
Fully Automat ic Verification
and Error Detect ion for
Parameterized Iterative
Sequential Circuits

Tiziana Margaria*

ABSTRACT The paper shows how iterative parametric sequential circuits,
which are most relevant in practice, can be verified fully automatically. Key
observation is that monadic second-order logic on strings provides an ade-
quate level for hardware specification and implementation. This allows us
to apply the corresponding decision procedure and counter-model gener-
ator implemented in the Mona verification tool, which, for the first time,
yields 'push-button' verification, and error detection and diagnosis for the
considered class of circuits. As illustrated by means of various versions of
counters, this approach captures hierarchical and mixed mode verification,
as well as the treatment of varying connectivity in iterative designs.

1 Motivation

A clear trend towards reuse of existing designs is the emergence of paramet-
ric designs in standard libraries [13]. While such "families of circuits" have
been already popular in the hardware verification community for years,
where they are the best examples for induction-based reasoning in the hard-
ware application domain, industrial practice did not feature parametric de-
signs in standard libraries because of lack of consolidated methods for their
lull-automatic t reatment in the design lifecycle. Thus the pressure towards
fully automated methods for the analysis, verification, and fault detection
of parametric circuits and their specifications grows with the increasing
demand for design reuse. Unfortunately, the standard automata theoretic
techniques of the hardware community fail here, because the t reatment of
automata of unbounded size is required. At this stage, Basin and Klarlund
discovered that monadic second-order logic on strings, although 'hopeless'
from the complexity point of view, is well-behaved in many practical appli-
cations, and, in particular, well-suited for the fully automatic verification of

*Fakult~t f'dr Mathematik und Informatik, Universitiit Passau, Innstr. 33, 94032 Pas-
sau (D), tel: +49 851 509.3096, fax: +49 851 509.3092, ~iz iana@fmi.tmi-paasau.dl

259

parametric combinational circuits and of the timing properties of a D-type
flip-flop [3]. This general observation led to the development of the Mona
verification tool [18], whose kernel consists of a non-elementary decision
procedure for monadic second-order logic on strings.

In this paper we concentrate on sequential circuits, the class of circuits
with the most practical relevance for CAD design, and in particular on the
uniform treatment of whole families of the parametric iterative kind.

�9 Sequential circuits differ from combinational ones for the presence
of clocked registers, or, more generally, state holding devices. Their
inpu t /ou tpu t behaviour over time is usually modelled as a Finite
State Machine [19], describing the values taken by the state holding
elements and by the outputs over time. The standard model of time
is discrete, with one observation point for each clock cycle.

�9 Parametr ic circuits are actually families of circuits ranging over one
or more dimensions, like the width of the datapath as in the n-bit
synchronous counter of Section 4.

�9 Iterative circuits exibit regularities of their structures along one di-
mension, e.g. pipelines or one-dimensional systolic arrays.

Parametric circuits are called iterative when the parametrization involves
one dimension only. Examples include n-bit counters, which are sequential,
the n-bit ALU of [3], which is combinational, but also the class of systolic
arrays called "cellular automata" , pipelines, etc..1. For this class of circuits,
we

�9 show how they can be fully automatically verified,

loosen the standard hypothesis of constant connectivity, which is in-
herent to most of the known approaches (see next section), showing
how to deal with variations of the connectivity between adjacent basic
cells as long as these are regular in an informal sense, and finally

illustrate the impact of the diagnostic features offered by the Mona
system on fault detection and diagnosis for hierarchical parameterized
systems.

Fully automatic approaches can be integrated within existing design envi-
ronments as 'black boxes' that can be used without additional expertise
from the user. In particular, this also applies to Mona, which we integrated
in METAFrame, a general environment for the analysis, verification and con-
struction of complex systems.

1Grid structures where parameters interact (needed e.g. to handle parameterized
multipliers) exceed this s chema and cannot be handled in this approach.

280

The remainder of the paper is organized as follows. After a summary of
related literature in Section 2, Section 3 sketches the background for the
proposed verification method. Sections 4 and 5 illustrate respectively the
verification and the fault detection and diagnosis for sequential parametric
iterative designs, and finally Section 6 presents a first evaluation.

2 Related Work

Traditional approaches to parametric hardware verification with formal
techniques resort to general purpose methods based on inductive reasoning
within either first or higher-order logic. First order logic based theorem
provers such as Boyer's and Moore's NQTHM [28, 17, 29], or the Larch
Prover [1] have been used for years to handle parametric designs, as well as
several higher order logic systems like HOL [14, 8, 27], VER.ITAS [16], or
NUPRL [10, 4], and there are studies which compare both approaches [2]. In
all of them, verification becomes an activity bound to interactive, computer
assisted theorem proving. Thus the user must employ tactics (as in the
HOL system) or suggest appropriate lemmas. While such approaches are
general and quite powerful, their use is mainly restricted to verification
experts as opposed to engineers and CAD designers. Also the approaches
of [35, 32, 7, 20, 36] for model-checking, language containment, and process
verification require interaction.

We know of two approaches to fully automate the verification of parametric
circuits. They are based on symbolic methods:

Rho and Somenzi propose methods to automatically derive invariants
from the structure of iterative sequential circuits by resorting to automata-
based methods and to BDD-based symbolic manipulation of automata [30,
31]. The derivation process proceeds by greatest fixpoint iteration over
state-minimal deterministic representations of the corresponding regular
languages. It is successful whenever it stabilizes up to isomorphism. As no
characteristic criterion for stabilization is given, the precise class of circuits
that can be handled is unclear. The authors only consider circuits with
constant connectivity.

