
oped a characterization of the prioritized observational equivalence which 
uses an alternative weak transition relation that is efficiently computable. 

4 V e r i f y i n g  t h e  R a i l w a y  S y s t e m  

In this section, we specify and verify requirements of the slow-scan, the 
recovery, and the fault-tolerant model. We use the well-known modal p- 
calculus [12] as our specification language and determine the validity of 
our properties by model checking [3]. For the verification, we use the NCSU 
Concurrency Workbench on a SUN SPARC 20 workstation with 512 MByte 
of main memory. 

4.1 Requirements of the Slow-Scan System 

Since the slow-scan system is embedded in a safety-critical system, we want 
to verify that  our designs satisfy the following required properties. 

After a low-grade link fails, either the slow-scan system will eventually 
detect the error or the link is repaired. Moreover, this property holds after 
every reinitialization of the system. 

The slow-scan system is always capable of continuing to tick. If this 
property holds, then the system is deadlock-free, too. 

A failure of the slow-scan system is possible. This property should also 
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be valid after every reinitialization of the system. 
A failure is detected only if a failure has actually occurred. Also this 

property should hold after every reinitialization of the system. 
After a low-grade link fails, the slow-scan system will eventually stop 

responding to the SSI and TFMs if the low-grade link does no t  recover 
from the error. 

If a failure is detected and the broken line is repaired, then the system 
will be reinitialized. 

All properties - except for the last one - are adapted from [5]; However, 
since the recovery and the fault-tolerant model are able to recover from an 
error, the properties of [5] should also hold after every reinitialization of 
these models. 

4.2 Specifying our Requirements in the #-Calculus 

For specifying our requirements we use the modal/t-calculus. Its syntax is 
defined by the following BNF, which uses a set of variables l) with X E l). 

::= f f  I X I ~ I * ^ *  I (-:k)@ I / tX.r  

Further, we define the following dual operators: tt =dr -~ff, (~1 V (I)2 =dr 
~ ( ~ r  ^ ~*~) ,  [ .:k]~ =dr ~ ( ~ : k ) ( ~ ) ,  and ~ X . *  =dr -,/tX.(-~,~[-~X/X]), 
where [-,X/X] denotes the substitution of all free occurrences of X by -~X. 
Finally, we introduce the following abbreviations where L C_ .4: (L)(I) =df 
V{ (a:k)(I) I a:k 6 L }, ( - ) ~  =dr (A)~, ( - -L)~ : d r  (A \ L)(b, [L]~r =dr 
yX.~ A [L]X, and (L)*~ : d r / t X . ~  V (L)X . 

We use the well-known standard semantics of the modal/t-calculus as e.g. 
presented in [12]. The model checker integrated in the NCSU Concurrency 
Workbench is based on [3]. More precisely, it is a local model checker for a 
fragment of the modal/t-calculus. The formulae we intend to verify can be 
automatically rewritten into semantical equivalent ones which satisfy the 
syntactic restriction required in [3]. The time and space complexity of the 
model checker is linear in the size of the formula, in its alternation depth, 
and in the size of the transition system. 

We now formally specify the requirements of the slow-scan system as 
presented above in the modal/t-calculus.  We take particular care in im- 
plementing eventuality since we want to consider only execution paths in 
which the clock continues to tick. This fairness property is not satisfied by 
the models themselves since they contain livelocks. As discussed in [5], we 
are interested in the following notion of fair eventuality: 

even(,~) =dr / tx .  (~Y. , ' , / ( [ ~ - ~ x  A [-ti--zi]Y)) . 

Moreover, we need a meta-formula which expresses that  the argument for- 
mula holds again if the low-grade system has recovered: 

again(~) =df [-]~176 �9 
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Now, we can formalize the desired properties of the slow-scan model and 
the fault-tolerant model, where F a i l  ~-df {fa i l_wi re ,  f a i l _ o v e r f u l l } .  

After the low-grade link fails (for the first time), the slow-scan system 
will eventually detect the error or the link is repaired: 

failures-responded = d f  

[--Fail] co [Fail] even((d-~) tt V (repair ed) t~) . (I) 

The formula failures-responded holds after every reinitialization of the sys- 
tem again: 

failures-responded-again---~df again(failures-responded) . (2) 

Since the formula  failures-responded is trivially true if the underlying model 
cannot perform the action ' t i c k  or if it cannot fail, we are also interested 
in the following two properties. The slow-scan model is always capable of 
continuing to tick: 

can-lick =dr [_]oo (_ ) ,  (tick)tt . (3) 

A failure of the slow-scan system is possible: 

failures-possible -'-df (--recovered)* (Fail)tt . (4) 

The formula failures-possible holds after every reinitialization of the system 
again: 

failures-possible-again-~-df again(failures-possible) . (5) 

A failure is detected only if a failure has actually occurred since the last 
reinitialization of the system: 

no-false-alarms ~--df 

[--Fail ,  recoveredJ~176 ( f a i l _ o v e r f u l l ) t t )  . (6) 

The body of the formula reflects that  f a i l _ o v e r f u l l  signals that  a failure 
has already occurred, i.e. it may be enabled at the same time as det .  More- 
over, the formula no-false-alarms should hold after every reinitialization of 
the system: 

no-false-alarms-again--df  again(no-false-alarms) . (7) 

The auxiliary property "the system never responds", which is used below, 
can be encoded as follows: 

silent =df [__]oo [coIlun_out, s t a t_ o u t J~  . 

