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ABSTRACT The paper shows how iterative parametric sequential circuits, 
which are most relevant in practice, can be verified fully automatically. Key 
observation is that monadic second-order logic on strings provides an ade- 
quate level for hardware specification and implementation. This allows us 
to apply the corresponding decision procedure and counter-model gener- 
ator implemented in the Mona verification tool, which, for the first time, 
yields 'push-button' verification, and error detection and diagnosis for the 
considered class of circuits. As illustrated by means of various versions of 
counters, this approach captures hierarchical and mixed mode verification, 
as well as the treatment of varying connectivity in iterative designs. 

1 Motivation 

A clear trend towards reuse of existing designs is the emergence of paramet- 
ric designs in standard libraries [13]. While such "families of circuits" have 
been already popular in the hardware verification community for years, 
where they are the best examples for induction-based reasoning in the hard- 
ware application domain, industrial practice did not feature parametric de- 
signs in standard libraries because of lack of consolidated methods for their 
lull-automatic t reatment in the design lifecycle. Thus the pressure towards 
fully automated methods for the analysis, verification, and fault detection 
of parametric circuits and their specifications grows with the increasing 
demand for design reuse. Unfortunately, the standard automata  theoretic 
techniques of the hardware community fail here, because the t reatment  of 
automata  of unbounded size is required. At this stage, Basin and Klarlund 
discovered that  monadic second-order logic on strings, although 'hopeless' 
from the complexity point of view, is well-behaved in many practical appli- 
cations, and, in particular, well-suited for the fully automatic verification of 
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parametric combinational circuits and of the timing properties of a D-type 
flip-flop [3]. This general observation led to the development of the Mona 
verification tool [18], whose kernel consists of a non-elementary decision 
procedure for monadic second-order logic on strings. 

In this paper we concentrate on sequential circuits, the class of circuits 
with the most practical relevance for CAD design, and in particular on the 
uniform treatment  of whole families of the parametric iterative kind. 

�9 Sequential  circuits differ from combinational ones for the presence 
of clocked registers, or, more generally, state holding devices. Their 
inpu t /ou tpu t  behaviour over time is usually modelled as a Finite 
State Machine [19], describing the values taken by the state holding 
elements and by the outputs over time. The standard model of time 
is discrete, with one observation point for each clock cycle. 

�9 Parametr ic  circuits are actually families of circuits ranging over one 
or more dimensions, like the width of the datapath as in the n-bit 
synchronous counter of Section 4. 

�9 Iterative circuits exibit regularities of their structures along one di- 
mension, e.g. pipelines or one-dimensional systolic arrays. 

Parametric  circuits are called iterative when the parametrization involves 
one dimension only. Examples include n-bit counters, which are sequential, 
the n-bit  ALU of [3], which is combinational, but also the class of systolic 
arrays called "cellular automata" ,  pipelines, etc..1. For this class of circuits, 
we 

�9 show how they can be fully automatically verified, 

loosen the standard hypothesis of constant connectivity, which is in- 
herent to most of the known approaches (see next section), showing 
how to deal with variations of the connectivity between adjacent basic 
cells as long as these are regular in an informal sense, and finally 

illustrate the impact of the diagnostic features offered by the Mona 
system on fault detection and diagnosis for hierarchical parameterized 
systems. 

Fully automatic approaches can be integrated within existing design envi- 
ronments as 'black boxes' that  can be used without additional expertise 
from the user. In particular, this also applies to Mona, which we integrated 
in METAFrame, a general environment for the analysis, verification and con- 
struction of complex systems. 

1Grid structures where parameters interact (needed e.g. to handle parameterized 
multipliers) exceed this s chema and cannot  be handled in this approach. 
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The remainder of the paper is organized as follows. After a summary of 
related literature in Section 2, Section 3 sketches the background for the 
proposed verification method. Sections 4 and 5 illustrate respectively the 
verification and the fault detection and diagnosis for sequential parametric 
iterative designs, and finally Section 6 presents a first evaluation. 

