
An Improvement of McMillan's
Unfolding Algorithm
Javier Esparza*
Stefan RSmer*
Walter Vogler t

ABSTRACT McMillan has recently proposed a new technique to avoid
the state explosion problem in the verification of systems modelled with
finite-state Petri nets. The technique requires to construct a finite initial
part of the unfolding of the net. McMillan's algorithm for this task may
yield initial parts that are larger than necessary (exponentially larger in
the worst case). We present a refinement of the algorithm which overcomes
this problem.

1 Introduction

In a seminal paper [10], McMillan has proposed a new technique to avoid
the state explosion problem in the verification of systems modelled with
finite-state Petri nets. The technique is based on the concept of net un-
folding, a well known partial order semantics of Petri nets introduced in
[12], and later described in more detail in [4] under the name of branching
processes. The unfolding of a net is another net, usually infinite but with a
simpler structure. McMillan proposes an algorithm for the construction of
a finite initial part of the unfolding which contains full information about
the reachable states. We call an initial part satisfying this property (in fact
slightly stronger one) a finite complete prefix, tie then shows how to use
these prefixes for deadlock detection.

The unfolding technique has been later applied to other verification prob-
lems. In [7, 8, 11] it is used to check relevant properties of speed independent
circuits. In [5], an unfolding-based model checking algorithm for a simple
branching t ime logic is proposed.

Although McMillan's algorithm is simple and elegant, it sometimes gen-

*Institut f/it Informatik, Technlsche Universit~it Mfinchen.
E-maih (e spa r za J roemer }@inf ormat ik . t u-muenchsn, de.
Partially supported by the Teilprojekt A3 SAM of the Sonderforschungsbereich 342
"Werkzeuge und Methoden fiir die Nutzung paxalleler Reclmerarchitekturen".

i Inst i tut f/ir Mathematik, Universit;tt Augsburg.
E-mail: Walter . VoglerQinformat ik .uni-augsburg. d e .

88

crates prefixes much larger than necessary. In some cases a minimal com-
plete prefix has O(n) in the size of the Petri net, while the algorithm gen-
erates a prefix of size O(2n). In this paper we provide an algorithm which
generates a minimal complete prefix (in a certain sense to be defined). The
prefix is always smaller than or as large as the prefix generated with the
old algorithm.

The paper is organised as follows. Section 2 contains basic definitions
about Petri nets and branching processes. In Section 3 we show that McMil-
lan's algorithm is just an element of a whole family of algorithms for the
construction of finite complete prefixes. In Section 4 we select an element of
this family, and show that it generates minimal prefixes in a certain sense.
Finally, in Section 5 we present experimental results.

2 Basic Definitions

2.1 Pe t r i Ne ts

A triple (S , T , F) is a net if S n T = 0 and F C (S x T) kJ(T x S).
The elements of S are called places, and the elements of T transitions.
Places and transitions are generically called nodes. We identify F with its
characteristic function on the set (S • T) U (T • S). The preset of a node
x, denoted by *x, is the set {y E S k) T I F(y, x) = 1}. The postset of x,
denoted by x*, is the set {y e S U T I F(x , y) -- 1).

A marking of a net (S, T, F) is a mapping S --* ~W. We identify a marking
M with the multiset containing M(s) copies of s for every s E S. A 4-tuple

-- (S, T, F, M0) is a net system if (S, T, F) is a net and M0 is a marking of
(S, T, F) (called the initial marking of ~). A marking M enables a transition
t if Vs E S: F(s, t) <_ M(s). If t is enabled at M, then it can occur, and its

occurrence leads to a new marking M ~ (denoted M ~ M~), defined by
M'(s) = M (s) - f (s , t)+ F(t, s) for every place s. A sequence of transitions
~r = t i t s . . . t n is an occurrence sequence if there exist markings M1, M2,
. . . , M , such that

M0 ~ M1 ~2 . . . M n - 1 ~"~ M,

Mn is the marking reached by the occurrence of a, also denoted by M0 ~,
~ln. ~I is a reachable marking if there exists an occurrence sequence ~ such
that M0 ~ M .

The teachability graph of a net system ~ is a labelled graph having the

set of reachable markings of ~ as nodes and the relations ~ , between
markings as edges.

A marking M of a net is n-safe if M (s) < n for every place s. We identify
1-safe markings with the set of places s such that M(s) = 1. A net system
]C is n-safe if all its reachable markings are n-safe.

89

In this paper we consider only net systems satisfying the following two
additional properties:

�9 The number of places and transitions is finite.

�9 Every transit ion of T has a nonempty preset and a nonempty postset.

2.2 Occurrence N e t s

Let (S, T, F) be a net and let xl , z2 E S U T. The nodes xl and z2 are in
conflict, denoted by x l # z 2 , if there exist distinct transitions t l , t2 E T such
tha t *tl n*t~ ~ O, and (t~, z~), (t2, x2) belong to the reflexive and transitive
closure of F. In other words, zl and z2 are in conflict if there exist two
paths leading to z l and x2 which start at the same place and immediately
diverge (although later on they can converge again). For z E S U T, x is in
self-conflict if x # x .