Gupta and Fisher [15] introduce a canonical representation for inductive
boolean functions (IBF) which resembles an inductive extension of BDDs
covering certain classes of inductively-defined hardware circuits. Verifica-
tion is carried out by symbolic tautology checking on the IBF represen-
tation of the circuits. Their results are the most similar to ours, as they
cover essentially the same class of circuits, which they call linear parameter-
ized sequential circuits. However, besides being complicated, the required
coding in a special inductive format has the following drawbacks:

�9 The coding is bound to a very fine-grained analysis of the recursion

261

pat tern and does not directly reflect the structure of the original
description. Thus diagnostic information would require to re-establish
the connection to the original description. 2

�9 The t reatment of parametric outputs is very tricky and leads to com-
plicated representations of hierarchical structures.

In contrast, our approach allows a quite straightforward structure-preserving
representation of the argument circuits and therefore good support for error
diagnosis (Section 5). Moreover, as will be illustrated in the examples, no
additional effort is required to t reat parametric outputs. This is achieved
by using Monadic Second-Order logic on Strings (M2L(Str)) for specifica-
tion, which Alonzo Church proposed already 30 years ago as an appropriate
formalism for reasoning about bitvectors [9]. In fact, this logic is decidable,
however, only in non-elementary time: the worst-case complexity is a stack
of exponentials of height proportional to the size of the formula, a good rea-
son for it having being considered impractical so long. Fortunately, relevant
problems are usually far better behaved and can be solved automatically in
reasonable time 3 . The examples of this paper required CPU times ranging
from fractions of a second to a few minutes.

3 Background

3.1 The Verification Scenario

The architecture of our verification setup (illustrated in Figure 1) is based
on the cooperation between Mona [18] and the METAFrame environment [33].
As circuit descriptions given in a Hardware Description Language can be
first translated in the target logic, along the lines introduced in [11, 23, 25] 4,
proofs can be carried out at the logic level and entirely automatically by
means of Mona. The result, in form of an automaton or of a minimal coun-
terexample, can be visualized as a graph within the METAFrame environ-
ment. The user may interact with both systems simultaneously as illus-
t ra ted by Figure 2. Currently, MF~TnFrame provides the graphic facilities
for the display of the results delivered by Mona. It also allows the user to
investigate properties of the graphs by means of hypertext inspectors for
nodes and edges.

Mona is a verification tool for a second order monadic logic. Predicates
are defined as logic formulas and transformed into minimal automata. The

2perhaps this is the reason for not being considered in the paper.
3The so popular BDD encodings are also in general exponential, but large classes of

hardware circuits have manageable polynomial representations.
4In these approaches the semantics of Register-Transfer and gate level descriptions

was expressed in terms of first-order logic formulas.

262

METAFrame

FIGURE 1. The verification scenario

computed automata are persistent objects, that is they are computed only
once and stored in a library with their BDD structure. Later references to
the predicate cause the precomputed automaton to be loaded and reused.
Hence definitions constitute a library of reusable components which re-
main available for later sessions and the persistency of the precomputed
automata supports compositionality with no additional cost: since the au-
tomata constitute the semantics of the hardware objects, once the equiva-
lence between two logic objects has been proved they become semantically
indistinguishable. In particular, a specification can be then replaced by its
implementation (compositional verification) and structural descriptions of
a module can be replaced by their behavioral counterpart (mixed-mode
verification).

3.2 The Specification Language

The monadic second-order logic on strings (M2L(Str)) is one of the most ex-
pressive decidable logics known, and it precisley captures regular languages
(see [34]). For its syntax we follow [18]. The basic operators are reported
in Figure 3, where we distinguish logic terms denoting positions t, string

r~

o~

c~

264

t::= o l $ 1 p l t + o i
T : : = all I P I C(T) I T1 U T2
F : : = t t l t~ = t2 I h < t= 1 7"1

All p: F I All P: F
= T 2 1 t i n T I - ~ F I F ~ & F 2 1

FIGURE 3. A basic syntax for M2L(Str)

expressions T, and formulas F:

First-order expressions t describe string positions (i.e. bitvector ad-
dresses) and are built using constants 0 (the starting position), $ (the
final position), first-order variables p, and the operator +o which de-
notes addition modulo the string length. Here i ranges over natural
numbers.

Second-order expressions T describe strings (i.e. bit vectors) in terms
of sets of positions whose value is 1 in the string. For instance, all
represents strings whose elements are all 1 and union computes the
union of the positions of two strings where elements are 1 and C (T)
denotes the complement of string T. Here, P ranges over string vari-
ables.

�9 Formulas are interpreted over strings, which correspond to bitvec-
tors of finite, but not necessarily precised length. They have their
expected meaning. For example, the conjunction of two formulas is
true when both formulas are true. The formula t in T is true when
the position denoted by the interpretation of t is "set" (i.e., 1) in the
string interpreting T. Quantification is possible over positions and
over strings.