2 Related Work 

Traditional approaches to parametric hardware verification with formal 
techniques resort to general purpose methods based on inductive reasoning 
within either first or higher-order logic. First order logic based theorem 
provers such as Boyer's and Moore's NQTHM [28, 17, 29], or the Larch 
Prover [1] have been used for years to handle parametric designs, as well as 
several higher order logic systems like HOL [14, 8, 27], VER.ITAS [16], or 
NUPRL [10, 4], and there are studies which compare both approaches [2]. In 
all of them, verification becomes an activity bound to interactive, computer 
assisted theorem proving. Thus the user must employ tactics (as in the 
HOL system) or suggest appropriate lemmas. While such approaches are 
general and quite powerful, their use is mainly restricted to verification 
experts as opposed to engineers and CAD designers. Also the approaches 
of [35, 32, 7, 20, 36] for model-checking, language containment, and process 
verification require interaction. 

We know of two approaches to  fully automate the verification of parametric 
circuits. They are based on symbolic methods: 

Rho and Somenzi propose methods to automatically derive invariants 
from the structure of iterative sequential circuits by resorting to automata- 
based methods and to BDD-based symbolic manipulation of automata [30, 
31]. The derivation process proceeds by greatest fixpoint iteration over 
state-minimal deterministic representations of the corresponding regular 
languages. It is successful whenever it stabilizes up to isomorphism. As no 
characteristic criterion for stabilization is given, the precise class of circuits 
that can be handled is unclear. The authors only consider circuits with 
constant connectivity. 

Gupta and Fisher [15] introduce a canonical representation for inductive 
boolean functions (IBF) which resembles an inductive extension of BDDs 
covering certain classes of inductively-defined hardware circuits. Verifica- 
tion is carried out by symbolic tautology checking on the IBF represen- 
tation of the circuits. Their results are the most similar to ours, as they 
cover essentially the same class of circuits, which they call linear parameter- 
ized sequential circuits. However, besides being complicated, the required 
coding in a special inductive format has the following drawbacks: 

�9 The coding is bound to a very fine-grained analysis of the recursion 
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pat tern and does not directly reflect the structure of the original 
description. Thus diagnostic information would require to  re-establish 
the connection to the original description. 2 

�9 The t reatment  of parametric outputs is very tricky and leads to com- 
plicated representations of hierarchical structures. 

In contrast,  our approach allows a quite straightforward structure-preserving 
representation of the argument circuits and therefore good support for error 
diagnosis (Section 5). Moreover, as will be illustrated in the examples, no 
additional effort is required to t reat  parametric outputs. This is achieved 
by using Monadic Second-Order logic on Strings (M2L(Str)) for specifica- 
tion, which Alonzo Church proposed already 30 years ago as an appropriate 
formalism for reasoning about bitvectors [9]. In fact, this logic is decidable, 
however, only in non-elementary time: the worst-case complexity is a stack 
of exponentials of height proportional to the size of the formula, a good rea- 
son for it having being considered impractical so long. Fortunately, relevant 
problems are usually far better  behaved and can be solved automatically in 
reasonable time 3 . The examples of this paper required CPU times ranging 
from fractions of a second to a few minutes. 

3 Background 

3.1 The Verification Scenario 

The architecture of our verification setup (illustrated in Figure 1) is based 
on the cooperation between Mona [18] and the METAFrame environment [33]. 
As circuit descriptions given in a Hardware Description Language can be 
first translated in the target logic, along the lines introduced in [11, 23, 25] 4, 
proofs can be carried out at the logic level and entirely automatically by 
means of Mona. The result, in form of an automaton or of a minimal coun- 
terexample, can be visualized as a graph within the METAFrame environ- 
ment. The user may interact with both systems simultaneously as illus- 
t ra ted  by Figure 2. Currently, MF~TnFrame provides the graphic facilities 
for the display of the results delivered by Mona. It also allows the user to 
investigate properties of the graphs by means of hypertext  inspectors for 
nodes and edges. 

Mona is a verification tool for a second order monadic logic. Predicates 
are defined as logic formulas and transformed into minimal automata.  The 

2perhaps this is the reason for not being considered in the paper. 
3The so popular BDD encodings are also in general exponential, but large classes of 

hardware circuits have manageable polynomial representations. 
4In these approaches the semantics of Register-Transfer and gate level descriptions 

was expressed in terms of first-order logic formulas. 
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METAFrame 

FIGURE 1. The verification scenario 

computed automata are persistent objects, that is they are computed only 
once and stored in a library with their BDD structure. Later references to 
the predicate cause the precomputed automaton to be loaded and reused. 
Hence definitions constitute a library of reusable components which re- 
main available for later sessions and the persistency of the precomputed 
automata supports compositionality with no additional cost: since the au- 
tomata constitute the semantics of the hardware objects, once the equiva- 
lence between two logic objects has been proved they become semantically 
indistinguishable. In particular, a specification can be then replaced by its 
implementation (compositional verification) and structural descriptions of 
a module can be replaced by their behavioral counterpart (mixed-mode 
verification). 

