
Relat ion-Algebraic
Petri Nets with

R u d o l f B e r g h a m m e r *
B u r g h a r d y o n K a r g e r *
C h r i s t i a n e U l k e *

Analysis of
RELVIEW

ABSTRACT We present a method for specifying and implementing algo-
rithms for the analysis of Petri nets. It is formally grounded in relational
algebra. Specifications are written in ordinary predicate logic and then
transformed systematically into relational programs which can be executed
directly in RELVIEW, a graphical computer system for calculating with
relations. Our method yields programs that are correct by construction. Its
simpficity and efficiency is illustrated in many examples.

1 Introduction

Petri nets [9, 10] are widely used for designing and modeling concurrent and
interacting processes. The success of Petri nets derives from their intuitive
graphical representation which has great appeal even for people who are
not familiar with the underlying theory. Furthermore, they have a well-
defined semantics which unambiguously defines the behaviour of a net and
allows formM analysis. And, finMly, since they may contain cycles, a large
class of processes can be represented by finite nets of manageable sizes.

In recent years, Tarski 's relational algebra [13] has been used successfully
for formal problem specification, prototyping, and algorithm development.
Relations are well suited for reasoning about discrete structures in general
and graphs in particular [12, 2, 3]. Since the static part of a Petri net is
a directed graph, relational algebra is very promising for computer-aided
investigations of their structure. Many interesting properties of Petri nets
can be expressed in relational algebra. This is easiest for static properties
such as causality and free choice but possible also for dynamic qualities like
reachability and liveness.

The design of a relational algorithm starts from a logical problem spec-
ification tha t describes the desired result of a computat ion. With the aid
of simple but rigorous t ransformation rules the specification is t ranslated

*Institut fllr Informatik und Praktische Mathematik, Christian-Albrechts-Universit/~t
Kiel, PreusserstraBe 1-9, D-24105 Kiel, Germany

50

stepwise into a relational term. The goal of this transformation is the elim-
ination of all quantifiers. In case of success, the resulting relational expres-
sion can be executed directly and efficiently in RELVIEW [4]. In this way,
a program is built up very quickly and its correctness is guaranteed by a
completely formal development.

Since RELVIEW can manipulate relations very efficiently, the perfor-
mance of our programs is often good enough. However, in some cases op-
timizations are possible. Then again the formal framework of relational
algebra can be very helpful because we can use its highly developed ap-
paratus for transforming a given relational expression into a more efficient
o n e .

The relational approach to specification, prototyping and design applies,
at least in principle, to all discrete structures that can be represented nat-
urally by binary relations. For the purpose of presentation we restrict our-
selves here to a certain class of Petri nets, known as condition/event nets.
A quite different set of graph-theoretic algorithms has been handled in the
same style in [2, 3].

2 Relation-Algebraic Preliminaries

A typed relation R : X ~-~ Y consists of a domain X, a range Y and a set
R C_ X • Y. The set of all (typed) relations with domain X and range Y
is denoted by [X ~-~ Y]. When the type is clear, we abbreviate R : X +-~ Y
to R.

If X and Y are finite and of cardinality m and n, respectively, then we
may consider R as a Boolean matr ix with m rows and n columns. Since
this matr ix interpretation is well suited for a graphical representation, we
use Boolean matr ix notation and write Rxu instead of (x, y) E R.

We assume the reader to be familiar with the basic operations on rela-
tions, viz. R T (transposition), R (negation), R U S (join), R N S (meet),
and R; S (composition). The empty relation is denoted by O, the univer-
sal relation by L, and the identity relation by I. The latter relation is the
relation-level description of the meta-level symbol "=". For relation inclu-
sion we write R C_ S. In a component-free manner, now we introduce some
further relational notions which are needed in this article. Further details
can be found in the textbook [12].

2.1 Closures

A relation R : X ++ X is reflexive if I C_ R and transitive if R; R C_ R. The
least transitive relation containing R is called the transitive closure of R and
denoted by R + = Ui>l Ri, while the least reflexive and transitive relation
containing R is called" the reflexive-transitive closure of R and denoted by

51

R* = (.Ji>0 Ri" Obviously , we have the equat ions R + = R ; / / * = R*; R and

R* = ! U-R + .

2 . 2 M a p p i n g s

Let R : X 6+ Y be a re la t ion . Then R is sa id to be func t iona l if RT; R C I,
and t o t a l if R; I_ = I_. As usual , a func t iona l and t o t a l re la t ion is cal led a
m a p p i n g . A re la t ion R is in ject ive if R T is funct ional and sur ject ive i f R T
is to ta l .

2 . 3 D e s c r i p t i o n o f S e t s

Rela t i ona l a lgeb ra offers two different ways of descr ibing the subsets of a
given set.