After a low-grade link fails, the slow-scan system will eventually be silent 
if the low-grade link does not recover from the error: 

eventually-silent ----df [--]~even(silent V (recovered)it). (8) 
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If a failure is detected and the broken line is repaired, then the system will 
be reinitialized: 

react-on-repair =d~ [ - ] ~  ~ - ~ ] ( [ - r ~ r  ~176 Lropairod] 
~ v e n ( ( ~ , r  t t ) ) .  (9) 

4.3 Verification Results 

We applied the model checker for all models and formulae twice. The first 
time, we let the model checker construct the state space on the fly as is 
usual for local model checking. The second time, before invoking the model 
checker, we minimized the models with respect to prioritized strong bisim- 
ulation. The verification results are given in Tables 9/10 and 11/12, respec- 
tively. The tables show which properties hold for which formulae (columns 
"ok") and give the CPU time (in seconds) used by the NCSU Concurrency 
Workbench for checking each formula. The symbol "?" indicates that  a 
computation ran out of memory. The speed-up of the model checker for 
minimized models is partly due to the fact that  the transition systems for 
our models were constructed in a preprocessing step (minimization) and, 
thus, are not constructed on the fly. Additionally, the times for the veri- 
fication results with respect to our minimized models do not include the 
times needed for the minimizations. 

TABLE 9. Verification results wrt. the non-minimized models 

models ok I time ok I time ok{  time ok{  time ok I time 

II bruns.pccs II " 1  1483 II " I 261 II " I 1 II tt [ 52 ]] t~ [1164 II 

basic.pcc. I1~{ 1460 II I II I II l II I{ 
I I"r176 II " 1  a08 II " 1  495 II ~1 1 II " 1  68 II - 1 1 6 8 5  II 
I I ~ t ~ 1 6 2  " 1 1 3 ~  I ? II " 1  1 II " 1  135 I1? I ? II 

TABLE 10. Verification results wrt. the non-minimized models (continued) 

{ models ok{ time ok{ time ok] time ok l time 
II r , oo , , ry .pcc ,  II tt { 1942 II " 1  429 {[ tt [ 492 {{ ~ { 2581 II 
U ~ t o l " r ' n t ' P c " U  ? I ? II ? I ? II ? I ? II ? I ? II 

In contrast to [5], we could verify most properties automatically and 
without using any abstractions by hand. However, the formulae eventually- 
silent, react-on-repair, and failures,responded-again are complicated and 
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TABLE 11. Verification results wrt. the minimized models 

I] inimized 
models 

bruns  . p c c s  

b a s i c ,  p c c s  

l[ f t o l e r a n t . p c c s  II " 

H Formula 1 
ok time 

1570 
604 
225 
213 
90 
122 

II ok 

I1" 
I1" tt 

II " 
II " 

Formula 3 
time 

I1"1 90 tt 

lO26 II ::1 
s6 I I "  I 

~64 II " I 

IIFo   411 ok [ time ok 

1 tt 

1 tt 

1 II - 

Formula 6 
time 
18 
17 

1'0 
16 
16 

ok time 

II ? ?11 ~t 512 

tt 142 

II ~t 42a II 
II ? ? II 

TABLE 12. Verification results wrt. the minimized models (continued) 

models ok]  time ok l time ok]  time ok l time 

U reoovery.pccs II " 1  4Sl II " 1  96 II " 1  109 II " 1  76S II 
U~t~ ? I ? II " 1  911 II ~ 1 1 1 5 9 1 1  ? I ? II 

large in size. Therefore, we could not  check them au tomat ica l ly  for the 
model  f t o l e r a n t ,  pccs ,  which has 7485 states and 26164 transi t ions after 
minimizat ion .  Al though the size of b r u n s ,  c c s  is relatively small, the model  
checker ran  out  of  m e m o r y  for the formula  eventually-silent, which has 
a l ternat ion depth two: 

Moreover,  our t iming results show tha t  using a local model  checker often 
gains no advantage.  This is because mos t  of  the formulae are valid safety 
properties,  and the local model  checker has to investigate all states of  the 
models  anyway. However, our model  checker has quickly detected invalid 
formulae.  

In the priori t ized models  all properties tha t  could be verified au tomat i -  
cally hold as expected. The  formula  no-false-alarms does not  hold for the 
models  in plain CCS. This is due to  the fact  tha t  the a tomici ty  of actions 
cannot  be expressed wi thout  priorities. Indeed, there exists an interleaving 
in the CCS models  where one observes a ' d e t  before a failure has occurred. 

Surprisingly, we found the formula failures-responded invalid in the model  
b ru rm,  cos  whereas in [5] it is reported to hold. The  reason for this is tha t  
we left out  the actions c l '  ( s l ' )  which occur directly before a ' d e t  in 
Bruns '  model .  A l though  tha t  reflects our intui t ion tha t  a ' t ier should be 
signaled as soon as an error is detected, Bruns '  model ing does not  allow 
bo th  SPC and T P C  to detect the overfull-failure of  the med ium before the 
act ion 'fail_overfull has occurred. 
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5 Conclusions and Future Work 

We have demonstrated the importance of priorities for modeling and veri- 
fying distributed systems by means of a practically relevant case study of 
the slow-scan part of a railway signaling system. Priorities allow us to fa- 
vor one communication over another and to make action sequences atomic. 
While the former helps to model systems more realistically, the latter dras- 
tically cuts the number of states and transitions. Our models explicitly re- 
flect safety-critical parts of the slow-scan system, namely an error-recovery 
scheme and a fault-tolerant medium, which are required in the design doc- 
ument [11]. We have used the NCSU Concurrency Workbench for checking 
properties of our design. We are currently implementing an algorithm for 
computing prioritized observational equivalence that will enable us to fur- 
ther reduce the size of our models. 

Acknowledgments: We want to thank Girish Bhat for the implementation of 
his model checker in the NCSU Concurrency Workbench. 
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