Note that many connectives given here, like e. g. position variables and their
connectives, are only included for convenience since they may be encoded
within the logic using second-order variables. Internally, Mona uses such an
encoding. Similarly, dual connectives like, e.g.~, the empty string empty,
string disjunction U, implication ~ , equivalence <=}, existential quantifica-
tion 3, are available, as well as a short form for Boolean variables, repre-
sented as �9 over which quantification is possible too. Predicate definitions
are equalities terminated by semicolons, and comments are introduced by
the symbol #.

As an example, the following formulas

if(@cond, ~then, @else) = (@cond => @then) & (~@cond => @else);

inc(Old, New) =

265

if (Old = all,

New = empty,

Ex j : j notin Old & (All k : k < j => k in Old) &

All 1 : (i < j => 1 notin New) &

(i = j => 1 in New) &

(i > j => (i in Old <=> 1 in New)));

define, respectively, a predicate for the usual i f - t h e n - e l s e construct,
and a predicate inc corresponding to the bitvector increment operation by
a simple case analysis. If 01d, the bitvector we are incrementing, is all ones
(i.e., a l l positions are set) then the result, New, is all zeros (i.e., empty
positions are set). Alternatively, there exists a least position j which is
zero (i.e. no t in 01d). In this case the increment operation should clear
all the smaller positions in New, set this position, and leave the rest un-
changed. This predicate will be used in the specification of the counter in
the following section.

Interpretations of formulas are constructed by converting formulas to
automata as described in [18]. For any formula r that is not a tautology,
a minimal length counterexample can be extracted from the corresponding
automaton. This feature is exploited in Sect. 5 for fault detection, diagnosis
and testing.

4 Verification of Parametric Iterative Sequential
Circuits

We illustrate the flexibility of parameterization allowed in M2L(Str) by
giving a behavioral specification, formalizing several architectures of coun-
ters based on the well known 74LS163 4-bit counter with enable and syn-
chronous clear, and verifying their correctness.

The same family of counters had been already considered in [24, 26, 25]
to study the impact of semantic data abstraction and compositionality in
the hierarchical verification of counters of increasing but given word size.
There, the semantics had been given in first order logic, and the (fully
automatic) verification had been carried out by rewriting and resolution
with the OTTER theorem prover. However, this approach was unable to
deal with a parametric version of the implementation, a limitation which
can be overcome in the fashion described in this paper.

The following four subsections discuss verification problems of increasing
difficulty:

1. the parameterized behavioral specification of the counter, which is
used to verify the correctness of all the proposed design architectures,

2. the implementation of the 4-bit basic cell, which illustrates how to
deal with standard sequential circuits,

266

3. a parameterized n-bit version of it, which defines a family of iterative
sequential circuits. This modelling requires the additional ability to
handle variable connectivity, and finally

4. the hierarchical design of a 4xn-parameterized counter constructed
as a cascade of n 4-bit modules, where iteration is needed at the
hierarchical level, and ranges over the modules.

While induction-based methods are tailored for case 3, but have difficulties
with case 2, automata-based methods are tailored for case 2, but fail for
case 3. Case 4, being a mixture of 2 and 3, requires a specific and often
intricate user interaction in all known approaches. - The handling of faulty
designs is delayed to Section 5.

4.1 The Behavioral Specification

The specification defines the behavior of the circuit in terms of its in-
put/output function independently of the word length. Its control part
selects one of the four possible operations (clear, parallel_load, increment,
no_op) according to the values of the control signals, and its data path
simply consists of a data register with synchronous clear. Due to the pos-
sibility in any state (or data register configuration) of loading any other
configuration, transitions are possible between any pair of states.

In [12] the specification is given by the following mode select table and
expression for the terminal count Tr

SRn PEn CET CEP Action (Effect)
L X X X Reset (Clear)
H L X X Load (I -~ O)
tt H H H Count (Increment)
H H L X No Change (Hold)
H H X L No Change (Hold)

t c = I o A I 1 A I 2 A I 3 A C E T (*)

We may formalize this in M2L(Str) in a fairly direct manner. The func-
tional behavior of the parameterized counter is defined by a direct encoding
of this operation select table and of the additional logic equation. To model
it, it is sufficient to require the consistency of its behavior over any two con-
secutive time units: for each operation, the value of the generated output O
(which in this simple example coincides with the new state) and of the ter-
minal count t c must be consistent with the previous output/state 01dO, the
current input I and the current values of the control signals as prescribed
by the above table. Note that this modelling turns out to be similar to the
one adopted in [18] for the dining philosophers with encyclopedia. Both
model essentially an (infinite) family of state transition function. Hard-
ware, however, usually requires an additional function in order express the

267

output values at any clock cycle as a function of the current state for Moore
machines, and of the input and the current state for Mealy machines. For
the counter, the output function is simply the identity.

The following specification is implicitely parameterized over the length of
the datapath (strings I, 0, 01d0) and uses the predicates i f and inc which
belong to the basic library and have been already illustrated in the previous
section.

speccount (@pen, �9169169 I, O, OldO, @tc) =
(if(~@srn,(All p: p notin 0),

if('@pen,(All p: (p in I <=> p in 0)),
if (and (@cet, @cep), inc (OldO, O),

(All p: (p in OldO <=> p in 0)))))
(@tc <=> (All j: j in OldO & @cet)));

In the following we will concentrate on the relevant phenomena of each
implementation style, and limit the Mona syntax to the minimum. The
complete descriptions, essentially due to David Basin, are collected in Ap-
pendix 1.

