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ABSTRACT We present a method for specifying and implementing algo- 
rithms for the analysis of Petri nets. It is formally grounded in relational 
algebra. Specifications are written in ordinary predicate logic and then 
transformed systematically into relational programs which can be executed 
directly in RELVIEW, a graphical computer system for calculating with 
relations. Our method yields programs that are correct by construction. Its 
simpficity and efficiency is illustrated in many examples. 

1 Introduction 

Petri nets [9, 10] are widely used for designing and modeling concurrent and 
interacting processes. The success of Petri nets derives from their intuitive 
graphical representation which has great appeal even for people who are 
not familiar with the underlying theory. Furthermore, they have a well- 
defined semantics which unambiguously defines the behaviour of a net and 
allows formM analysis. And, finMly, since they may contain cycles, a large 
class of processes can be represented by finite nets of manageable  sizes. 

In recent years, Tarski 's  relational algebra [13] has been used successfully 
for formal problem specification, prototyping, and algorithm development. 
Relations are well suited for reasoning about  discrete structures in general 
and graphs in particular [12, 2, 3]. Since the static part  of a Petri net is 
a directed graph, relational algebra is very promising for computer-aided 
investigations of their structure. Many interesting properties of Petri nets 
can be expressed in relational algebra. This is easiest for static properties 
such as causality and free choice but possible also for dynamic qualities like 
reachability and liveness. 

The design of a relational algorithm starts from a logical problem spec- 
ification tha t  describes the desired result of a computat ion.  With the aid 
of simple but  rigorous t ransformation rules the specification is t ranslated 
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stepwise into a relational term. The goal of this transformation is the elim- 
ination of all quantifiers. In case of success, the resulting relational expres- 
sion can be executed directly and efficiently in RELVIEW [4]. In this way, 
a program is built up very quickly and its correctness is guaranteed by a 
completely formal development. 

Since RELVIEW can manipulate relations very efficiently, the perfor- 
mance of our programs is often good enough. However, in some cases op- 
timizations are possible. Then again the formal framework of relational 
algebra can be very helpful because we can use its highly developed ap- 
paratus for transforming a given relational expression into a more efficient 
o n e .  

The relational approach to specification, prototyping and design applies, 
at least in principle, to all discrete structures that  can be represented nat- 
urally by binary relations. For the purpose of presentation we restrict our- 
selves here to a certain class of Petri nets, known as condition/event nets. 
A quite different set of graph-theoretic algorithms has been handled in the 
same style in [2, 3]. 

2 Relation-Algebraic Preliminaries 

A typed relation R : X ~-~ Y consists of a domain X, a range Y and a set 
R C_ X • Y. The set of all (typed) relations with domain X and range Y 
is denoted by [X ~-~ Y]. When the type is clear, we abbreviate R : X +-~ Y 
to R. 

If X and Y are finite and of cardinality m and n, respectively, then we 
may consider R as a Boolean matr ix  with m rows and n columns. Since 
this matr ix interpretation is well suited for a graphical representation, we 
use Boolean matr ix  notation and write Rxu instead of (x, y) E R. 

We assume the reader to be familiar with the basic operations on rela- 
tions, viz. R T (transposition), R (negation), R U S (join), R N S (meet), 
and R; S (composition). The empty relation is denoted by O, the univer- 
sal relation by L, and the identity relation by I. The latter relation is the 
relation-level description of the meta-level symbol "=".  For relation inclu- 
sion we write R C_ S. In a component-free manner, now we introduce some 
further relational notions which are needed in this article. Further details 
can be found in the textbook [12]. 

2.1 Closures  

A relation R : X ++ X is reflexive if I C_ R and transitive if R; R C_ R. The 
least transitive relation containing R is called the transitive closure of R and 
denoted by R + = Ui>l Ri, while the least reflexive and transitive relation 
containing R is called" the reflexive-transitive closure of R and denoted by 
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R* = (.Ji>0 Ri" Obviously ,  we have the  equat ions  R + = R ; / / *  = R*; R and 

R* = ! U-R + . 

2 . 2  M a p p i n g s  

Let  R : X 6+ Y be a re la t ion .  Then  R is sa id  to  be  func t iona l  if  RT; R C I, 
and  t o t a l  if  R; I_ = I_. As usual ,  a func t iona l  and t o t a l  re la t ion  is cal led a 
m a p p i n g .  A re la t ion  R is in ject ive  if  R T is funct ional  and sur ject ive  i f  R T 
is to ta l .  

2 . 3  D e s c r i p t i o n  o f  S e t s  

Rela t i ona l  a lgeb ra  offers two different ways of  descr ibing the  subsets  of  a 
given set.  

T h e  first  r ep resen ta t ion  uses vectors,  i.e., re la t ions  v : X ++ Y wi th  
v = v; L. Th i s  condi t ion  means :  W h a t e v e r  set Z and universa l  re la t ion  
k : Y o Z we choose, an e lement  x f rom X is e i ther  in re la t ion  v; k to  none 
of  the  e lements  of  Z or to  all  e lements  of  Z .  As for a vector  v : X ~ Y 
the  set Y is i r re levant ,  we consider  in the  fol lowing only vectors  v : X +-~ 1 
wi th  a specific s ingle ton set 1 as range  and omi t  the  second subscr ip t .  Such 
a vec tor  can be considered as a Boolean  m a t r i x  wi th  exac t ly  one co lumn,  
i.e., as a Boolean  co lumn vector,  and  descr ibes  the subset  {x C X : v , }  of 
X .  

A vector  v : X t-~ 1 is said to be a po in t  if it  is in ject ive  and  surjec- 
t ive.  These  p roper t i e s  mean  t ha t  i t  descr ibes  a s ingleton set. In the  m a t r i x  
mode l ,  hence a po in t  is a Boolean  co lumn vector  in which exac t ly  one 
c o m p o n e n t  is t rue.  