An occurrence net is a net N = (B, E, F) such that:

�9 for every b E B, [~ < 1,

�9 F is acyclic, i.e. the (irreflexive) transitive closure of F is a part ial
o r d e r ,

�9 N is finitely preceded, i.e., for every z E B U E, the set of elements
y E B U E such that (y, z) belongs to the transitive closure of F is
finite, and

�9 no event e E E is in self-conflict.

The elements of B and E are called conditions and events, respectively.
Min(N) denotes the set of minimal elements of B tJ E with respect to the
transitive closure of F.

The (irreflexive) transitive closure of F is called the causal relation, and
denoted by <. The symbol < denotes the reflexive and transitive closure of
F . Given two nodes x, y E B t3 E, we say z co y if neither z < y nor y < x
nor z # y .

2.3 Branching Processes

Branching processes are "unfoldings" of net systems containing information
about bo th concurrency and conflicts. They were introduced by Engelfriet
in [4]. We quickly review the main definitions and results of [4].

Let N1 ---- (S1,7"1, F1) and N2 = ($2,7"2, F2) be two nets. A homomor-
phism from N1 to N21 is a mapping h: $1 U T1 --* $2 t.J T~ such that:

1In [4], h o m o m o r p h i s m s are def ined be tween ne t sy s t ems , i n s t e a d of be tween ne t s ,
b u t th i s is on ly a sma l l t echn ica l difference wi thou t any severe consequence .

90

(a)

(b) s 3 ~ 4

�9 3 U (. 2 '

slt2(~2
(c) s3~4
s1~2
s3~4

FIGURE 1. A net system and two of its branching processes

�9 h(Sx) C & and h(T1) C_ T2, and

�9 for every t E T1, the restriction of h to *t is a bijection between *t
(in N1} and *h(t} (in N2), and similarly for t* and h(t)*.

In other words, a homomorphism is a mapping that preserves the nature
of nodes and the environment of transitions.

A branching process of a net system ~ = (N, M0) is a pair fl = (N',p)
where N' = (B, E, F) is an occurrence net, and p is a homomorphism from
N ' to N such that

(i) The restriction of p to Min(g') is a bijection between Min(g ') and
M0,

(ii) for every el, e2 �9 E, if ' e l = *e2 and p(el) "- p(e2) then el = e2.

Figure 1 shows a 1-safe net system (part (a)), and two of its branching
proc ses (parts (b) (c)).

Two branching processes j31 = (NI,pl) and f12 -- (N2,p2) of a net system
are isomorphic if there is a bijective homomorphism h from N1 to N2 such
that P2 o h = Pl- Intuitively, two isomorphic branching processes differ only
in the names of conditions and events.

It is shown in [4] that a net system has a unique maximal branching
process up to isomorphism. We call it the unfolding of the system. The
unfolding of the 1-safe system of Figure 1 is infinite.

Let /Y' = (N' , p') and fl = (N, p) be two branching processes of a net
system, f f is a prefix of fl if N ' is a subnet of N satisfying

�9 if a condition belongs to N' , then its input event in N also belongs
to N' , and

91

�9 if an event belongs to N ' , then its input and output conditions in N
also belong to N ~.

and p ' is the restriction of p to N ~.

2.4 Conf igurat ions and Cuts

A configuration C of an occurrence net is a set of events satisfying the
following two conditions:

* e � 9 =:~ Ve I < e : e ' � 9 (C is causally closed).

�9 Ve, e' �9 C : - - (e # e ') (C is conflict-free).

A set B ' of conditions of an occurrence net is a co-set if its elements are
pairwise in co relation. A maximal co-set B ' with respect to set inclusion
is called a cut.

Finite configurations and cuts are tightly related. Let C be a finite config-
uration of a branching process 13 = (g , p). Then the co-set Cut(C), defined
below, is a cut:

Cut(C) = (Min(g) U C*) \ *C.

In particular, given a finite configuration C the set of places p(Cut(C)) is
a reachable marking, which we denote by Mark(C).

A marking M of a system ~ is represented in a branching process/3 of
if/3 contains a finite configuration C such that Mark(C) = M. I t is easy to
prove using results of [1, 4] that every marking represented in a branching
process is reachable, and that every reachable marking is represented in
the unfolding of the net system.

For 1-safe systems, we have the following result, which will be later used
in Section 4:

P r o p o s i t i o n 2.1

Let xl and x2 be two nodes of a branching process of a 1-safe net
system. I f xl co x2, then p(Zl) • p(Z2). �9 2.1

Given a cut c of a branching process /3 = (N,p), we define ~ c as the
pair (N',p') , where N ' is the unique subnet of N whose set of nodes is
{x I (?Y e c : x _> y) AVy �9 c : - , (x#y)} and p' is the restriction o f p to the
nodes of N ' . Further, we define p(c) as the multiset containing an instance
of the place p(b) for every b �9 c. The following result will also be used later:

P r o p o s i t i o n 2.2

If~3 is a branching process of (N, Mo) and e is a cut of~3, then ~c is
a branching process of (N,p(c)). �9 2.2

92

3 An Algorithm for the Construction of a
Complete Finite Prefix

3.1 Constructing the Unfolding

We give an algorithm for the construction of the unfolding of a net system.
First of all, let us describe a suitable data structure for the representation
of branching processes.