4.2 Verification of the Basic Cell

The structure of the gate-level implementation of the 74LS 163 4-bit counter,
as found in [12], is directly reflected in the structure of the predicate
count4bi t defined in Appendix 1.1. Its automatic generation from a de-
scription in a Hardware Description Language such as, e.g., VHDL [21],
ISPS [5] or CASCADE [6] would be straightforward.

Assuming that the input strings are all of length 4 (so their last position, $,
is 3), the equivalence of the parameterized specification, restricted to 4-bit
strings, with the 4-bit implementation is stated as

($ = 0+3 =>

(count4bit(@pen,@cep,~cet,@srn,�9 in 1,0+1 in 1,0+2 in I,
0+3 in I,O in 0,0+I in 0,0+2 in 0,0+3 in 0,0 in OldO,
0+I in 01d0,0+2 in OldO,0+3 in OldO) <=>

speccount2 (%pen, @cep, ~cet, @srn, I, O, OldO, @tc)))

Mona proves this equivalence in 15 s CPU on a SparcStation 20.

4.3 The Iterative Counter: Describing Variable Connectivity

The structure of the n-bit generalization of the counter as shown in in
Figure 4 individuates a parametric iterative family of modulo 2 n counters.
Its formalization of in a top-down fashion is reported in Appendix 1.2.

Already looking at the description of the 4-bit implementation, we may
have noticed that the bit slices do not have all the same inputs/outputs, as

2 6 8

![.'? i!!:!:!iiiiiiiii!iiiii!ii!ii!::i~ ' i:!:i!ii!ii!ii!i!!ii!ii!ii!i!!iiiii!ii!ii!iiiii!!i!ii!ii!ii!ii

CE i" i ' ' ' '~ ~ " ~" : " : " : : :' : ~: ~: : : : : : : : : '

c~. ..:! ! ::::::::::::::::::::::::::::::: ! : T c

.-- �9 -.-: ::.- ...~ .-..-.. .-. - ., ~ (~,~:}.- . - . :..-:... 4 . ~ , s) �9 . (o-p- t �9 |,-. :v-... v ... v v v . ~ t v v v: ~..

L., . - . . . t - , .., -~ H ! . , i

|......-...:. ~ I T I T - J t : : : - v...., v v...~ I - . ~ 1 ~ 1 ~ - - - - - - - :-: :-: -::.::- :
i :: :: :: :: :| :.: :-: :-: :-: :-; :.: 7 :.: :.: :.: :~ |: :-: :-: :-: :.: :.: ... :-..-..-..-....... :....................-.t

�9 ", . ' . . ' . , ' . . I i - , . ' . " . ' . . ' ' . . . ' - i 1..'..'....." . ' , . . - ' . . ' . . ' . . ' . ", . ' . . ' . . . I C P ~ . - . - . _ ~ I I I , . . . - ~ , . ~ , ~ , . . . - : i I I I i :: .~.~,~,- ;. - .. .- - .- -..- .-..-..- .. :
SB.n!':"::~ I I I :::::::::::::::::::::::::::::: I I I I ::

| :-: :-: :-: :-: ?. ::::::::::::::::::::::::::::: ::

i :': ::: :2: :': :~= . . - ================================== I :::

o0 op

,o,s,~ ,0,p-~,~--
AND-gate with parametric input parametric AND-gate with

variable input connectivity

F I G U R , E 4. I m p l e m e n t a t i o n of t h e n - b i t c o u n t e r

i t w o u l d b e u s u a l e .g . i n s y s t o l i c a r r a y s . I n t h e f o r m a l i z a t i o n o f t h e p a r a -

m e t r i c g e n e r a l i z a t i o n , t h e a b i l i t y t o d e s c r i b e p u r e l y r e p e t i t i v e s t r u c t u r e s a s

e .g . i n [31] w o u l d n o t su f f i ce . H o w e v e r , s i n c e s u c c e s s i v e s l i c e s d i f f e r o n l y in

a r e g u l a r m a n n e r , w e a r e s t i l l c a p a b l e t o f o r m a l i z e t h i s c h a n g e o f p a t t e r n

w i t h i n t h e l o g i c i n a n a t u r a l way . 5

A c c o r d i n g t o F i g u r e 4 , e a c h s l i ce r e c e i v e s i n p u t s f r o m all the prev ious

o n e s , i . e . , t h e p t h s l i ce h a s o n e d a t a i n p u t a n d o n e d a t a o u t p u t m o r e t h a n

t h e p - l t h . I n p a r t i c u l a r , t h e t w o i n t e r n a l g a t e s i n d i c a t e d i n b l a c k h a v e a

v a r i a b l e n u m b e r o f i n p u t l i n e s , w h i c h i n c r e a s e s b y o n e u n i t a l o n g t h e n d i -

m e n s i o n . T h i s is c a p t u r e d b y i n t r o d u c i n g t h e r e l a t i o n n a n d (p , I , ~ o) w h i c h

d e f i n e s a n a n d g a t e w i t h a v a r i a b l e n u m b e r o f i n p u t l i n e s c o n t r o l l e d b y t h e

p a r a m e t e r p:

n_and(p,I,@o) = ((@o) <=> (All j : (j <= p => j in I)));

5In fact , th is circuit belongs to the linear parametric class of [15]. It may be model led
by means of the i r T,TBF s t ructures , providing an adequate inductive definition scheme
is at hand.