In s t ead  of  vectors ,  we can use inject ive m a p p i n g s  for represen t ing  sub- 
sets.  Given  an inject ive m a p p i n g  z : Y ++ X ,  we call  Y a subset  of  X given 
by  z. I f  Y is a subset  of X given by z, then  the  vector  sT; L : X ~ 1, where 
L : Y ~ 1, descr ibes  Y in the  above  sense. Clearly,  the  t r ans i t i on  in the  
o the r  d i rec t ion ,  i.e., the  cons t ruc t ion  of  an inject ive m a p p i n g  ,(v) : Y +4 X 
f rom a given vec tor  v : X ++ 1 descr ib ing Y, is also possible.  In  c o m b i n a t i o n  
wi th  the  se t - theore t i c  m e m b e r s h i p  re la t ion  

e :  X ++ 2X gzs :'( ~ X E s , (1) 

the  re la t ion- leve l  equivalent  of  the  meta - leve l  symbol  "E",  in jec t ive  m a p -  
p ings  can be used to  enumera t e  sets of sets. More specifically, if  the  vector  
v : 2 x ~ 1 descr ibes  a subset  S of  the  powerset  2 x ,  then  i t  is s t r a igh t -  
fo rward  to  c o m p u t e  an in jec t ion  ~(v) : ~q +-~ 2 x ,  f rom which we o b t a i n  the  
e l emen t s  of  S as the  co lumns  of the  re la t ion  e; z(v) T : X ++ S.  I f  X is finite, 
th is  leads  to  an economic  rep resen ta t ion  of $ by a Boolean  m a t r i x  wi th  IXI 
rows and  I8l co lumns .  
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2.4 Residuals and Symmetric Quotients 

Residuals are the greatest solutions of certain inclusions. The left residual 
of S over R (in symbols S / R) is the greatest relation X such that  X; R C_ S 
and the right residual of S over R (in symbols R\S) is the greatest relation 
X such that  R; X C S. We will also need relations which are left and right 
residuals simultaneously, viz. symmetric quotients. The symmetric quotient 
syq(R, S) of two relations R and S is defined as the greatest relation X such 
that  R; X C S and X; S T C R T. In terms of the basic operations we have 

S / R =  S ; R  T R \ S =  R T ; S  syq(R,S) = (R\S) N(RT/sT). 

The left residual is only defined if both relations have the same range 
and the right residual and the symmetric quotient are only defined if both 
relations have the same domain. Translating the first two equations into 
component-wise predicate logic notation yields 

(S / R ) ~  ~ V z Rx, --+ S~, (R \ S)~y 4--4- V z R,~ --+ S~y. (2) 

In particular, for S : Y ++ Z and R : Z e+ X we obtain the two correspon- 
dences 

(3) 
for single first-order universal quantification using a relation l : 1 e+ Z and 
a vector O : Z ~-~ 1. And, finally, in component-wise notation the symmetric 
quotient satisfies the equivalence 

syq(R, S)~y ..' Y Vz nz~ ++ S~y. (4) 

Let us consider (4) for the special case where R is a membership relation 
e : X 4-~ 2 x and S is a vector v : X 4-+ 1. Then the type of syq(~,v) is 
[2 x ~-~ 1] and for each set Y from 2 x we have syq(e, v)y if and only if 
Vz z E Y ++ vz. As a consequence, syq(e,v) : 2 x ++ 1 is exactly the point 
in the powerset corresponding to the vector v. 

3 Nets and their Relational Representation 

In this section we recall the basics of condition/event nets and explain their 
representation in the RELVIEW tool. 

3.1 Nets 

A (condition/event) net Af is a bipartite directed graph, which we repre- 
sent as a a quadruple Af = (C, E,  R, S) with relations R : C +e E and 
S : E (-e C. The elements of C and E are called conditions and events, 
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respectively, and we require that  C N E = 0. In the graphical representa- 
tion, conditions (also known as places) are drawn as circles whereas events 
appear  as squares. A marking is simply a subset M of C. A marked net 
(Af, M)  is visualized by decorating each condition c E M with a bullet, 
called a token. For example, 

D ~9 

c8 

depicts a marked net with nine conditions C = { C l , . . . ,  c9}, six events 
E = { e l , . . . , e s }  and marking M = {cl,c3, e4, eh, cT, cg}. The relation R 
(resp. S) is coded by the set of arrows leading into (resp. out of) squares. 

A net is a statical structure whereas markings are subject to change. 
The dynamic evolution of a marked net is described by a simple token game 
which specifies the effect of events on the current marking. An event e is cur- 
rently enabled if all its predecessors but none of its successors carry a mark.  
In this case the execution (or firing) of e results in a new marking N which 
is obtained from the previous marking M by removing all predecessors of 
e and then adding all successors of e, i.e., by N = (M \ pred(e)) tJ succ(e). 
In this way, by 

M -Lt N : ~ 
e is enabled by M and its exe- 
cution transforms M into N 

every (unmarked) net induces a labeled transition relation on markings.  
The above net is a somewhat  simplified description of E.W. Dijkstra 's  

dining philosophers [5]. Three philosophers are sitting round a table with a 
large bowl of tangled spaghetti  in the middle. A hungry philosopher needs 
two forks to eat but  there are only three forks on the entire table, one 
between each pair of neighbours. Each philosopher is thinking most  of the 
t ime but  can decide to s tar t  eating at any t ime provided both his forks 
are free. After eating his fill, he is supposed to return the forks to their 
places and go back into thinking mode. The initial marking indicates tha t  
all philosophers are busy thinking (ca, c6, and c9) and all three forks are 
available (cl, c4, and c~). The eating states c2, c5, and cs are unmarked. 
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The transitions e2, e4, and e6 from thinking to eating are enabled (although 
the philosophers may only eat one at a time} whereas the transitions from 
eating to thinking are disabled. 