We implement a branching process of a net system ~ as a list n l , . �9 �9 nk
of nodes. A node is either a condition or an event. A condition is a pair
(s, e), where s is a place of ~ and e the input event. An event is a pair (t, B),
where t is a transition of ~, and B is the set of input conditions. Notice
tha t the flow relation and the labelling function of a branching process are
already encoded in its list of nodes. How to express the notions of causal
relation, configuration or cut in terms of this data structure is left to the
reader.

The algori thm for the construction of the unfolding starts with the
branching process having the conditions corresponding to the initial mark-
ing of ~ and no events. Events are added one at a t ime together with their
output conditions.

We need the notion of "events tha t can be added to a given branching
process".

D e f i n i t i o n 3.1

Let /3 = n l , . . . , n k be a branching process of a net system Z. The
possible extensions of/3 are the pairs (t, B), where B is a co-set of
conditions of/3 and t is a transition of ~ such that

�9 p(B) = ' t , and

�9 /3 contains no event e satisfying p(e) = t and ' e -- B
PE(/3) denotes the set of possible extensions of/3. �9 3.1

P r o c e d u r e 3.2 The unfolding algorithm

i n p u t : A net system ~ = (N, M0), where M0 = { S l , . . . , s,,}.
o u t p u t : The unfolding Unf of ~.
b e g i n
Unf :-- (sl , $) , . . . , (s , , O);
pe :---- PE(Unf);
w h i l e p e # 0 do

append to Unfan event e = (t ,B) ofpe and a
condition (s, e) for every output place s of t;
pe := PE(Unf)

e n d w h i l e
e nd

�9 3.2

93

sl sl sl
t 1 ~ 2 t 1 ~ 2 tl~~ ~)

s2 s2 s2 s2
(a) {b) {c)

FIGURE 2. A 1-safe net system, its unfolding, and a prefix

The procedure does not necessarily terminate. In fact, it terminates if and
only if the input system E does not have any infinite occurrence sequence.
It will eventually produce any reachable marking only under the fairness
assumption that every event added to pe is eventuMly chosen to extend
Unf (the correctness proof follows easily from the definitions and from the
results of [4]).

Construct ing a Finite Complete Prefix

We say tha t a branching process fl of a net system E is complete if for every
reachable marking M there exists a configuration C in fl such that:

�9 Mark(C) = M (i.e., M is represented in fl), and

�9 for every transition t enabled by M there exists a configuration CU{e}
such that e it C and e is labelled by t.

The unfolding of a net system is always complete. A complete prefix
contains as much information as the unfolding, in the sense that we can
construct the unfolding from it as the least fixpoint of a suitable operation.
This property does not hold if we only require every reachable marking
to be represented. For instance, the net system of Figure 2(a) has Figure
2(b) as unfolding. Figure 2(c) shows a prefix of the unfolding in which
every reachable marking is represented. The prefix has lost the information
indicating that t2 can occur from the initial marking. Observe tha t the
prefix is not complete.

Since an n-safe net system has only finitely many reachable markings,
its unfolding contains at least one complete finite prefix. We t ransform the
algori thm above into a new one whose output is such a prefix.

We need some prel iminary notations and definitions:
Given a configuration C, we denote by C @ E the fact that C t2 E is a

configuration such tha t C N E = 0. We say that C ~ E is an extension of
C, and tha t E is a su~x to C. Obviously, if C C C ~ then there is a suffix
E of C such tha t C@ E = C ~.
Let C1 and C2 be two finite configurations such that Mark(C1) = Mark(C2).
I t follows easily from the definitions that ~ Cut(Ci) is isomorphic to the

94

unfolding of ~' = (N, Mark(Ci)), ," = 1, 2; hence,. ~f Cut(C1)~2 and ~ tCut(C2)
are isomorphic. Moreover, there is an isomorphism I~l from ~ Cu (C1) to

Cut(C~). This isomorphism induces a mapping from the finite extensions
of C1 onto the extensions of C2: it maps C1 �9 E onto C2 @ IC:(E).

We can now introduce the three basic notions of the algorithm:

Defini t ion 3.3

A partial order -< on the finite configurations of a branching process
is an adequate order if:

�9 -~ is well-founded,

�9 -~ refines C, i.e. Cx C C2 implies CI -< C2, and

�9 -~ is preserved by finite extensions, meaning that if C1 -< C2 and
Mark(C1) = Mark(C2), then C1 ~ E -< C2 �9 I~(E) .

Defini t ion 3.4 Local configuration

113.3

Defini t ion 3.5 Cut-off event

Let 3 be a branching process and let -< be an adequate partial order
on the configurations of ft. An event e is a cut-off event (with respect
to -<) if 3 contains a local configuration [d] such that

(a) Mark([e]) = Mark([eq), and

(b) [e'] -< It].

�9 3.5

The new algorithm has as parameter an adequate order -<, i.e. every
different adequate order leads to a different algorithm.

A l g o r i t h m 3.6 The complete finite prefiz algorithm

input: An n-safe net system ~ = (N, Mo), where M0 = { S l , . . . , s k) .
output : A complete finite prefix Fin of Unf.
begin
Fin := (s~, 0) , . . . , (sk, 0);
pe := PE(Fin);
cut-off := O;

2It is immediate to prove that [e] is a configuration.