3.2 The Specification Language 

The monadic second-order logic on strings (M2L(Str)) is one of the most ex- 
pressive decidable logics known, and it precisley captures regular languages 
(see [34]). For its syntax we follow [18]. The basic operators are reported 
in Figure 3, where we distinguish logic terms denoting positions t, string 
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t::= o l $ 1 p l t  + o i  
T : : =  all I P I C(T) I T1 U T2 
F : : =  t t l  t~ = t2 I h < t= 1 7"1 

All p: F I All P: F 
= T 2 1 t i n T I - ~ F I F ~ & F 2 1  

FIGURE 3. A basic syntax for M2L(Str) 

expressions T, and formulas F: 

First-order expressions t describe string positions (i.e. bitvector ad- 
dresses) and are built using constants 0 (the starting position), $ (the 
final position), first-order variables p, and the operator +o which de- 
notes addition modulo the string length. Here i ranges over natural 
numbers. 

Second-order expressions T describe strings (i.e. bit vectors) in terms 
of sets of positions whose value is 1 in the string. For instance, all 
represents strings whose elements are all 1 and union computes the 
union of the positions of two strings where elements are 1 and C (T) 
denotes the complement of string T. Here, P ranges over string vari- 
ables. 

�9 Formulas are interpreted over strings, which correspond to bitvec- 
tors of finite, but not necessarily precised length. They have their 
expected meaning. For example, the conjunction of two formulas is 
true when both formulas are true. The formula t in T is true when 
the position denoted by the interpretation of t is "set" (i.e., 1) in the 
string interpreting T. Quantification is possible over positions and 
over strings. 

Note that many connectives given here, like e. g. position variables and their 
connectives, are only included for convenience since they may be encoded 
within the logic using second-order variables. Internally, Mona uses such an 
encoding. Similarly, dual connectives like, e.g.~, the empty string empty, 
string disjunction U, implication ~ ,  equivalence <=}, existential quantifica- 
tion 3, are available, as well as a short form for Boolean variables, repre- 
sented as �9 over which quantification is possible too. Predicate definitions 
are equalities terminated by semicolons, and comments are introduced by 
the symbol #. 

As an example, the following formulas 

if(@cond, ~then, @else) = (@cond => @then) & (~@cond => @else); 

inc(Old, New) = 
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if (Old = all, 

New = empty, 

Ex j : j notin Old & (All k : k < j => k in Old) & 

All 1 : (i < j => 1 notin New) & 

(i = j => 1 in New) & 

(i > j => (i in Old <=> 1 in New))); 

define, respectively, a predicate for the usual i f  - t h e n  - e l s e  construct, 
and a predicate inc corresponding to the bitvector increment operation by 
a simple case analysis. If 01d, the bitvector we are incrementing, is all ones 
(i.e., a l l  positions are set) then the result, New, is all zeros (i.e., empty 
positions are set). Alternatively, there exists a least position j which is 
zero (i.e. no t in  01d). In this case the increment operation should clear 
all the smaller positions in New, set this position, and leave the rest un- 
changed. This predicate will be used in the specification of the counter in 
the following section. 

Interpretations of formulas are constructed by converting formulas to 
automata as described in [18]. For any formula r that is not a tautology, 
a minimal length counterexample can be extracted from the corresponding 
automaton. This feature is exploited in Sect. 5 for fault detection, diagnosis 
and testing. 

4 Verification of Parametric Iterative Sequential 
Circuits 

We illustrate the flexibility of parameterization allowed in M2L(Str) by 
giving a behavioral specification, formalizing several architectures of coun- 
ters based on the well known 74LS163 4-bit counter with enable and syn- 
chronous clear, and verifying their correctness. 

The same family of counters had been already considered in [24, 26, 25] 
to study the impact of semantic data abstraction and compositionality in 
the hierarchical verification of counters of increasing but given word size. 
There, the semantics had been given in first order logic, and the (fully 
automatic) verification had been carried out by rewriting and resolution 
with the OTTER theorem prover. However, this approach was unable to 
deal with a parametric version of the implementation, a limitation which 
can be overcome in the fashion described in this paper. 