3.2 The R E L V I E W  Sys tem 

RELVIEW [4] is a relation-based computer  system for visualization, analy- 
sis and manipulat ion of discrete structures. Written in the C programming 
language, it runs under X windows and makes full use of the graphical user 
interface. Currently RELVIEW is used in about  30 installations all over 
the world. 

All da ta  are represented as binary relations, which RELVIEW visualizes 
in different ways. RELVIEW offers several different algorithm for pretty-  
printing a relation as a directed graph, including an algorithm for drawing 
biparti te graphs such as Petri nets. Alternatively, a relation may  be dis- 
played as a Boolean matr ix  which is very useful for visual editing and also 
for discovering various structural properties that  are not evident from a 
graphical presentation. 

For example,  in RELVIEW the marked dining philosophers net is rep- 
resented by the following relations (matrices) R and S and the (column) 
vector init: 

I l::i:::,::i::l I I |]i]]::]l [ ]  

1 

I li~::~i~] i I I I 
I I !!::~i!i1 I I I I t.ii::ii..1 I I 
I I I l]Ji]il I I I I I liii~il 
I I I l:.::;i~ii |i:::.':~]l I I I I liiiiiil I I I I 
I l l l  ,i::i::i, i F..~:~i~il I I I I I~i~!~]~[ ~i~::~i I 
I I I I I [!i!i!ii I I I I I I !i!i!! 

RELVIEW can manage as many  relations simultaneously as memory  al- 
lows and the user may  manipulate  and analyse them by combining them 
with the operators of relational algebra. The elementary operations can 
be accessed through simple mouse-click and combined into relational pro- 
grams which can then be stored and applied to many  sets of input data.  
Because RELVIEW often is used on large input data, we have incorporated 
some very efficient routines for computing relational products, residuals and 
transitive closures. 

Relational programs are extremely compact:  Every program considered 
in this paper  easily fits on a single line. To the uninitiated they seem arcane. 
However, tha t  does not mean relational programming is difficult. On the 
contrary, each program is constructed from its obvious logical specification 
in a short series of refinement steps each of which is formally based on one 
of a very small  set of t ransformation rules. As a result, every relational 
program we present in this paper  is correct by construction. 
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4 Reachability and Liveness 

Given a net and two markings M and N,  we say that  N is reachable from 
M iff there is a sequence of transitions M L~ . . .  5_~ N that  t ransforms 
M into N.  Many safety properties of nets depend on the (un-)reachability 
of certain markings.  Unlike the properties we considered in the previous 
section, reachability is a dynamic quality in the sense that  its definition 
involves a potentially large number  of transition steps. As a consequence, 
the costs of computing reachability are inherently exponential. Nevertheless 
the relational program for testing reachability which we derive in Sec. 4.1 
is very useful for experimenting with small to medium-sized nets. It  can 
be used as a building block for analysing more specific properties such as 
liveness which we investigate in Sec. 4.2. 

4.1 Reachability 

Reachabili ty is defined in terms of sequences of transitions. Therefore, in 
the first step of our development we consider a single transition from a 
marking M to a marking N which is caused by the execution of an event 
e. We have to transscribe the definition of the transition relation of a net 
into a logical predicate. The first condition in that  definition requires tha t  
M enables e which yields 

(Yc Rc~ --+ c E  M) A (Yc S~c -~ c ~ M ) .  

Now we represent events by points from [E ++ 1]. Then R; e : C ~-~ 1 is 
the vector of the set of predecessors and SV;e : C ++ 1 the vector of set 
of the successors of the point e : E 4-~ 1. Furthermore, a condition c is a 
predecessor of e if and only if (R; e)c and a successor of e if and only if 
(S I ; e)c. Hence, the above formula becomes 

(re (n;e)o-~ e ~ M) ^ (re (ST;e)~-~eCM). 

Using the correspondences between certain kinds of logical and relation- 
algebraic constructions, our next aim is to replace the set-theoretic and 
logical symbols of this formula with relational operations and "outermost" 
subscripts M, N following the general method outlined in the introduction. 
The desired form is derived by 

(Vc (R; e)r --~ c e M) A (Vc (sT; e)~ --+ c ~ M) 

.~ ;. ( r e  (R;e)o ~ e~M) A ( r e  (ST; e)~ --~ ~ M )  (1), E : C ~ 2 c 

(VC (R;e;L)c N ---~ 6cM) A (Vc (sT;e;L)cN --+ ~cM) L : l  J~-~2 C 

-' }- (R; e; L \ e)NM A (,ST; e; L \ ~)NM (2) 

~, ~ ((R; e; L \ e) T N (sT; e; L \ "g)T)MN, 
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where composit ion binds more than  the residuals. If e is executed, the new 
marking N results from the old marking M by replacing the predecessors 
of e with its successors. On account of our point representation e : E ++ 1 
of events and since thus .R; e : C ++ 1 is the complement  of set of the 
predecessors of e, this is specified by the formula 

Vc (c E M A R;ec) V (S-r;e)r ++ c E g .  

Again, we are able to replace all the set-theoretic and predicate logic sym- 
bols with relational operations and subscripts M and N; a possible deriva- 
tion is 

V c ( c E  M A R;ee) v(ST;e)c 44, c E N  

Vc (ecM A R;ec) V (ST;e)c ++ ee/v (1), s : C  ++ 2 c 

Vc (ecM A('R;e;L)cM)V(ST;e;L)cM ++SEN L : l  ++ 2 C 

Vc ((s n R; e; L) U ST;e; L)cM ++ SeN 

r syq((s fq .R; e; L) U sT; e; E, E)MN (4). 