269

This defines a parameterized family of AND gates, which is used in the
body of the computeb i t relation and thus it occurs in the description of
this family of counters.

We may now prove that this parameterized counter is equivalent to the
specification.

(speccount (~pen, �9 @cet, �9 I, 0,01d0, �9
<=> count (@pen, ~cep, ~}cet, @srn, I, 0, OldO, ~tc))

Mona verifies this equivalence in 8 s CPU. In traditional approaches based
on first or higher-order logic, this would require proof by induction over
the (explicitly formalized) length of the string.

4.4 Hierarchical Parameterized Verification

In practice, the parametric scheme specified above is not a desirable im-
plementation for a family of counters. Having a parameterized number of
wires, the fan-in and fan-out 8 of some internal gates would become too
large already for a small value of n. Real designs require fan-in and fan-out
to be a small constant. A hierarchical implementation of a 4n-bit counter
in terms of a cascade of 4-bit modules (as reported in Figure 5) satisfies
this need, and is easily expressed in the logic.

The formalization in Appendix 1.3 is now parameterized in the number
of 4-bit units and reuses the c o u n t 4 b i t predicate to implement the basic
cells. Rather than using recursion, the iteration which allocates the modules
in the r i p p l e c o u n t description is expressed by a predicate f o u r t h (p) tha t
is true when the position variable p takes values 3, 7, 11,. , . . Internal bit
vector variables (Cep, Cet and Tc) represent the vectors of intermediate
control values to be propagated between neighbouring 4-bit modules. The
rippling of the terminal count �9 to the enabling control lines �9 and
@cet of the next module follows the solution indicated in Figure 5.

The equivalence between this implementation and the behavioral spec-
ification speccoun t (or, equivalently, the parameterized implementation
count) can be proven for all counters whose datapath is a multiple of 4-
bit:

(fourth(S) =>
(ripplecount(@pen,@cep,@cet,@srn,I,O,CldO,�9 <=>

speccount(~pen,@cep,~cet,@srn,I,O,OldO,~tc)))

Mona verifies that thisis a tautology in 100 s CPU.

Note that the design ofthe outer unitis truly hierarchical: we do not need

6Fan-in is the number of input lines to a gate, fan-out is the number of gates driven
by its output.

270

Data-input
u m

SRPE CEP CET

FIGURE 5. Hierarchical implementation of the 4n bit counter

to know any interna of the 4-bit cells. The verification at this stage ensures
the correct connection of the global control and data inputs and outputs to
and from each 4-bit module, independently e.g. also of parameter names.
A change to an implementation in terms of 8-bit cells would only require a
definition of an eigth(p) function and of the corresponding distribution of
data inputs and outputs in bunches of 8. This could be generated as well
from a HDL description.

5 Fault Detection for Parametric Hierarchical
Designs

Mona supports a natural fault detection and diagnosis also for parametric
hierarchical hardware designs. This is known to be a difficult problem: the
hierarchical structure, intended to yield clarity and transparency, compli-
cates error detection, as the evidence of the faulty behaviour may lie deep
inside the modules used in the hierarchical descriptions. This applies in
particular to induction-based verification methods.

In order to demonstrate how our approach covers this class of errors,
we try to simplify the structure of the parametric hierarchical counter:
"rather than rippling the control signals between the modules, we connect
CEP directly to the TC of the preceding module. The attempt to verify the

271

Theorem

speccount r count
speccount r count4bit
speccount r ripplecount

Flat
15
8

100

Verification
Library Based

TABLE 1. Summary of verification results: CPU times in s

implication wrt. the specification

four th (S) =>
(ripplecount-direct (�9 ~cep, @cet, Csrn, I, O, OldO, @tc)

=> speccount (@pen, @cep, @cet, ~srn, I, 0,01d0, @tc)))

yields the counterexample shown in Figure 2 (right). A quick analysis im-
mediately reveals the problem: according to the specification, the selected
operation is hold, which is correctly executed by the first 4-bit slice, while
the second (and all the subsequent ones) performs an increment!

The change from one legal operation to another legal operation in a
portion of a hierarchical parametric circuit is known to be a hard to detect
class of faulty behaviours, but it is here easily covered. The counterexample
reports values which distinguish the behaviour of the implementation and
of the specification. The problem is here due to the Tc, which is set by
the first module and it is erroneously propagated to both Cep and Cet of
the second; hence the second module receives the op-code of the increment
operation.

Trying to establish equivalence rather than implication leads to another
counterexample (Figure 2 (left)), which violates the converse implication.

Interestingly, since the verification of a formula works by construction
of its full semantics in terms of the corresponding minimal automaton, the
cost of the error detection is independent of the fault class. In particular,
faults in the data path are not more expensive to detect than faults in
the control part. A more detailed discussion of the automatic generation of
counterexamples for test and diagnosis purposes can be found in [22].

6 Evaluation and Future Work

The verification results reported in Table 1 dearly show the advantages
of a library-based verification approach. The semantics of logic predicates
can in fact be computed separately and stored as BDDs in a library (see
section 3.1), so that predicates must only be evaluated once, and can be
referenced in the course of a verification at virtually no cost. Already in the
case of the considered counters the availability of the precompiled predi-
cates accounts for performance improvement factors (flat vs. library based

272

verification) up to 20. This feature suggests the scalability of the proposed
approach to quite more complex verification problems.