The following four subsections discuss verification problems of increasing 
difficulty: 

1. the parameterized behavioral specification of the counter, which is 
used to verify the correctness of all the proposed design architectures, 

2. the implementation of the 4-bit basic cell, which illustrates how to 
deal with standard sequential circuits, 
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3. a parameterized n-bit version of it, which defines a family of iterative 
sequential circuits. This modelling requires the additional ability to 
handle variable connectivity, and finally 

4. the hierarchical design of a 4xn-parameterized counter constructed 
as a cascade of n 4-bit modules, where iteration is needed at the 
hierarchical level, and ranges over the modules. 

While induction-based methods are tailored for case 3, but have difficulties 
with case 2, automata-based methods are tailored for case 2, but fail for 
case 3. Case 4, being a mixture of 2 and 3, requires a specific and often 
intricate user interaction in all known approaches. - The handling of faulty 
designs is delayed to Section 5. 

4.1 The Behavioral Specification 

The specification defines the behavior of the circuit in terms of its in- 
put/output function independently of the word length. Its control part 
selects one of the four possible operations (clear, parallel_load, increment, 
no_op) according to the values of the control signals, and its data path 
simply consists of a data register with synchronous clear. Due to the pos- 
sibility in any state (or data register configuration) of loading any other 
configuration, transitions are possible between any pair of states. 

In [12] the specification is given by the following mode select table and 
expression for the terminal count Tr 

SRn PEn CET CEP Action (Effect) 
L X X X Reset (Clear) 
H L X X Load (I -~ O) 
tt H H H Count (Increment) 
H H L X No Change (Hold) 
H H X L No Change (Hold) 

t c = I o A I 1 A I 2 A I 3 A C E T  (*) 

We may formalize this in M2L(Str) in a fairly direct manner. The func- 
tional behavior of the parameterized counter is defined by a direct encoding 
of this operation select table and of the additional logic equation. To model 
it, it is sufficient to require the consistency of its behavior over any two con- 
secutive time units: for each operation, the value of the generated output O 
(which in this simple example coincides with the new state) and of the ter- 
minal count t c  must be consistent with the previous output/state 01dO, the 
current input I and the current values of the control signals as prescribed 
by the above table. Note that this modelling turns out to be similar to the 
one adopted in [18] for the dining philosophers with encyclopedia. Both 
model essentially an (infinite) family of state transition function. Hard- 
ware, however, usually requires an additional function in order express the 
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output values at any clock cycle as a function of the current state for Moore 
machines, and of the input and the current state for Mealy machines. For 
the counter, the output function is simply the identity. 

The following specification is implicitely parameterized over the length of 
the datapath (strings I, 0, 01d0) and uses the predicates i f  and inc which 
belong to the basic library and have been already illustrated in the previous 
section. 

speccount (@pen, �9169169 I, O, OldO, @tc) = 
(if(~@srn,(All p: p notin 0), 

if('@pen,(All p: (p in I <=> p in 0)), 
if (and (@cet, @cep), inc (OldO, O), 

(All p: (p in OldO <=> p in 0))))) 
(@tc <=> (All j: j in OldO & @cet))); 

In the following we will concentrate on the relevant phenomena of each 
implementation style, and limit the Mona syntax to the minimum. The 
complete descriptions, essentially due to David Basin, are collected in Ap- 
pendix 1. 

4.2 Verification of the Basic Cell 

The structure of the gate-level implementation of the 74LS 163 4-bit counter, 
as found in [12], is directly reflected in the structure of the predicate 
count4bi t  defined in Appendix 1.1. Its automatic generation from a de- 
scription in a Hardware Description Language such as, e.g., VHDL [21], 
ISPS [5] or CASCADE [6] would be straightforward. 

Assuming that the input strings are all of length 4 (so their last position, $, 
is 3), the equivalence of the parameterized specification, restricted to 4-bit 
strings, with the 4-bit implementation is stated as 

($ = 0+3 => 

(count4bit(@pen,@cep,~cet,@srn,�9 in 1,0+1 in 1,0+2 in I, 
0+3 in I,O in 0,0+I in 0,0+2 in 0,0+3 in 0,0 in OldO, 
0+I in 01d0,0+2 in OldO,0+3 in OldO) <=> 

speccount2 (%pen, @cep, ~cet, @srn, I, O, OldO, @tc) ) ) 

Mona proves this equivalence in 15 s CPU on a SparcStation 20. 