Now we can remove the subscripts M and N in the results of the last two 
derivations. Put t ing together the remainig relation-algebraic expressions, 
we arrive at the component-free specification 

trans(R, S, e) := ('R; e; L \ 6) T 
n (ST;e;L\  ~)x 
n syq((~ n R;e;L) U ST;e;L,6) 

of a relation trans(R, S, e) : 2 c ++ 2 c that  describes all possible single 
transitions between markings of JV" which are caused by an execution of 
the event (point) e : E ++ 1. 

Having derived a relational specification of the transition relation, we 
have solved the most  difficult par t  of the teachability problem. By defini- 
tion, the reachability relation on markings we have searched for is precisely 
the reflexive-transitive closure of the union of all transition relations. Hence, 
we define a relation 

 ach(.R, S) := ( U tra..(.R, S,.))" 
eEP(E) 

the type of which is also [2 c ++ 2c], where P(E)  denotes the set of all 
points from [E ++ 1]. 

Also testing whether one marking can be reached from another is now 
trivial. If  they are given as vectors m : C ++ 1 and n : C ++ 1, we then 
produce the corresponding points syq(e, m) : 2 c +-~ 1 and syq(E, n) : 2 C ++ 1 
in the powerset as described in Sec. 2.4 and have tha t  n is reachable f rom 
a marking vector m if and only if syq(e, m); syq(e; n) -r C reach(.R, S). 
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To obtain the set of all markings reachable from m : C <-+ 1, we s tar t  
by computing the vector Reach(R, S, m) :2 C <-~ 1 of the relation-theoretic 
successors (wrt. the reachability relation) of the point corresponding to m 
using 

Reach(R, S, m) := reach(R, S )-r ; syq(e, m ) .  

Then, we represent the elements contained in the subset of 2 c described by 
the vector Reach(R, S, m) as the columns of a Boolean matr ix  as described 
in Sec. 2.3. 

We have formulated the above specifications in the RELVIEW system 
and applied to the relational representation of the philosophers net given 
in Sec. 3.2. The left-hand of the following two RELVIEW pictures shows 
the column-wise representation of the four markings reachable from the 
initial one; on the right-hand we have the "transition matr ix"  describing the 
possible transitions between these markings. This latter matr ix  is obtained 
as value of the relational expression z(r); (Ue trans(R, S, e)); z ( r )  T , w h e r e  e 

ranges over the points P(E) and r := Reach(R, S, init). 

mmmm 
m)mm 
mmmm 
mmmw 
mmmm 
Hm) 
mmm  
mmmm 
mmu 

mml m 
Ilmmmmm 
Ilnmmmm 
H ~ n  

The last column of the first matr ix  describes the initial marking init (all 
philosophers are thinking). Three different markings are reachable (exactly 
one philosopher eats) and each of them corresponds to one of the first three 
columns. The 4 • 4 transition matr ix  shows that  each of the three eating 
states can evolve into the thinking state and vice versa, but that  no other 
transitions are possible. Thus, every sequence of markings/events  of the 
token game of the philosophers net which starts with the initial marking 
corresponds to a run of a philosopher's dinner and vice versa. 

4.2 Liveness 

In the li terature one finds several notions of liveness. Five different formal  
definitions of a marking to be live are given, investigated, and compared in 
[8]. All of them can easily be specified in our relational framework. In the 
following, we concentrate on the version which is preferred by [8]: Given a 
net Af = (C, E, R, S), an event e is said to be dead under a marking M 
if there is no reachable marking N which enables e, and a marking M is 
called live if for all markings N reachable from M and all events e we have 
tha t  e is not dead under N.  
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We start  our development of an executable relational specification of 
liveness by reconsidering the predicate logic formula 

(Vc Rce --+ c e M) A (Vc S~e -+ c ~  M) 

which specifies that  the marking M enables the event e. In contrast with 
Sec. 4.1, however, we do not represent events by points in t h e  relational 
sense. This allows the following derivation which replaces the set-theoretic 
and predicate logic symbols with relational operations and the subscripts 
M and e: 

(Vc R c e - ~ c e  M) A(Vc S~c-~cC M) 

,: :, (Vc Re\ -~ 6~o) ^ (Vc S+, - ,  ~ M e )  (1), ~: C ~+ 2 ~ 

(e T / Rr)M,+ A ( e "r / S)Me (2) 

> ((~+ I n T) n ( e T I S))M+ �9 

Now the subscripts M and e can be removed, yielding 

enable(R, S) := (~T / R T) n ( ~ / S) 

as a component-free specification of the enabling relation of type [2 c ++ El. 
In the Boolean matr ix  model this means that  the entry in the M-row and 
e-column of enable(R, S) is true if and only if e is enabled by M. 

Combining the above relation enable (R, S) with the reachability relation 
reach(R, S) derived in Sec. 4.1, we have that  e is dead under M if and only 
if 

-~S N reach(R, S)  M N /~ enable(R, S) lve . 

So the set of all such pairs M, e, the "is-dead-under" relation, is given by 

dead(R, S) := reach(R, S); enable(R, S) 

which is a relational specification of type [2 C ~-r E]. 
To specify liveness in predicate logic, finally, we use the reachability 

relation reach(R, S) again, but  now in combination with dead(R, S). We 
get that  a marking M is live if and only if the formula 

V N V e reach(R, S )  M N -'+ -~dead ( R, S )  N e 

holds. In this case, the replacement of the set-theoretic and predicate logic 
symbols with relational operations and the subscript M proceeds as follows: 

V N V e reach(R, S)  M N --~ -~dead ( R, S) Ne 

-~ ~ V N reach(R,S)MN -+ -,3e dead(R,S)Ne 

--q N reach(R, S ) M N  A 3 e dead(R, S)Ne 

4--4. 73 g reach(R, S)MlV A (dead(R, S);L)N L : E 44 1 

r reach(R, S); dead(R, S); L M . 
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Finally, a removal of the subscript M yields 

live(R, S) := reach(R, S); dead(R, S); !_ 

as the desired vector of type [2 C +4 1] which describes all markings of A; 
which are live. Considered as Boolean column vector this means that for a 
subset M of 2 C the M-component of live(R, S) is true if and only if M is 
a live marking. 