The local configuration [e] of an event of a branching process is the set
of events e' such that e' < e. 2 �9 3.4

95

w h i l e pe # 0 do
choose an event e = (t, B) in pe such tha t [e] is minimal

with respect to -~;
i f [e]N cut-off = 0 t h e n

append to Fin the event e and a condition
(s, e) for every output place s of t;
pe := PE(Fin);
i f e is a cut-off event of Fin t h e n

cut-off := cut-off u{e}
e n d i f

e l se pe := pe \ {e}
e n d i f

e n d w h i l e
e n d

McMillan's algorithm in [10] corresponds to the order

C1 -<m C2:r [Cll < [C2I.

�9 3.6

It is easy to see that -<,~ is adequate.
The reason of condition (a) in the definition of cut-off event is intuitively

clear in the light of this algorithm. Since Mark([e']) = Mark(H), the con-
t inuations of g n f f r o m Cut([e]) and Cut([e']) are isomorphic. Then, loosely
speaking, all the reachable markings that we find in the continuation of
Unffrom Cut([e]) are already present in the continuation from Cut([e']),
and so there is no need to have the former in Fin. The r61e of condition
(b) is more technical. In fact, when McMillan's algorithm is applied to
"ordinary" small examples, condition (b) seems to be superfluous, and the
following strategy seems to work: if an event e is added and Fin already
contains a local configuration [e'] such that Mark(H) = Mark([e']), then
mark e as cut-off event. The following example (also independently found
by K. McMillan) shows that this s trategy is incorrect. Consider the 1-safe
net system of Figure 3.

The marking {s12} is reachable. Without condition (b) we can generate
the prefix of Figure 4.

The names of the events are numbers which indicate the order in which
they are added to the prefix. The events 8 and 10 are cut-off events, be-
cause their corresponding markings {87,89,810 } and {s6, ss, s11} are also
the markings corresponding to the events 7 and 9, respectively. This prefix
is not complete, because {sx2} is not represented in it.

Observe tha t Fin contains all the events of the set cut-off We could
modify the algorithm to remove all these events, and the prefix so obtained
would still enjoy the property that every reachable marking is represented
in it. However, the prefix would not be necessarily complete. Consider for

96

gl

! e2 s3 2

13 t4 i

s6
s7

17 8

110 ell

tg

FIGURE 3. A 1-safe net system

example the net system of Figure 2(a). Algorithm 3.6 generates the branch-
ing process of Figure 2(b), and one of the two events of the process (the
maximal one with respect to ~) is a cut-off event. If this event is removed,
we obtain an incomplete prefix.

We now prove the correctness of Algori thm 3.6.

Proposition 3.7

Fin is finite.

Proof: Given an event e of Fin, define the depth of e as the length of a
longest chain of events
el < ez < . . . < e; the depth of e is denoted by d(e). We prove the
following results:

(1) For every event e of Fin, d(e) ___ n + 1, where n is the number
of reachable markings of E.

Since cuts correspond to reachable markings, every chain of
events ez < e2 < . . . < e,~ < en+z of Unfcontains two events ei,
ej, i < j, such that Mark([ei]) = Mark([ej]). Since [e,] C [ej]
and -< refines C, we have [ei] -< [ej], and therefore [ej] is a cut-
off event of Unf. Should the finite prefix algorithm generate ej,
then it has generated el before and ej is recognized as a cut-off
event of Fin, too.

(2) For every event e of Fin, the sets ' e and e* are finite.

By the definition of homomorphism, there is a bijection be-
tween p(e)* and p(e*), where p denotes the homomorphism of
Fin, and similarly for "p(e) and p(*e). The result follows from
the finiteness of N.

97

s2 2 5

s6 9 s6 t 7 ~ 8 s9

~1o U U ~ ,~o U U , ~

FIGURE 4. A prefix of the net system of Figure 3

(3) For every k _> 0, Fin contains only finitely many events e such
that d(e) _< k.

By complete induction on k. The base case, k = 0, is trivial.
Let Ek he the set of events of depth at most k. We prove that if
Ek is finite then Ek+l is finite. Define E~ = {ble E Ek, b E e '} .

By (2) and the induction hypothesis, E~ is finite. Since 'E~+I C
E~ U Min(Fin) , we get by property (ii) in the definition of a
branching process that E/:+I is finite.

It follows from (1) and (3) that Fin only contains finitely many
events. By (2) it contains only finitely many conditions. [] 3.7

P r o p o s i t i o n 3.8

Fin is complete.

Proof." We first prove that every reachable marking of E is represented in
Fin.

Let M be an arbitrary reachable marking of E. There exists a
configuration C of Unf such that Mark(C) = M. If C is not a
configuration of Fin, then it contains some cut-off event e, and so
C = [el @ E for some set of events E. By the definition of a cut-off
event, there exists a local configuration [e'] such that [e'] -< [e] and
Mark([e']) = Mark([e]).

configuration C ~ = [e ~] (3 I~]](E). Since -4 is preserved Consider the
by finite extensions, we have C I -< C. Morever, Mark(C I) - M. If
C ~ is not a configuration of Fin, then we can iterate the procedure

98

and find a configuration C" such that C" -~ C' and Mark(C") = M.
The procedure cannot be iterated infinitely often because -~ is well-
founded. Therefore, it terminates in a configuration of Fin.