4.3 The Iterative Counter: Describing Variable Connectivity 

The structure of the n-bit generalization of the counter as shown in in 
Figure 4 individuates a parametric iterative family of modulo 2 n counters. 
Its formalization of in a top-down fashion is reported in Appendix 1.2. 

Already looking at the description of the 4-bit implementation, we may 
have noticed that the bit slices do not have all the same inputs/outputs, as 
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F I G U R , E  4. I m p l e m e n t a t i o n  of  t h e  n - b i t  c o u n t e r  

i t  w o u l d  b e  u s u a l  e .g .  i n  s y s t o l i c  a r r a y s .  I n  t h e  f o r m a l i z a t i o n  o f  t h e  p a r a -  

m e t r i c  g e n e r a l i z a t i o n ,  t h e  a b i l i t y  t o  d e s c r i b e  p u r e l y  r e p e t i t i v e  s t r u c t u r e s  a s  

e .g .  i n  [31] w o u l d  n o t  su f f i ce .  H o w e v e r ,  s i n c e  s u c c e s s i v e  s l i c e s  d i f f e r  o n l y  in  

a r e g u l a r  m a n n e r ,  w e  a r e  s t i l l  c a p a b l e  t o  f o r m a l i z e  t h i s  c h a n g e  o f  p a t t e r n  

w i t h i n  t h e  l o g i c  i n  a n a t u r a l  way .  5 

A c c o r d i n g  t o  F i g u r e  4 ,  e a c h  s l i ce  r e c e i v e s  i n p u t s  f r o m  all the prev ious  

o n e s ,  i . e . ,  t h e  p t h  s l i ce  h a s  o n e  d a t a  i n p u t  a n d  o n e  d a t a  o u t p u t  m o r e  t h a n  

t h e  p - l t h .  I n  p a r t i c u l a r ,  t h e  t w o  i n t e r n a l  g a t e s  i n d i c a t e d  i n  b l a c k  h a v e  a 

v a r i a b l e  n u m b e r  o f  i n p u t  l i n e s ,  w h i c h  i n c r e a s e s  b y  o n e  u n i t  a l o n g  t h e  n d i -  

m e n s i o n .  T h i s  is  c a p t u r e d  b y  i n t r o d u c i n g  t h e  r e l a t i o n  n a n d  ( p ,  I ,  ~ o )  w h i c h  

d e f i n e s  a n  a n d  g a t e  w i t h  a v a r i a b l e  n u m b e r  o f  i n p u t  l i n e s  c o n t r o l l e d  b y  t h e  

p a r a m e t e r  p:  

n_and(p,I,@o) = ((@o) <=> (All j : (j <= p => j in I))); 

5In fact ,  th is  circuit belongs to the  linear parametric class of [15]. It may  be model led 
by means  of  the i r  T,TBF s t ructures ,  providing an adequate  inductive definition scheme 
is at hand.  
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This defines a parameterized family of AND gates, which is used in the 
body of the computeb i t  relation and thus it occurs in the description of 
this family of counters. 

We may now prove that  this parameterized counter is equivalent to the 
specification. 

(speccount (~pen, �9 @cet, �9 I, 0,01d0, �9 
<=> count (@pen, ~cep, ~}cet, @srn, I, 0, OldO, ~tc) ) 

Mona verifies this equivalence in 8 s CPU. In traditional approaches based 
on first or higher-order logic, this would require proof by induction over 
the (explicitly formalized) length of the string. 

4.4 Hierarchical Parameterized Verification 

In practice, the parametric scheme specified above is not a desirable im- 
plementation for a family of counters. Having a parameterized number of 
wires, the fan-in and fan-out 8 of some internal gates would become too 
large already for a small value of n. Real designs require fan-in and fan-out 
to be a small constant. A hierarchical implementation of a 4n-bit counter 
in terms of a cascade of 4-bit modules (as reported in Figure 5) satisfies 
this need, and is easily expressed in the logic. 