The following picture shows the column-wise representation of the eight 
live markings of the philosophers net as computed by RELVIEW: 

i | i i J | | M  
i |wnnim 
nmli ||i 
| i l W i | | l  
ummmmm|m 
l ~ n m i ~ n m  
i m i m i t i E  
i l m m i l M I  
l l i l i B i t  

From the columns 1, 2, 5, and 6 of this matrix we see that every marking 
reachable from init is live. This means that the marked philosophers net 
is live, a result which can also be verified with RELVIEW using the test 
Reach(R, S, init) C_ live(R, S). There are four more live markings, but none 
of them corresponds to a "real" state in a philosopher's dinner. For example, 
the marking depicted in the third column describes the impossible situation 
where each philosopher is eating 

5 Protoptyping Some Further Dynamic Properties 

Now we consider further examples for prototyping relational specifications 
of dynamic net properties. First, we consider concurrency and conflicts. 
Then we are then concerned with deadlocks and traps. Finally, we treat 
the notion of contact-freeness. 

5.1 Concurrency and Conflicts 

When we use nets to model concurrent and interacting processes, we can- 
not state whether and when an event will happen, but can only specify 
conditions that enable it. In this connection, however, it is very interesting 
to know which events can take place concurrently at a given state. This 
leads to the following notion. Two events e and f are concurrently enabled 
by a marking M if both of them are enabled by M in the sense of Sec. 3.1 
and they have neither a predecessor nor a successor in common. 



60 

Assume Af - (C, E, R, S) is a net. Expressed as logical formulae, the first 
part of the definition of the two events e and f being concurrently enabled 
by the marking M reads as 

(Vc Rc~ -+ c e M) A (Vc &~--+ c ~ M) 
A (VcRcf-+ceM) A(VcSic--}c~M) 

and the second part  as 

~(3 c Ro~ A RoD ^ ~(~ c &o ^ Sic). 

Compared with Sec. 4.1 and Sec. 4.2, in the sequel we choose a third variant 
for a transformation of the formulae describing that  a marking enables an 
event. Assume the marking to be represented by a vector m : C ++ 1. Then 
c E M resp. c ~ M will be replaced by me resp. ~ and we get for the first 
part the derivation 

(vc Ro~ ~ too) A (Vc &~ -+ ~ )  
^ (v~ R~s -+ too) ^ (Vc $Io -+ ~o) 
(R \ ~)~ A (s T \ ~)~ ^ (R \ m)s ^ (S -r \ ~)s (2) 
((R \ m) n (S T \ ~))o A ((R \ m) n (S T \ ~))s 

r (((R \ ,n) n (s: \ ~)); ((R \ ,n) n (s: \ m)):)os �9 

A transformation of the second part is even simpler. We obtain 

~ (3c  Ro~ A R~]) A ~(3c  S0o A SSo ) 

RT; Re] A S; STef 
r162 RT;RUS;STe].  

Combining the results of these two derivations and dropping the subscripts 
e and f ,  we arrive at the relational specification 

concur(R, S, m) := aux(R, S, m); aux(R, S, m) x N RT; RU S; S T 

of type [E <--} E], where the auxiliary function aux is defined by 

aux(R, S, m) := (R \ m) n (S T \ ~ ) .  

It computes for the net Af and a given marking vector m : C 4-+ 1 all pairs of 
events which are concurrently enabled by m. If we evaluate concur(R, S, m) 
using Boolean matrices and vectors and their standard procedures for im- 
plementing relationM algebra, then the run time is determined by the times 
needed for the compositions RT; R and S; S T. 

The dual notion to concurrency is that  of a conflict. Given a marking 
M, two events e and f are in conflict under M if they are both enabled 
by M in the sense of Sec. 3.1, have a common predecessor or a common 
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successor, and are different. In a predicate logic form we have, hence, the 
conjunction of the above formula describing that  e and f are enabled by 
the marking M with 

(3e nc~ A R~s) v (3c s ~  A ssc) , 

saying tha t  pred (e) (3 pred (f)  ~- 0 or succ (e) r (f)  # 0, and the inequality 
e # f .  For a net Af = (C, E,  R, S) and a vector m : C 6+ 1 representing the 
marking,  this immediately leads (using the function aux again) to 

conf(R, S, m) := auz(R, S, m); aux(R, S, m) T n (RT; RU S; S T) n i 

as a relational specification of type [E ~ E] for computing all pairs of 
events which are in conflict under m. It has the same t ime complexity as 
concur(R, S, m). 

Let us apply the results to our running example. Since two or more 
philosophers cannot eat at the same time, one would expect that  no two 
events are concurrently enabled by a marking reachable from init. The 
RELVIEW system confirms this conjecture. For every column m~ of the 
column-wise representation of Reach(R, S, init) given in Sec. 4.1, the eval- 
uation of the relational specification concur( R, S, mi) yields the empty  
Boolean 6 • 6 matr ix.  On the other hand, conflicts do exist. For the columns 
ml ,  m2, m3 the conflict matr ix  is empty, but for the last column - the initial 
marking vector - RELVIEW yields the following Boolean 6 • 6 matrix:  

l i | i |  
nmmmu 
l i i l |  
i n i u l  
l i | i i  

Hence, in the initial state we have conflicts between each pair of events 
representing transitions from eating to thinking. This result agrees with 
the transit ion matr ix  shown in Sec. 4.1. 

5.2 Deadlocks and Traps 

Let Af = (C, E,  R, S) be a net. A set D of conditions is called a deadlock 
if each of its predecessors is also a successor. The dual notion is tha t  of a 
trap:  A subset T of C is said to be a trap if its successor set is a subset of its 
predecessor set. Both deadlocks and traps are useful for reasoning about  
liveness properties; details about  the deadlock approach to the liveness 
problem can be found in [7]. 