The logic and the verification method presented here at the gate and
register-transfer level allow us to capture in a common framework a wider
spectrum of abstraction levels, ranging from switch to gate, register trans-
fer, and architecture or protocol. In fact, by proceeding hierarchically in
a library-based way, verification is only necessary relative to the few basic
components of each abstraction level, thus avoiding completely the need of
handling large circuits at low abstraction levels.

By modelling hardware primitives as relations, rather than functions, we
capture both ends of the spectrum, where bidirectionality of the signals
plays a central role. Our formalism can not only express the functionality
of transistors, buses, and the like, but also diverse kinds of operators, func-
tions, and predicates, useful in specifying their behavior. For example, one
may define temporal operators and reason about time dependent specifi-
cations [3] or synchronization properties of distributed systems [18] whose
modelling is similar to the one adopted for sequential parametric hardware.
The possibility of hiding completely to the end user the interna of Mona and
of its input language once they are integrated into a CAD design environ-
ment is a central feature for the practicability of this verification method
in an industrial environment.

Acknowledgements
The author is indebted to Michael Mendler and Claudia Gsottberger for
their precious contribution in discussions and in the final realization of
the case studies, and to Falk Schreiber, who helped combining Mona and
M~TAFrame. Thanks are also due to David Basin and Nils Klarlund for
earlier discussions, help in getting acquainted with Mona, and for their
initial implementation of the counter and other examples in Mona.

7 REFERENCES

[1] M. AUemand: "Formal verification of characteristic properties: Proc.
TPCD'94 (Theorem Provers in Circuit Design - Theory, Practice, and
Experience), Bad Herrenhalb (D), Sept.'94, LNCS N. 901, pp. 292-297.

[2] C. Angelo, L. Claesen, H. De Man: "A Methodology for Proving Cor-
rectness of parameterized hardware Modules in HOL," Prec. CHDL'91,
MarseiUe (F), April 1991, IFIP Transactions, North-Holland, pp.63-82.

[3] D. Basin, N. Klarlund: "Hardware verification using monadic second-
order logic," Prec. CAV '95, Liege (B), July 1995, LNCS N. 939,
Springer Verlag, pp. 31-41.

273

[4] D. Basin, P. DelVecchio: "Verification o] combinational logic in Nuprl,"
In "Hardware Specification, Verification and Synthesis: Mathematical
Aspects", Ithaca, New York, 1989. Springer-Verlag.

[5] M. Barbacci, G. Barnes, R. Cattell, D. Siewiorek: "The ISPS Computer
Description Language", Tech. Rep. CMU-CS-79-137, Carnegie-Mellon
University, Computer Science Department, Aug. 1979.

[6] D. Borrione, C. Le Faou: "Overview o] the CASCADE multi-level hard-
ware description language and its mixed-mode simulation mechanisms,"
Proc. 7th Int. Conf. on Computer Hardware Description Languages
(CHDL'85), Tokyo (Japan), Aug. 1985.

[7] M. Browne, E. Clarke, O. Grumberg: "Reasoning about networks with
many identical finite state processes," Information and Computation,
81(1), Apr. 1989, pp. 13-31.

[8] A. Camilleri, M. Gordon, T. Melham: "Hardware verification using
higher-order logic," In D. Borrione (ed.),"From HDL Descriptions to
Guaranteed Correct Circuit Designs", pages 43-67. Elsevier Science
Publishers B. V. (North-Holland), 1987.

[9] A. Church: "Logic, arithmetic and automata," Proc. Int. Congr. Math.,
Almqvist and Wiksells, Uppsala 1963, pp. 23-35.

[10] R. L. Constable et al.: "Implementing Mathematics with the Nuprl
Proof Development System," Prentice-Hall, Englewood Cliffs, N J, 1986.

[11] H. Eveking: "Axiomatizing Hardware Description Languages," Int.
Journal of VLSI Design, 2(3), pp. 263-280, 1990.

[12] "Databook of Analog and Synchronous Components", Fairchild - 1993.

[13] A. de Geus: "High Level design: A design vision for the '90s," Proc.
IEEE Int. Conf. on Computer Design, p.8, 1992.

[14] M. Gordon: "Why higher-order logic is a good formalism]or specifying
and verifying hardware," In G. J. Milne and P. A. Subrahmanyam,
editors, "Formal Aspects of VLSI Design", North-Holland, 1986.

[15] A. Gupta, A. Fisher: "Parametric Circuit Representation Using In-
ductive Boolean Functions," Proc. CAV'93, Elounda (GR), June 1993,
LNCS N. 697, pp.15-28.

[16] F.K. Hanna, N. Daeche: "Specification and verification using higher-
order logic: a case study," In G.J. Milne and P.A. Subrahmanyam, ed-
itors, "Formal Aspects of VLSI Design", pp. 179-213. Elsevier, 1986.

[17] W. Hunt: "Microprocessor design verification," Journal of Automated
Reasoning, 5(4):429-460, 1989.

274

[18] J. Henriksen, J. Jensen, M. Jcrgensen N. Klarlund, R.. Paige, T. Rauhe,
A. Sandholm: "Mona: Monadic second-order logic in practice," Proc. of
TACAS'95, Aarhus (DK), May 1995, LNCS 1019, Springer Verlag, pp.
89-110.

[19] Z. Kohavi: "Switching and finite automata theory", Computer Science
Series, McGraw Hill, New York, NY (USA), 1970.