The formalization in Appendix 1.3 is now parameterized in the number 
of 4-bit units and reuses the c o u n t 4 b i t  predicate to implement the basic 
cells. Rather than using recursion, the iteration which allocates the modules 
in the r i p p l e c o u n t  description is expressed by a predicate f o u r t h ( p )  tha t  
is true when the position variable p takes values 3, 7, 11,. , . .  Internal bit 
vector variables (Cep, Cet and Tc) represent the vectors of intermediate 
control values to be propagated between neighbouring 4-bit modules. The 
rippling of the terminal count �9 to the enabling control lines �9 and 
@cet of the next  module follows the solution indicated in Figure 5. 

The equivalence between this implementation and the behavioral spec- 
ification speccoun t  (or, equivalently, the parameterized implementation 
count)  can be proven for all counters whose datapath is a multiple of 4- 
bit: 

(fourth(S) => 
(ripplecount(@pen,@cep,@cet,@srn,I,O,CldO,�9 <=> 

speccount(~pen,@cep,~cet,@srn,I,O,OldO,~tc))) 

Mona verifies that thisis a tautology in 100 s CPU. 

Note that the design ofthe outer unitis truly hierarchical: we do not need 

6Fan-in is the number of input lines to a gate, fan-out is the number of gates driven 
by its output. 
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Data-input 
u m  

SRPE CEP CET 

FIGURE 5. Hierarchical implementation of the 4n bit counter 

to know any interna of the 4-bit cells. The verification at this stage ensures 
the correct connection of the global control and data inputs and outputs to 
and from each 4-bit module, independently e.g. also of parameter names. 
A change to an implementation in terms of 8-bit cells would only require a 
definition of an eigth(p) function and of the corresponding distribution of 
data inputs and outputs in bunches of 8. This could be generated as well 
from a HDL description. 

5 Fault Detection for Parametric Hierarchical 
Designs 

Mona supports a natural fault detection and diagnosis also for parametric 
hierarchical hardware designs. This is known to be a difficult problem: the 
hierarchical structure, intended to yield clarity and transparency, compli- 
cates error detection, as the evidence of the faulty behaviour may lie deep 
inside the modules used in the hierarchical descriptions. This applies in 
particular to induction-based verification methods. 

In order to demonstrate how our approach covers this class of errors, 
we try to simplify the structure of the parametric hierarchical counter: 
"rather than rippling the control signals between the modules, we connect 
CEP directly to the TC of the preceding module. The attempt to verify the 
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Theorem 

speccount r count 
speccount r count4bit 
speccount r ripplecount 

Flat 
15 
8 

100 

Verification 
Library Based 

TABLE 1. Summary of verification results: CPU times in s 

implication wrt. the specification 

four th (S)  => 
(ripplecount-direct (�9 ~cep, @cet, Csrn, I, O, OldO, @tc) 

=> speccount (@pen, @cep, @cet, ~srn, I, 0,01d0, @tc) ) ) 

yields the counterexample shown in Figure 2 (right). A quick analysis im- 
mediately reveals the problem: according to the specification, the selected 
operation is hold, which is correctly executed by the first 4-bit slice, while 
the second (and all the subsequent ones) performs an increment! 

The change from one legal operation to another legal operation in a 
portion of a hierarchical parametric circuit is known to be a hard to detect 
class of faulty behaviours, but it is here easily covered. The counterexample 
reports values which distinguish the behaviour of the implementation and 
of the specification. The problem is here due to the Tc, which is set by 
the first module and it is erroneously propagated to both Cep and Cet of 
the second; hence the second module receives the op-code of the increment 
operation. 

Trying to establish equivalence rather than implication leads to another 
counterexample (Figure 2 (left)), which violates the converse implication. 

Interestingly, since the verification of a formula works by construction 
of its full semantics in terms of the corresponding minimal automaton, the 
cost of the error detection is independent of the fault class. In particular, 
faults in the data path are not more expensive to detect than faults in 
the control part. A more detailed discussion of the automatic generation of 
counterexamples for test and diagnosis purposes can be found in [22]. 

6 Evaluation and Future Work 

The verification results reported in Table 1 dearly show the advantages 
of a library-based verification approach. The semantics of logic predicates 
can in fact be computed separately and stored as BDDs in a library (see 
section 3.1), so that predicates must only be evaluated once, and can be 
referenced in the course of a verification at virtually no cost. Already in the 
case of the considered counters the availability of the precompiled predi- 
cates accounts for performance improvement factors (flat vs. library based 
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verification) up to 20. This feature suggests the scalability of the proposed 
approach to quite more complex verification problems. 