If  we represent sets of conditions by vectors of type [C <-+ 1], then S; v 
describes the set of predecessors and RT; v the set of successors of v : C t-~ 1. 
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Hence, it is very easy to test a single set to be a deadlock or a trap. We 
have that d : C <-~ 1 is a deadlock if and only if S ; d  C RT;d and, by 
exchanging the r61e of the relations S and R x, also that  t : C +-~ 1 is a trap 
if and only if RT; t C S; t. These inclusions can be tested efficiently if we 
implement R, S by Boolean matrices and d, t by Boolean vectors and use 
again the standard procedures for the relational operations. 

In the following we concentrate on algorithms describing all deadlocks 
and traps. For a net without restrictions, the number of deadlocks and 
traps can grow exponentially with its size. As in the case of the algorithms 
of Sec. 4, therefore, our approach will lead to a complexity which is expo- 
nential in time and space. 

Expressed in predicate logic we have that a set D of conditions is a 
deadlock if and only if the formula 

Ve (3c c e D AS~r --~ (3c cE D ARc~) 

is valid and that  a set T of conditions is a trap if and only if 

Ve (3c cE T ARce) -+ (qc ce  T AS~r 

holds. The first formula can be transformed as follows, in doing so replacing 
the set-theoretic and logical symbols with relational operations and the 
subscript D: 

v~ (3c c e  D ASoo) -+ (~c ce  D A Rc~) 

~..~ Ve ( d ; s T ) o ,  ~ ( d ; R ) o ~  (1), ~ : C  ++ 2 c 

4 ~- Ve ( eT ;S  T ueX;R)De 

,'. '.- (( S;----~ T U eT; R) / L)D (3), L:  1 e E.  

Therefore, changing to a component-free relation-algebraic notation, we get 

deadlock(R, S) := ( S; T U ~T; R) / L 

as specification of the vector of type [2 r 4-+ 1] describing all deadlocks of 
the net Af. In the same way one obtains from the above predicate logic 
description of traps by exchanging the rble of the relations R and S T that  

trap(R, S) := ( ex; R U (S; e) x) / L 

is the vector of type [2 c ++ 1] describing all traps of Af. 
Using RELVIEW to compute the set of all deadlocks of the philosophers 

net (which coincides with the set of all traps due to the net's symmetric 
form), we obtain the following column-wise representation: 

. . . . . . . . . . . . .  l:.i . . . . . . . . . . . . . . . . . . . . . . . . . .  t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  I . . . . . . . . . . . . . . . . . . . . . . . . . .  | .............................. 

I I I~::|:.:|~:1~;:1 I I I I:~:I~:'IP:~I:~:I I I I~:rll ':t:::l:::l I I I i:;,t;~i;,;|~;-I I I I I::r I I I i :~;| : ; t : : l ;~, l  I i I I : : t : : l : ~ ]~ : |  I i i i-:~1;~:11-:,1 
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Since none of these 64 deadlocks can be reached from init, so the (marked) 
philosophers net is deadlock-free. To verify this by hand is troublesome; a 
mechanicM verification with RELVIEW is easy. We only need to evaluate 
the expressions Reach(it, S, init) n deadlock(it, S) and test the result for 
emptiness. 

5.3 Contact -Freeness  

Suppose we have a net and a present marking M. A necessary condition 
for an event to be executed is that  no condition of its successor set is 
contained in M.  If  an execution of an event is prevented since the successors 
are marked,  then one speaks of a contact situation. Contact  situations are 
undesirable. A marking M is said to be contact-free if it is true for every 
event e that  pred(e) C M implies succ(e) C C \ M  and succ(e) C M implies 
pred(e) C C \ M. 

Assume an event e and a marking M. Then we have that  pred(e) C M 
implies succ(e) C_ C \ M if and only if 

(re Itc, -~ c e  M)-+ (Vc S,~ - ~ c ~  M) 

holds, and that  succ(e) _ M implies pred(e) C_ C \ M if and only if 

(V c Se~ --~ c E M) --+ (V c Rc~ --+ c ~ M) 

is valid. In the first case, the replacement of the logical and set-theoretic 
symbols with relational operations and the subscripts e and M proceeds as 
follows: 

( r e  I t ~  --4 c C M)  -+ (Vc S~ -+ c ~ M) 

-', '.- (Vc Itce -'9" 6cM) -'+ ( r e  SZe ~ 6cM) (1), ~ : C ~ 2 c 

~-~ (it \ ~)oM -~ (s T \ 3)~M (2) 

By exchanging the r61e of the two relations R and S T in this derivation, 
the second predicate logic formula for contact-freeness is t ransformed into 

(sT \ ~ u ( i t \  ~))~M �9 

Now we combine these expressions and obtMn 

Ve ( i t \ ~ U  (ST \ ~)).~ ^ (ST \ ~ U ( i t \  3))~ 

< .'. Ve ( ( i t \ ~  U (s T \ ~))n (s~ \ ~ u  ( i t \  3))),~ 

,~-->, ( ( i t  \ E u (ST \ ~)) n (St  \ ~ U (it \ Z)) \ 0)~ (3), O : E + +  1 

which in turn yields the vector 

contactfree( it, S) := ( n \ e U (S T \ 3)) O ( S T \ e U ( tt \ 3)) \ 0 
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of type [2 c ~-~ 1] as component-free relational specification of the set of all 
contact-free markings ofAZ = (C, E,  R, S). As with deadlocks and traps, the 
complexity of this algorithm is exponential in t ime and space. Evaluating 
this te rm for the philosophers net reveals that  there are exactly 95 contact- 
free markings.  Their column-wise representation is: 

r m  �9 m � 9  � 9 1 4 9  m m m m m m m m m m  �9 m m . l m . m m m ~ x ~ 9 ~ K ~ ~ :  
�9 �9 �9149 ~ �9 �9 mmmwmmmmmm �9 �9 �9 �9 immmmmmmmmmmmmmm mmmm mmmm ~ ) . ~ b  mm �9 mmmm mmmmmm mmmmmml 