Now we show that Fin is complete. We have to prove that for every
reachable marking M there exists a configuration C in]~ such that:

�9 Mark(C) = M, and

�9 for every transition t enabled by M there exists a configuration
C U {e} such that e ~ C and e is labelled by t.

Let M be an arbitrary reachable marking of ~. Since M is repre-
sented in Fin, the set of configurations C of Fin satisfying Mark(C)
= M is nonempty. By well-foundedness, this set has at least a mini-
mal element Cm with respect to -~. If Cm would contain some cut-off
event, then we would find as above another configuration C' satisfy-
ing C ~ -~ Cm and Mark(C ~) = M, which contradicts the minimality
of Cm. So Cm contains no cut-off event.

Let t be an arbitrary transition enabled by M. Then there exists a
configuration Cm (9 {e} of Unf such that e ~ Cm and e is labelled
by t. Assume that Cm tJ {e} is not a configuration of Fin. Since
Fin contains all the events of the set cut-off in Algorithm 3.6, it
also contains a cut-off event e ' < e. This implies e ~ E C m , which
contradicts that Cm contains no cut-off event. So Cm U {e} is a
configuration of Fin. �9 3.8

4 An Adequate Order for the 1-Safe Case

As we mentioned in the introduction, McMillan's algorithm may be ineffi-
cient in some cases. An extreme example, due to Kishinevsky and Taubin,
is the family of systems on the left of Figure 5.

While a minimal complete prefix has size O(n) in the size of the sys-
tem (see the dotted line in Figure 5), the branching process generated by
McMillan's algorithm has size O(2n). The reason is that, for every marking
M, all the local configurations [e] satisfying Mark([e]) = M have the same
size, and therefore there exist no cut-off events with respect to McMillan's
order "~m-

Our parametric presentation of Algorithm 3.6 suggests how to improve
this: it suffices to find a new adequate order d r that refines McMillan's
order "<m. Such an order induces a weaker notion of cut-off event; more
precisely, every cut-off event with respect to "~m is also a cut-off event
with respect to "~r, but maybe not the other way round. Therefore, the
instance of Algorithm 3.6 which uses the new order generates at least as
many cut-off events as McMillan's instance, and maybe more. In the latter
case, Algorithm 3.6 generates a smaller prefix.

99

t1 2
t 3 ~ 4

: d " " s
% /

v

2 k co~os of M~
FIGURE 5. A Petri net and its unfolding

The order -<r is particularly $ood if in addition it is total. In this case,
whenever an event e is generated after some other event e t such that
Mark(H) = Mark([e']), we have [e'] -<r [el (because events are gener-
ated in accordance with the total order -<~), and so e is marked as a cut-off
event. So we have the following two properties:

�9 the guard "e is a cut-off event of Fin" in the inner i f instruction of
Algorithm 3.6 can be replaced by "Fin contains a local configuration
[e'] such that Mark([el) = Mark([e'])", and

�9 the number of events of the complete prefix which are not cut-off
events cannot exceed the number of reachable markings.

In the sequel, let ~ -- (N, M0) be a fixed net system, and let ((be an
arbitrary total order on the transitions of ~. We extend (< to a partial order
on sets of events of a branching process as follows: for a set E of events, let
~(E) be that sequence of transitions which is ordered according to << and
contains each transition t as often as there are events in E with label t. Now
we say that E1 <~ E2 ifla(E1) is shorter than ~(E2), or if they have the same
length but ~(E1) is lexicographically smaller than ~(E2). Note that E1 and
E2 are incomparable with respect to (~ iff ~(E1) = ia(E2). In particular, if
E1 and E~ are incomparable with respect to <<, then [El] -- IE2[.

We now define "~r more generally on suffixes of configurations of a
branching process (recall that a set of events E is a suffix of a configu-
ration if there exists a configuration C such that C r E).

De f in i t i on 4.1 Total order "<r

Let E1 and E2 be two suffixes of configurations of a branching process
and let Min(E1) and Min(E2) denote the sets of minimal elements

of E1 and E2 with respect to the causal relation. We say E1 "<r E2 if:

100

�9 E1 << E~, or

�9 ~(E1) -- ~(E2) and

- Min(E1) << Min(E2), or

- ~(Min(E1)) = ~(Min(E2)) and E1 \Min(E1) -<r E2\Min(E2).

" 4 . 1

Notice that this definition would not be correct for configurations only,
because E \ Min(E) need not be a configuration even if E is one.

The second condition of this definition could be expressed as: the Foata-
Normal-Form of E1 is smaller than that of E2 with respect to <<, cf. e.g.

[31.
T h e o r e m 4.2

Let ~3 be a branching process of a 1-safe net system. "<r is an adequate
total order on the configurations of ft.

Proof: a) -<r is a partial order.

It is easy to see by induction on IEI that -<, is irreflexive. Now
assume E1 "<r E2 d r Ea. Clearly, E1 "<r Ea unless ~(E1) =
~(E2) -- ~(E3), which in particular implies [Eli = [E2[= [E3[.
For such triples with these equalities we apply induction on the
size: if Min(E1) << Min(E2) or Min(E2) << Min(Ea), we con-
elude E1 -~r Ea, and otherwise we apply induction to Ei \ Min(Ei),
i = 1, 2, 3, which are also suffixes of configurations.

b) "<r is total on configurations.