The logic and the verification method presented here at the gate and 
register-transfer level allow us to capture in a common framework a wider 
spectrum of abstraction levels, ranging from switch to gate, register trans- 
fer, and architecture or protocol. In fact, by proceeding hierarchically in 
a library-based way, verification is only necessary relative to the few basic 
components of each abstraction level, thus avoiding completely the need of 
handling large circuits at low abstraction levels. 

By modelling hardware primitives as relations, rather than functions, we 
capture both ends of the spectrum, where bidirectionality of the signals 
plays a central role. Our formalism can not only express the functionality 
of transistors, buses, and the like, but also diverse kinds of operators, func- 
tions, and predicates, useful in specifying their behavior. For example, one 
may define temporal operators and reason about time dependent specifi- 
cations [3] or synchronization properties of distributed systems [18] whose 
modelling is similar to the one adopted for sequential parametric hardware. 
The possibility of hiding completely to the end user the interna of Mona and 
of its input language once they are integrated into a CAD design environ- 
ment is a central feature for the practicability of this verification method 
in an industrial environment. 
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1 Descriptions of the Synchronous Counters 

In the following examples gates and modules are encoded as relations over 
booleans as in this fragment of the basic library: 

notrel(~a,@b) = (-@a) <=> ~b; 
andrel(�9 = (�9 & ~b) <=> ~c; 
orrel(Qa,%b,r = (r I @b) <=> ~c; 

1.1 The 4-bit Basic Cell of the Counter 

The structural implementation of the 4-bit basic cell of the synchronous 
counter is formalized in mona as the following relation over its external 
ports �9 ecep, @cet, ~srn, ~tc, �9177 ~i I, @• �9177 �9 �9 I, @02, @03 

and the previous state values �9 ... �9 

count4bit (~pen, @cep, @cet, @srn, %to, @s O, ~i I, ~i2, ~i3, 
QoO, Qo:l., ~o2, @o3, ~oo0, ~oo I ,  @0o2, �9 = 

(Ex ~pe: Ex @ep: Ex ~penl: Ex ~et:  # decode operat ion  
(notre1 (~pen,~pe) ~ and3rel  (~pen, Qcep,@cet,@ep) & 
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andrel(@cep,Qcet,Qet) k notrel(r k 
(Ex @gaO: Ex QgbO: Ex QgcO: Ex @giO: Ex QhO: # se t  t s t  output 

andrel(~pe,@iO.@giO) k notrel(@et,~hO) k 
andrel(-QooO,~ep,~gaO) k and3rel(OhO,r k 
or3rel(@gaO,~giO,~gbO,@gcO) k andrel(%srn,%gcO,r k 

(Ex @gal: Ex @gbl: Ex @gcl: Ex @gil: Ex @hl: # set 2nd output 
andrel(Qpe,@il,Qgil) k nandrel(@ooO,~et,r k 
and3rel('@ool,QooO,Oep,@gal) k and3rel(@hl,%penl,Qool,Qgbl) k 
or3rel(Qgal,@gil,@gbl,Qgcl) k andrel(@srn,@gcl,@ol)) k 

(Ex Qga2: Ex @gb2: Ex @gc2: Ex ~gi2: Ex ~h2: # se t  3rd output 
andrel(~pe,~i2,@gs k nand3rel(@ooO,@oo1,~et,Qh2) k 
and4rel('~oo2,@ooO,@ool,@ep,@ga2) k 
and3rel(%h2,~penl,Ooo2,0gb2) & 
or3rel(@ga2,~gi2,Qgb2,@gc2) k andrel(Qsrn,@gc2,~o2)) k 

(Ex @ga3: Ex Qgb3: Ex @go3: Ex r163 Ex Qh3: # se t  4th output 
andrel(Qpe,@i3,~gi3) k nand4rel(QooO,Qool,@oo2,~et,Ch3) k 
and5rel('@oo3,@ooO,~ool,Qoo2,~ep,@ga3) k 
and3rel(@h3,@pen1,@oo3,%gb3) k 
or3rel(~ga3,@gi3,@gb3,@gc3) k andrel(~srn,~gc3,~o3)) k 

(Ex e.O: Ex @~1: Ex e~2: Ex e~3: # set t c  
notrel(~~ooO,~O) k notrel('~ool, ~I) k notrel('@oo2,@~2) k 
notrel('eoo3,@~3) k andSrel(@~O,~l,e~2,C~3,~cet,~tc))); 

This formula directly encodes the structure of the circuit and could be 
automatical ly generated from a description of this module in a gate-level 
hardware description language. 