[20] R. Kurshan, K. McMillan: "A structural induction theorem for pro-
cesses," Proc. 8th ACM PODC Symposium, Edmonton (CAN), Aug.
1989, pp. 239-247.

[21] IEEE: "Standard VHDL Language Reference Manual", 1988, IEEE
Std. 1076-1987.

[22] T. Margaria, M. Mendler: "Automatic Treatment of Sequential Cir-
cuits in Second-Order Monadic Logic", 4th GI/ ITG/GME Worksh. on
Methoden des Entwurfs und der Verifikation digitaler Systeme, Kreis-
cha (D), March 1996, Shaker Verlag.

[23] T. Margaria: "First-Order theories for the verification of complex
FSMs," Aachener Informatik-Berichte Nr.91-30, RWTH-Aachen, Dec.
1991.

[24] T. Margaria: "Efficient RT-Level Verification by Theorem Proving",
IFIP World Congr.'92, Madrid (E), Sept. 1992, North-Holland pp. 696-
702.

[25] T. Margaria: "Verifica formale della eorrettezza del progetto di sistemi
digitali," Dissertazione di Dottorato (in Italian), Politecnico di Torino,
Turin (I), Feb. 1993.

[26] T. Margaria, B. Steffen: "Distinguishing Formulas for Free", EDAC-
EURDASIC'93: IEEE European Design Automation Conference, Paris
(France), February 1993.

[27] T. Melham: "Using recursive types of reasoning about hardware in
higher order logic," In Int. Working ConL on The Fusion of Hardware
Design and Verification, pp. 26-49, July 1988.

[28] L. Pierre: "The Formal Proof of the "Min-max" sequential benchmark
described in CASCADE using the Boyer-Moore theorem prover," Proc.
IMEC-IFIP Worksh. on Applied Formal Methods for Correct VLSI De-
sign, Leuven (B), Nov. 1989, pp. 129-149.

[29] L. Pierre: "An Automatic Generalization Method for the Inductive
Proof of Replicated and Parallel Architectures," Proc. TPCD'94, Bad
Herrenhalb (D), Sept.'94, LNCS N: 901, pp. 72-91.

275

[30] J.K Rho, F. Somenzi: "Inductive Verification for Iterative circuits",
Proc. DAC'92, Anaheim (CA), June 1992, pp. 628-633,

[31] J.K Rho, F. Somenzi: "Automatic Generation of Network]nvariants
for the verification of Iterative sequential Systems", Proc. CAV'93,
Elounda (GR), June 1993, LNCS N. 697, pp.123-137.

[32] A. Sistla, S. German: "Reasoning with many processes," Proc. LICS'97,
Ithaca, NY, June 1987, pp. 138-152.

[33] B. Steffen, T. Margaria, A. Claf~en. "The META-Frame: An Envi-
ronment for Flexible Tool Management," Proc. TAPSOFT'95, Aarhus
(Denmark), May 1995, LNCS N. 915, Springer Verlag.

[34] W. Thomas: "Automata on infinite objects," In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, vol. B, p. 133-191. MIT
Press/Elsevier, 1990.

[35] P. Wolper: "Expressing interesting properties of programs in proposi-
tional temporal logic," Proc. POPL'86, St. Petersburg, Jan. 1986, pp.
184-192.

[36] P. Wolper, V. Lovinfosse: "Verifying properties o] large sets o] pro-
cesses with network invariants," Proc. Automatic Verification Methods
for Finite Systems, LNCS 407, Springer Verlag, 1989, pp 68-80.

1 Descriptions of the Synchronous Counters

In the following examples gates and modules are encoded as relations over
booleans as in this fragment of the basic library:

notrel(~a,@b) = (-@a) <=> ~b;
andrel(�9 = (�9 & ~b) <=> ~c;
orrel(Qa,%b,r = (r I @b) <=> ~c;

1.1 The 4-bit Basic Cell of the Counter

The structural implementation of the 4-bit basic cell of the synchronous
counter is formalized in mona as the following relation over its external
ports �9 ecep, @cet, ~srn, ~tc, �9177 ~i I, @• �9177 �9 �9 I, @02, @03

and the previous state values �9 ... �9

count4bit (~pen, @cep, @cet, @srn, %to, @s O, ~i I, ~i2, ~i3,
QoO, Qo:l., ~o2, @o3, ~oo0, ~oo I , @0o2, �9 =

(Ex ~pe: Ex @ep: Ex ~penl: Ex ~et: # decode operat ion
(notre1 (~pen,~pe) ~ and3rel (~pen, Qcep,@cet,@ep) &

276

andrel(@cep,Qcet,Qet) k notrel(r k
(Ex @gaO: Ex QgbO: Ex QgcO: Ex @giO: Ex QhO: # se t t s t output

andrel(~pe,@iO.@giO) k notrel(@et,~hO) k
andrel(-QooO,~ep,~gaO) k and3rel(OhO,r k
or3rel(@gaO,~giO,~gbO,@gcO) k andrel(%srn,%gcO,r k

(Ex @gal: Ex @gbl: Ex @gcl: Ex @gil: Ex @hl: # set 2nd output
andrel(Qpe,@il,Qgil) k nandrel(@ooO,~et,r k
and3rel('@ool,QooO,Oep,@gal) k and3rel(@hl,%penl,Qool,Qgbl) k
or3rel(Qgal,@gil,@gbl,Qgcl) k andrel(@srn,@gcl,@ol)) k