:mmmmmmmmmmmmmmmmmmmmmm~x~ �9 ~ o~ X ~x~o~xmmmmmmmmmmmmmmme �9 mmmmmmmmm �9 �9 �9 ~ •  
i m m m m m m m m u m m m e ~  �9 ~ m m m m m m m m m m n m m ~ e v  �9 ~ ~ �9 v �9 v ~ ~ ~ ~ m m m m m m u m m m ~ e ~ e  v~ 

�9 mm mmnmmmmmmmmmmm~(mmmmmmmmmmnmmmm mmm n~ummmmmmmmmmmm o �9 immm mmmmmo~ mmmm m n u m m ~ m m m  �9 mmm~ mmmmmml 
�9 mm m ~ m m m v u m m m ~ m m m m m ~ ( x ) m m  mm m m x ) ~ x m m m m m ~ m  mm �9 ~x~mmmmm p v ~ m m m m v ~ m  mm ~x, 

mmm �9 mnn~ mmm mmm~nmNmmm~mmne~mm mm ~mm �9149 ~ �9 �9 �9 �9 i m m ~ m l m ~ m  �9 ~ ~ ~ . m ~ n m m ~ m m m  e ~ �9 ) m ~ m  mm~ �9 ~; 
�9 �9 �9 �9 �9 ~m mm~mmmm~mm~mmmmxmm �9 mm �9 �9 �9 i p �9 m~mmmmx m~mmm )mmmm �9 �9 ~mmm mmmm �9 mmml 

)~ �9 �9 �9 �9 �9 �9149 �9149 mm)mm~memm �9 mem~m~mam~m~m~m~m m~m~m~n*m~m~m~n �9 

Moreover, RELVIEW can check that  Reach(R, S, init) C contactfree(R, S) 
holds, thereby proving that  no contact situation can be reached from the 
initial marking of the philosophers net. A marked net with this property is 
said to be contact-free. 

6 Testing Structural Properties of Nets 

Structural (or static) properties of a net can be decided from its definition 
as a bipart i te graph without considering the token game. Their  main pur- 
pose is to characterize subclasses of nets with nice characteristics. As an 
example, for the special subclass of nets called "synchronisation graphs" 
the reachability problem is polynomial  in the size of the net [6]. By means 
of some examples, in this section we demonstrate  how structural properties 
of nets can be decided using a relational approach. 

6.1 Free Choice Nets 

In general nets there may  occur the situation that  a marking can only 
enable an event if two further concurrently enabled events are executed in 
a specific order. To exclude such a confused situation, i.e., to allow tha t  
the choice of the event to execute is taken locally, the specific class of free 
choice nets has been introduced in [7]. Formally, a net Af = (C, E, RI'S) 
is called a free choice net if for all conditions c and events e from Rc~ it 
follows tha t  suet(c) = {e} or pred(e) = {c}. This means that  an event with 
a forward-branching predecessor may not be backwards-branching. 

For a relation-algebraic specification of a net to be free choice we follow 
the pat tern  of Sec. 5.3. Hence, we start  the formula 

v e V c R~o -~ (V.f R~y -~ e = jr) v (v d R,~ -~ d = c) 

expressing tha t  Af is a free choice net and remove then the universal quan- 
tification over e and c. A transformation of the resulting formula  (now with 
free ocurrences of e and c) into a form with only relational operations and 
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the subscripts e, c is obtained by 

Rce --+ (V f Rc/ --+ e = f )  V (Y d Rde --~ d = c) 

Rl~c V ( V I  R~ I --+ Ie/) V (Vd Rd~ -+ Ida) 

,: :, RT~c V ( I / R ) ~  V ( R \  I)~: (2) 

, -~  (n~u  (I /n)  u (n \ I))ec. 

Note tha t  we have used two identity relations during this development,  viz. 
I : E <-+ E in the left residual 1 / R  and I : C <-+ C in the right residual 
R \ I. As an immediate  consequence from the above derivation we obtain 

Af is a free choice net 

r Ve Vc ( R  T U ( I / R )  U ( R \  [)),c 

R T u ( I / R )  U ( R \ I ) : L  L : E + + C .  

In the s tandard Boolean matr ix  model for relational algebra, the latter 
equality can be tested in a t ime complexity which is determined by the 
costs for computing the residuals. 

The philosophers net is not a free choice net. Using RELVIEW, this can 
easily be verified and the system then yields: 

8 E ~ m m m l l M  
B B E m ~ m i l B  
u ~ m m m ~ l l u  
t l w m ~ M i u m  
~ s E m m ~ E i m  
i l ~ m m m i B ~  

This Boolean 6 z 9 mat r ix  relates the events and conditions which fulfil the 
free choice property. A comparison of this matr ix  with the 6 • 9 universal 
mat r ix  shows that  this property is violated by exactly 6 pairs, viz. by 
(e2, Cl), (e2, c4), (e4, c4), (e4, c7), (e6, Cl), and (e6, eT). 

6.2 Synchron i sa t i on  Graphs and State  Machines  

We say that  a net is a synchronisation graph (or S-graph) if every con- 
dition has at most  one predecessor and at most  one successor. Such nets 
model the branching (or splitting) of a process into concurrent threads and 
the synchronisation of these threads. Due to the absence of branching con- 
ditions for synchronisation graphs the reachability problem can be solved 
in polynomial  time. The same holds in nets without branching events, i.e., 
in the case that  every event has at most  one predecessor and at most  one 
successor. Such a net is said to be a state machine (or T-graph). 