1.2 The Family of Parametric Counters 

The parametr ic  structure of the family is formulated in a top-down fashion 
and organized according to functional units: 

count (@pen, @cep, e c e t ,  @srn, I ,  0, OldO, @tc) = 
(Ex Qpe: Ex Qep: Ex �9 Ex Qet: 

notrel (@pen, ~pe) k and3rel (Qpen, @cep. ~cet, ~ep) 
k andrel (@cep, @cet, @et) k notrel (@pe,Qpenl) 
k computebit (~pe, @ep, @et, ~penl, @cet, @srn, I, 0,01dO) 
k Ex Qtmp: n_invand($.compl(OldO),Otmp) k andrel(~mp,r ; 

The 4 par ts  of the above definition 1) declare the ports  as booleans, which 
correspond to values on internal wires; 2) compute internal signals which 
decode the selected operat ion (this is identical to the 4-bit version); 3) com- 
pute the new value of the ou tpu t / s t a t e  by means of the 
computebit relation, and 4) compute the terminal count �9 using the 
auxiliary relation 

n_invand(I,@o) = @o <=> All j : (j notin I); 

which defines an n-bit inverted and gate. 
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Dealing with the first slice as a special case (having no predecessors 
implies a different internal structure, which could be reduced to the generic 
one with the introduction of 1-input gates), the computation in a generic 
slice is defined as follows: 

computebit (@pe, @ep, ~et, @pen1, @cet, @srn, I ,  0, OldO) = 
(Al l  p: Ex @h: Ex @ga: Ex @gb: Ex @gc: 

i f ( p  = O, (no t re l (@et ,@h)) ,  
(Ex @trap: n_and(p -o  1,OldO,@tmp) & 

nandre l  (@tmp, @et, ~h) ) ) 
& if(p = 0, (andrel(@ep,notsetp(0,01d0),@ga)), # set GA 

(Ex @trap: n_and(p -o 1,01d0,@tmp) & 

and3rel (@imp, not setp (p, 01d0), @ep, @ga) ) ) 

& and3rel (@h,@penl,setp (p,OldO) ,@gb) # set GB 

& (Ex @gi: andrel(setp(p,I),@pe,@gi) # set GC 

& or3rel (@ga,@gi,@gb,@gc)) 
and re l (@gc ,@srn , se tp (p ,O) ) )  ; # s e t  0 

#compute one bit 

1.3 A Hierarchical Family o/4-bit  Counters 
The partitioning of the datapath in 4-bit portions is described by the pred- 
icate f o u r t h ( p )  t h a t  is t rue  when the  pos i t ion  var iable  p t akes  values  
3 ,7 ,  1 1 , . . . .  

fourth(p) = (Ex S : (0 notin S & 0+I notin S & 0+9 notin S & 

(All p : (p >= 0+3 => 

(p in S <=> (p -o I notin S & p -o 2 notin S & 

p -o 3 notin S))))) 

& p in S); 

ripple count (@pen, @cop, @c et, @srn, I, G, 01d0, @t c) = 

(Ex Cep: Ex Cet: Ex Tc: 

(All p: fourth(p) => 

count4bit(@pen,p in Cep,p in Cet,@srn,p in Tc, 

p -o 3 in I, p -o 2 in I, p -o I in I, p in I, 
p -o 3 in 0, p -o 2 in 0, p -o I in 0, p in (], 

p -o 3 in 01d0, p -o 2 in 01d0, 

p -o I in OldO, p in OldO) & 

(-(p=S) => (andrel(p in Tc,@cep,p+4 in Cep) & 

(p+4 in Cet <=> p in To))) 

(0+3 in Cep <=> @cep) & 

(0+3 in Cet <=> @cet) & 
(@tc <=> ($ in Tc)))); 

Every t ime f o u r t h ( p )  holds, a coun t4b i t  cell is instantiated. I t  is connected to 
the preceding 4 input  and output  ports  and it computes the counter relation over 
these values. The rippling of the terminal  count r  to the enabling control lines 
@cep and @cet of the next module follows the solution indicated in Figure 5. 
Finally, the  internal control signals CEP and CET are connected to the global ones 
and the global terminal  count is defined to be the last position of TC. 