(Ex Qga2: Ex @gb2: Ex @gc2: Ex ~gi2: Ex ~h2: # se t 3rd output
andrel(~pe,~i2,@gs k nand3rel(@ooO,@oo1,~et,Qh2) k
and4rel('~oo2,@ooO,@ool,@ep,@ga2) k
and3rel(%h2,~penl,Ooo2,0gb2) &
or3rel(@ga2,~gi2,Qgb2,@gc2) k andrel(Qsrn,@gc2,~o2)) k

(Ex @ga3: Ex Qgb3: Ex @go3: Ex r163 Ex Qh3: # se t 4th output
andrel(Qpe,@i3,~gi3) k nand4rel(QooO,Qool,@oo2,~et,Ch3) k
and5rel('@oo3,@ooO,~ool,Qoo2,~ep,@ga3) k
and3rel(@h3,@pen1,@oo3,%gb3) k
or3rel(~ga3,@gi3,@gb3,@gc3) k andrel(~srn,~gc3,~o3)) k

(Ex e.O: Ex @~1: Ex e~2: Ex e~3: # set t c
notrel(~~ooO,~O) k notrel('~ool, ~I) k notrel('@oo2,@~2) k
notrel('eoo3,@~3) k andSrel(@~O,~l,e~2,C~3,~cet,~tc)));

This formula directly encodes the structure of the circuit and could be
automatical ly generated from a description of this module in a gate-level
hardware description language.

1.2 The Family of Parametric Counters

The parametr ic structure of the family is formulated in a top-down fashion
and organized according to functional units:

count (@pen, @cep, e c e t , @srn, I , 0, OldO, @tc) =
(Ex Qpe: Ex Qep: Ex �9 Ex Qet:

notrel (@pen, ~pe) k and3rel (Qpen, @cep. ~cet, ~ep)
k andrel (@cep, @cet, @et) k notrel (@pe,Qpenl)
k computebit (~pe, @ep, @et, ~penl, @cet, @srn, I, 0,01dO)
k Ex Qtmp: n_invand($.compl(OldO),Otmp) k andrel(~mp,r ;

The 4 par ts of the above definition 1) declare the ports as booleans, which
correspond to values on internal wires; 2) compute internal signals which
decode the selected operat ion (this is identical to the 4-bit version); 3) com-
pute the new value of the ou tpu t / s t a t e by means of the
computebit relation, and 4) compute the terminal count �9 using the
auxiliary relation

n_invand(I,@o) = @o <=> All j : (j notin I);

which defines an n-bit inverted and gate.

277

Dealing with the first slice as a special case (having no predecessors
implies a different internal structure, which could be reduced to the generic
one with the introduction of 1-input gates), the computation in a generic
slice is defined as follows:

computebit (@pe, @ep, ~et, @pen1, @cet, @srn, I , 0, OldO) =
(Al l p: Ex @h: Ex @ga: Ex @gb: Ex @gc:

i f (p = O, (no t re l (@et ,@h)) ,
(Ex @trap: n_and(p -o 1,OldO,@tmp) &

nandre l (@tmp, @et, ~h)))
& if(p = 0, (andrel(@ep,notsetp(0,01d0),@ga)), # set GA

(Ex @trap: n_and(p -o 1,01d0,@tmp) &

and3rel (@imp, not setp (p, 01d0), @ep, @ga)))

& and3rel (@h,@penl,setp (p,OldO) ,@gb) # set GB

& (Ex @gi: andrel(setp(p,I),@pe,@gi) # set GC

& or3rel (@ga,@gi,@gb,@gc))
and re l (@gc ,@srn , se tp (p ,O))) ; # s e t 0

#compute one bit

1.3 A Hierarchical Family o/4-bit Counters
The partitioning of the datapath in 4-bit portions is described by the pred-
icate f o u r t h (p) t h a t is t rue when the pos i t ion var iable p t akes values
3 ,7 , 1 1 ,

fourth(p) = (Ex S : (0 notin S & 0+I notin S & 0+9 notin S &

(All p : (p >= 0+3 =>

(p in S <=> (p -o I notin S & p -o 2 notin S &

p -o 3 notin S)))))

& p in S);

ripple count (@pen, @cop, @c et, @srn, I, G, 01d0, @t c) =

(Ex Cep: Ex Cet: Ex Tc:

(All p: fourth(p) =>

count4bit(@pen,p in Cep,p in Cet,@srn,p in Tc,

p -o 3 in I, p -o 2 in I, p -o I in I, p in I,
p -o 3 in 0, p -o 2 in 0, p -o I in 0, p in (],

p -o 3 in 01d0, p -o 2 in 01d0,

p -o I in OldO, p in OldO) &

(-(p=S) => (andrel(p in Tc,@cep,p+4 in Cep) &

(p+4 in Cet <=> p in To)))

(0+3 in Cep <=> @cep) &

(0+3 in Cet <=> @cet) &
(@tc <=> ($ in Tc))));

Every t ime f o u r t h (p) holds, a coun t4b i t cell is instantiated. I t is connected to
the preceding 4 input and output ports and it computes the counter relation over
these values. The rippling of the terminal count r to the enabling control lines
@cep and @cet of the next module follows the solution indicated in Figure 5.
Finally, the internal control signals CEP and CET are connected to the global ones
and the global terminal count is defined to be the last position of TC.