Assume that C1 and C2 are two incomparable configurations, i.e.
ICll = IC2I, ~(C1) = ~(C2), and~(Uin(C1)) = ~(Min(C2)). We
prove C1 = C2 by induction on 1Cl1 = 1C2[.

The base case gives C1 = C2 = $, so assume 1Cl1 - [C2[> 0.

We first prove Min (C~) = Min (C2). Assume without loss of general-
ity tha t el e Min(C1) \ Min(C2). Since ~(Min(Cx)) = !o(Min(C2)),
Min(C~) contains an event e2 such that p(el) =p(e2). Since *Min(C1)
and *Min(C2) are subsets of Min(N), and all the conditions of
Min(N) carry different labels by Proposition 2.1, we have *el = *e2.
This contradicts condition (ii) of the definition of branching process.

Since Uin(C1) = Min(C2), both C1 \ Min(C~) and C9. \ Min(C~)
are configurations of the branching process fr Cut(Min(C1)) of
(N, Mark(Min(C1))) (Proposition 2.2); by induction we conclude
Cl = C~.

c) "<r is well-founded.

In a sequence C1 ~'r C2 >-r . . . the size of the Ci cannot de-
crease infinitely often; also, for configurations of the same size,

101

Ci cannot decrease infinitely often with respect to <<, since the
sequences 9~(Ci) are drawn from a finite set; an analogous state-
ment holds for Min(Ci). Hence, we assume that all]Ci[, all ~o(Ci)
and all ~(Min(Ci)) are equal and apply induction on the com-
mon size. For ICiI = 0, an infinite decreasing sequence is impos-
sible. Otherwise, we conclude as in case b) that we would have
C~ \ Min(C1) >-, C2 \ Min(C2) >- in ~ Cut(Min(C1)), which is
impossible by induction.

d) -% refines C.

Obvious.

e) -% is preserved by finite extensions.

This is the most intricate part of the proof, and here all the com-
plications in Definition 4.1 come into play. Take C1 -<~ C2 with
Mark(C1) = Mark(C2). We have to show that C1 (9 E -<r C2 (9
IV: (E), and we can assume tha t E : {e} and apply induction af-
terwards. The case Cl << C2 is easy, hence assume ~o(C~) : ~(C2),
and in particular [C~[: [C2[. We show first that e is minimal in
C[= C1 U {e} if and only if IC~ (e) is minimal in C~ = C2 U {IV: (e)}.

So let e be minimal in C~, i.e. the transition p(e) is enabled under
the initial marking. Let s 6 *p(e); then no condition in *C1 U C{ is
labelled s, since these conditions would be in co relation with the
s-labelled condition in *e, contradicting Proposition 2.1. Thus, C1
contains no event e' with s E *p(e'), and the same holds for C2 since
~(C1) = {(C2). Therefore, the conditions in Cut(C2) with label in
*p(e) are minimal conditions of/9, and IV: (e) = e is minimal in C~.
The reverse implication holds analogously, since about C1 and C2
we have only used the hypothesis ~(C1) : ~(C2).

With this knowledge about the positions of e in C[and IC~ (e) in C~,
we proceed as follows. If Min(C1) << Min(C2), then we now see that
Min(C[) << Min(C~), so we are done. If ~(Min(C1)) : ~(Min(C2))
and e e Min(C~), then

C[\ Min(C[) = C1 \ Min(C1) -.% C2 \ Min(C2) = C~ \ Min(C~)

hence C[-% C~. Finally, if ~(Min(C1)) = ~(Min(C2)) and e
Min(C[), we again argue that Min(C1) = Min(C2) and that , hence,
C1 \ Min(C1) and C2 \ Min(C2) are configurations of the branching
process ~ Cut(Min(C1)) of (g, Mark(Min(C1))); with an inductive
argument we get C[\ Min(C[) "<r C~ \ Min(C~) and are also done
in this case. �9 4.2

We close this section with a remark on the minimali ty of the prefixes
generated by the new algorithm, i.e. by Algorithm 3.6 with -% as adequate
order. Figure l (b) and (c) are a minimal complete prefix and the prefix

102

generated by the new algorithm for the 1-safe system of Figure l(a), re-
spectively. It follows that the new algorithm does not always compute a
minimal complete prefix.

However, the prefixes computed by the algorithm are minimal in another
sense. The algorithm stores only the reachable markings corresponding to
local configurations, which for the purpose of this discussion we call local
markings. This is the feature which makes the algorithm interesting for
concurrent systems: the local markings can be a very small subset of the
reachable markings, and therefore the storage of the unfolding may require
much less memory than the storage of the state space. In order to find out
that the prefix of Figure l(b) is complete, we also need to know that the
initial marking {sl, s2} appears again in the prefix as a non-local marking.
If we only store information about local markings, then the prefix of Figure
l(c) is minimal, as well as all the prefixes generated by the new algorithm.
The reason is the observation made above: all the local configurations of
Fin which are not induced by cut-off events correspond to different mark-
ings; therefore, in a prefix smaller than Fin we lose information about the
reachability of some marking.