On account of our special representation of a net as a relational structure 
A/" -= (C, E, R, S) we have that  A/" is a synchronisation graph if and only if 
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S is injective and R is functional and that  N" is a state machine if and only 
if R is injective and S is functional. Efficient tests for Boolean matrices to 
be functional resp. injective inspect row by row resp. column by column, 
i.e., need only two nested loops. 

Using the method outlined in the introduction, we are also able to develop 
relational specifications of the vectors of non-branching conditions resp. 
non-branching events such that  the resulting algorithms are polynomial.  
In the case of a condition c, first we consider the property that  it has at 
most  one predecessor. The derivation of a relational specification from its 
predicate logic description proceeds as follows: 

Ve V l  S o o A S I c  --+ e = $ 

V e S~r --+ V f SIc --+ II~ I : E 6+ E 

r v e &o -~ (s  \ I)c0 (2) 

~==~ ve (ST U (S \ I )h .  

z. , . . ( ( S T U ( S \ I ) ) / L ) c  (3), L : 1 ++E. 

Next, we deal with the property that  c has at most  one successor. I ts  
logical formalization is 

V e V f Rr A Rcl "+ e = f 

and a replacement of S by R T in the above derivation transforms it into 

(('RU (R "r \ I)) / L)~. 

It  remains to put  the two relational forms together and to remove the 
subscript c. In doing so, we arrive at 

s-graph(R, S) := (( S---$U (S \ I)) / L) n ( ( R U  (R T \ I)) / L) 

as the vector s-graph(R, S) : C 6+ 1 of non-branching conditions. Hence, 
the net Af is a synchronisation graph if and only if s-graph(R, S) equals 
the universal vector L : C 6+-> 1. 

If  we change the r61e of the relations R and S in the development of 
s-graph(R, S), then the result is the component-free specification 

t-graph( R, S) := ((RVU (R\  I ) ) /L)  I-I ((SU (S T \ I ) ) /L)  

of a vector of type [E 6+ 1] for enumerating the non-branching events. In 
this specification we use an identity relation I : C 6+ C and an universal 
relation L : 1 6+ C. 

For small examples these properties can easily be read off the mat r ix  rep- 
resentation. For example,  the philosophers net is neither a synchronisation 
graph nor a s tate  machine, because R and S have both  rows and columns 
with more than one entry. 
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6.3 Causal Nets 

As a last s tructural  property we consider causal nets introduced in [11]. A 
net is a causal net if it is a synchronisation graph and the set of its arcs, 
called its "flow relation", is cycle-free. The latter property implies that  each 
event can occur only once. If  we define a partial  order on events by e < f 
if and only if f can be executed only after e, then a causal net can be seen 
as the net-theoretic way to represent this partial  order. 

In Sec. 6.2 we have shown how to decide the property to be a syn- 
chronisation graph using relational algebra. Therefore, it remains to de- 
velop a similar test for cycle-freeness. To this end, let us represent the 
net Af = (C, E,  R, S) as an "ordinary" directed graph • = (V, F) ,  where 
V := C O E and the flow relation F : V ++ V has the special form 1 

S 0 " 

The relation F is acyclic if and only if its transitive closure is contained in 
I : V ++ V. A simple induction on the powers F i of/w shows the equation 

F + =  ( (R;S)+  (R;S)+;R).  
(S;R)+;S ($;R) + 

Thus, F is cyclefree if and only if (R;S)  + C i a n d  (S;R)  + C I. In the 
Boolean mat r ix  model, the costs for these tests are the same as for com- 
puting the transitive closures, for instance we obtain cubic t ime complexity 
if S. Warshall 's  well-known algorithm is used. 

7 C o n c l u s i o n  

We have captured many  properties of condition/event nets in single-line 
relational programs which can be immediately executed in the RELVIEW 
system. This experience has taught us to use the RELVIEW system as 
a "programmable  pocket calculator" for Petri nets. It cannot, of course, 
compete in machine efficiency with special purpose tools (although the 
complexities are usually the same). For structural properties such as causal- 
ity and free choice the RELVIEW algorithms are easily sufficient whereas 
dynamic properties like reachability and liveness can only be tested for 
small to medium-sized nets. For example, the reachability relation for the 
philosophers net can be computed on a SUN workstation for up to five 
philosophers. 

1We can also express  F relat ion-algebraical ly  in terms of  R and S. But  to achieve 
this ,  we need a re lat ional  specif icat ion of  disjoint un ion  which is b ey o n d  the  a im of this  
article.  
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The real attraction of RELVIEW lies in its flexibility: New properties of 
nets (and new types of nets!), are introduced all the time and RELVIEW 
is an ideal tool for toying with new concepts while avoiding unnecessary 
overhead. We have used the system on many more examples, including a 
fair version of the philosophers net. 

Even in those cases where the obvious transcription of a logical speci- 
fication yields a relational algorithm of unacceptable complexity all hope 
is not lost. Relational algebra is a powerful transformation tool and it is 
often possible to derive an efficient algorithm from a prototype. A number 
of examples of this technique can be found in [2, 3]. 

We have performed the translation from logical specifications to rela- 
tional programs manually, but our experience suggests that certain pat- 
terns occur very frequently, so that mechanical aid could be helpful. Of 
course, the transformation technique presented in this article is not suffi- 
cient for translating arbitrary first-order formulae to relational expressions 
and in some cases where a translation exists, a certain amount of creativity 
is required. Theoretically, completeness can be achieved by including the 
direct product of relations and adding appropriate rules. However, the use 
of products may lead to inefficient and obscure relational programs and is 
therefore best avoided. 

For ease of presentation we have considered only condition/event nets 
in this paper, but other types of Petri nets can be explored in a similar 
way. In this context it is important to know that the natural numbers can 
be axiomatized very naturally within relational algebra [1], so that places 
with multiple tokens can be modelled. 
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