5 Implementation Issues and Experimental Results

The implementation of the Algorithm 3.6 has been carried out in the con-
text of the model checker described in [5], which allows to efficiently verify
formulae expressed in a simple branching time temporal logic.

For the storage of Petri nets and branching processes we have developed
an efficient, universal data structure that allows fast access to single nodes
[14]. This data structure is based on the underlying incidence matrix of the
net. Places, transitions and arcs are represented by nodes of doubly linked
lists to support fast insertion and deletion of single nodes.

The computation of new elements for the set PE involves the combina-
torial problem of finding sets of conditions B such that p(B) = +t for some
transition t. We have implemented several improvements in this combina-
torial determination, which have significant influence on the performance
of the algorithm. The interested reader is referred to [6].

Algorithm 3.6 is very simple, and can be easily proved correct, but is not
efficient. In particular, it computes the set PE of possible extensions each
time a new event is added to Fin, which is clearly redundant. Similarly to
McMillan's original algorithm [10], in the implementation we use a queue to
store the set PE of possible extensions. The new events of Fin are extracted
from the head of this list, and, when an event is added, the new possible
extensions it generates are appended to its tail.

The simplest way to organize the list would be to sort its events according
to the total order -~r- However, this is again inefficient, because it involves

103

FIGURE 6. n-buffer for n = 4.

Omginalnet
o II ,s, I
20 40 21 ~ 421
40 S0 41 1641
60 120 61 ~ 3661
80 160 81 6481

100 200 101 w 10101
120 240 121 212~ 14521
140 280 141 ~140 19741

1 6 0 160 320 161 ~lso 25761
180 360 181 32581

Unfolding] time [s]
I [El [[cutoffs[] McMillan [New algorithm

211 1 0.22 0.20
821 1 2.40 2.50

1831 1 17.45 18.08
3241 1 66.70 67.85
5051 1 191.58 197.34
7261 1 444.60 437.30
9871 1 871.93 869.50

12881 1 1569.90 1563.74
16291 1 2592.93 2597.86

TABLE 1. Results of the n buffer example 3.

pe r fo rming unneccessary compar isons . The so lu t ion is to sort the events
accord ing to the size of the i r local configurat ion, as in [10], and compare
events wi th respect to -<r only when it is rea l ly needed.

W i t h th is i m p l e m e n t a t i o n , the new a lgo r i t hm only computes more t h a n
McMi l l an ' s when two events e and e' sa t isfy Mark([e]) = Mark([e']) and
I[e][= I[e']l. But th is is precisely the case in which the a lgo r i t hm behaves
be t t e r , because i t a lways identif ies e i ther e or e' as a cut-off event. In
o ther words: when the comple te prefix c o m p u t e d by McMi l l an ' s a l go r i t hm
is m i n i m a l , our a l g o r i t h m computes the same resul t wi th no t ime overhead.

T h e runn ing t i m e of the new a lgo r i t hm is O((L~L)~), where B is the set of
condi t ions of the unfolding, and ~ denotes the m a x i m a l size of the presets
of the t r ans i t i ons in the or ig ina l net (notice t ha t th is is not a measu re in
the size of the inpu t) . The d o m i n a t i n g fac tor in the t ime complex i ty is the
c o m p u t a t i o n of the poss ible extensions. The space required is l inear in the
size of the unfo ld ing because we s tore a fixed amoun t of i n fo rma t ion per
event .

F ina l ly , we present some expe r imen t a l resul ts on three scalable exam-
ples. We compare McMi l l an ' s a l go r i t hm and the new a lgor i thm, b o t h im-
p l e m e n t e d using the universa l d a t a s t ruc ture and the i m p r o v e m e n t s in the
c o m b i n a t o r i a l d e t e r m i n a t i o n men t ioned above.

The first e x a m p l e is a m o d e l of a concurrent n -buf fe r (see F igure 5). The
ne t has 2n places and n + 1 t r ans i t ions , where n is the buffer 's capaci ty .
W h i l e the n u m b e r of reachable m a r k i n g s is 2", Fin has size O(n 2) and con-
t a ins one single cu t -o f f event (see Table 1). In th is example , t he comple t e
prefix c o m p u t e d by McMi l l an ' s a l go r i t hm is min ima l . The new a l g o r i t h m
compu te s the s ame prefix w i thou t t ime overhead, as expected .

Our second example , F igure 5, is a m o d e l of a s lo t t ed r ing p ro toco l t aken
f rom [13]. Here the size of the prefix p roduced by the new a l g o r i t h m grows

3All the times have been measured on a SPARCstation 20 with 48 MB main memory.

104

~ " Lj +- \._ _ ~ , , _ ~ / / ' ~+ ' ~ +\~7'I

. . . . ~ 0 ~ , 1 Y -
~ C

FIGURE 7. Slotted ring protocol for n = 2.

i , o . ~ o . , o . , MoM,,,~n'. ~',o.,hm N~ ~',o.,hm
i n I] IS]] ITI I][Mo>l IB]] IEI] c I time[s] iB] } IEI] c] time[s]

1 10 1 .2 .10 ' 10 18 12 18 12 3 0.00 2 . 1 - 1 0 . 2 100 68 13 0.00 2 2O 2O 0.00 90 62 14 0.00
~! 8.2.10: 1812 12~8 296 1:+, +~ 628136 i ~ 8::~ .+ +~ 4 . 0 . 1 0 . 414 26s 60 0 3

+ ++ 1.7. i0 ~ 8925 6240 1630 45.31 1805 1280 300 1.58
60 60 3.7. I0~ 45846 31104 8508 1829.4~ 4470 3216 792 11.08
70 70 8 0 �9 10 ~ -- 10143 7224 1708 79.08
80 80 1.7." i0,,10 __4 23880 17216 4256 563.69

8 90 90 3.8. i0"" __4 52209 87224 8820 2850.89
10 100 100 8+1. i012 4 119450 86160 21320 15547.67

TABLE 2. Results of the slotted ring protocol example; c = Icutolfsl.

more slowly than in the case of McMillan's algorithm. For n = 6 the output
is already one order of magnitude smaller. The slow growth in size can cause
an even more dramat ic reduction in the running time.

Original net McMi l l an ' s a lgor i thm New a lgo r i t hm
I ~ II,+, I ,~1 i ,~,o, , II ,~, , ,~, I ~ I~,~+I+ II i~, I , ~ , , o i t i m e t + ~ l

I+11+1 +1 +[L +'1 "1 I ~ +1 +1 I ~176176 47 35 6a9 734 361 6~ 0.48 112 50 47 0.02
71 53 7423 5686 2834 512 22.90 172 77 10 0.05

12 95 71 74264 45134 22555 4096 1471.16 232 104 13 0.1-3

TABLE 3. Results of Milner's cyclic scheduler; c = IcutoJ]s].

In Table 3, we give the t imes for an example taken from [2] tha t models
Milner's cyclic scheduler for n tasks. While the size of the unfolding pro-
duced by the McMillan's algori thm grows exponentially with the number
of tasks, we get linear size using our new one.

4 T h e s e t i m e s c o u l d n o t b e c a l c u l a t e d ; for n = 7 we i n t e r r u p t e d t h e c o m p u t a t i o n a f t e r
m o r e t h a n 12 h o u r s .

105

6 Conclusions

We have presented an algorithm for the computation of a complete finite
prefix of an unfolding. We have used a refinement of McMillan's basic notion
of cut-off event. The prefixes constructed by the algorithm contain at most
n non-cut-off events, where n is the number of reachable markings of the
net. Therefore, we can guarantee that the prefix is never larger than the
reachability graph, which does not hold for the algorithm of [10].

Recently, Kondratyev et al. have independently found another partial
order between events which permits to obtain reduced unfoldings [9]. Their
technique works for bounded nets. However, the partial order is not total,
and so the upper bound on the size of the unfolding cannot be derived.

Acknowledgements

We thank Michael Kishinevsky, Alexander Taubin and Alex Yakovlev for
drawing our attention to this problem, Burkhard Graves for detecting some
mistakes, and an anonymous referee for helpful comments.

7 REFERENCES

[1] E. Best and C. Ferns Nonsequential Processes - A Petri Net
View. EATCS Monographs on Theoretical Computer Science 13
(1988).

[2] James C. Corbett: Evaluating Deadlock Detection Methods. Univer-
sity of Hawaii at Manoa (1994).

[3] V. Diekert: Combinatorics on Traces. LNCS 454 (1990).

[4] J. Engelfriet: Branching processes of Petri nets. Acta Informatica 28,
pp. 575-591 (1991).

[5] J. Esparza: Model Checking Using Net Unfoldings. Science of Com-
puter Programming 23, pp. 151-195 (1994).

[6] J. Esparza, S. RSmer and W. Vogler: An improvement of McMillan's
unfolding algorithm. Informatik Berieht, TU Miinchen, in preparation.

[7] M. Kishinevsky, A. Kondratyev, A. Taubin, and V. Varshavsky: Con-
current Hardware: The Theory and Practice of Self-Timed Design,
Wiley (1993).

[8] A. Kondratyev and A. Taubin: Verification of speed-independent cir-
cuits by STG unfoldings. Proceedings of the Symposium on Advanced
Research in Asynchronous Circuits and Systems, Utah (1994).

[9] A. Kondratyev, A. Taubin, M. Kishinevsky and S. Ten: Analysis of
Petri Nets by Ordering Relations. Technical Report TR:95-2-002,
University of Aizu (1995).

106

[10] K.L. McMillan: A Technique of a State Space Search Based on
Unfolding. Formal Methods in System Design 6(1), pp. 45-65 (1995)

[11] K.L. McMillan: Trace theoretic verification of asynchronous circuits
using unfoldings. Proceedings of the 7th Workshop on Computer
Aided Verification, Liege (1995).

[12] M. Nielsen, G. Plotkin and G. Winskel: Petri Nets, Event Structures
and Domains. Theoretical Computer Science 13(1), pp. 85-108 (1980).

[13] E. Pastor, O. Roig, J. Cortadella and R.M. Badia: Petri Net Analysis
Using Boolean Manipulation. Proc. Application and Theory of Petri
Nets '94, LNCS 815, pp. 416-435 (1994).

[14] S. RSmer: Implementation of a Compositional Partial Order Se-
mantics of Petri Boxes. Diploma Thesis (in German). Universit/it
Hildesheim (1993).