T h e first r ep resen ta t ion uses vectors, i.e., re la t ions v : X ++ Y wi th
v = v; L. Th i s condi t ion means : W h a t e v e r set Z and universa l re la t ion
k : Y o Z we choose, an e lement x f rom X is e i ther in re la t ion v; k to none
of the e lements of Z or to all e lements of Z . As for a vector v : X ~ Y
the set Y is i r re levant , we consider in the fol lowing only vectors v : X +-~ 1
wi th a specific s ingle ton set 1 as range and omi t the second subscr ip t . Such
a vec tor can be considered as a Boolean m a t r i x wi th exac t ly one co lumn,
i.e., as a Boolean co lumn vector, and descr ibes the subset {x C X : v , } of
X .

A vector v : X t-~ 1 is said to be a po in t if it is in ject ive and surjec-
t ive. These p roper t i e s mean t ha t i t descr ibes a s ingleton set. In the m a t r i x
mode l , hence a po in t is a Boolean co lumn vector in which exac t ly one
c o m p o n e n t is t rue.

In s t ead of vectors , we can use inject ive m a p p i n g s for represen t ing sub-
sets. Given an inject ive m a p p i n g z : Y ++ X , we call Y a subset of X given
by z. I f Y is a subset of X given by z, then the vector sT; L : X ~ 1, where
L : Y ~ 1, descr ibes Y in the above sense. Clearly, the t r ans i t i on in the
o the r d i rec t ion , i.e., the cons t ruc t ion of an inject ive m a p p i n g ,(v) : Y +4 X
f rom a given vec tor v : X ++ 1 descr ib ing Y, is also possible. In c o m b i n a t i o n
wi th the se t - theore t i c m e m b e r s h i p re la t ion

e : X ++ 2X gzs :'(~ X E s , (1)

the re la t ion- leve l equivalent of the meta - leve l symbol "E", in jec t ive m a p -
p ings can be used to enumera t e sets of sets. More specifically, if the vector
v : 2 x ~ 1 descr ibes a subset S of the powerset 2 x , then i t is s t r a igh t -
fo rward to c o m p u t e an in jec t ion ~(v) : ~q +-~ 2 x , f rom which we o b t a i n the
e l emen t s of S as the co lumns of the re la t ion e; z(v) T : X ++ S. I f X is finite,
th is leads to an economic rep resen ta t ion of $ by a Boolean m a t r i x wi th IXI
rows and I8l co lumns .

52

2.4 Residuals and Symmetric Quotients

Residuals are the greatest solutions of certain inclusions. The left residual
of S over R (in symbols S / R) is the greatest relation X such that X; R C_ S
and the right residual of S over R (in symbols R\S) is the greatest relation
X such that R; X C S. We will also need relations which are left and right
residuals simultaneously, viz. symmetric quotients. The symmetric quotient
syq(R, S) of two relations R and S is defined as the greatest relation X such
that R; X C S and X; S T C R T. In terms of the basic operations we have

S / R = S ; R T R \ S = R T ; S syq(R,S) = (R\S) N(RT/sT).

The left residual is only defined if both relations have the same range
and the right residual and the symmetric quotient are only defined if both
relations have the same domain. Translating the first two equations into
component-wise predicate logic notation yields

(S / R) ~ ~ V z Rx, --+ S~, (R \ S)~y 4--4- V z R,~ --+ S~y. (2)

In particular, for S : Y ++ Z and R : Z e+ X we obtain the two correspon-
dences

(3)
for single first-order universal quantification using a relation l : 1 e+ Z and
a vector O : Z ~-~ 1. And, finally, in component-wise notation the symmetric
quotient satisfies the equivalence

syq(R, S)~y ..' Y Vz nz~ ++ S~y. (4)

Let us consider (4) for the special case where R is a membership relation
e : X 4-~ 2 x and S is a vector v : X 4-+ 1. Then the type of syq(~,v) is
[2 x ~-~ 1] and for each set Y from 2 x we have syq(e, v)y if and only if
Vz z E Y ++ vz. As a consequence, syq(e,v) : 2 x ++ 1 is exactly the point
in the powerset corresponding to the vector v.

3 Nets and their Relational Representation

In this section we recall the basics of condition/event nets and explain their
representation in the RELVIEW tool.

3.1 Nets

A (condition/event) net Af is a bipartite directed graph, which we repre-
sent as a a quadruple Af = (C, E, R, S) with relations R : C +e E and
S : E (-e C. The elements of C and E are called conditions and events,

53

respectively, and we require that C N E = 0. In the graphical representa-
tion, conditions (also known as places) are drawn as circles whereas events
appear as squares. A marking is simply a subset M of C. A marked net
(Af, M) is visualized by decorating each condition c E M with a bullet,
called a token. For example,

D ~9

c8

depicts a marked net with nine conditions C = { C l , . . . , c9}, six events
E = { e l , . . . , e s } and marking M = {cl,c3, e4, eh, cT, cg}. The relation R
(resp. S) is coded by the set of arrows leading into (resp. out of) squares.

A net is a statical structure whereas markings are subject to change.
The dynamic evolution of a marked net is described by a simple token game
which specifies the effect of events on the current marking. An event e is cur-
rently enabled if all its predecessors but none of its successors carry a mark.
In this case the execution (or firing) of e results in a new marking N which
is obtained from the previous marking M by removing all predecessors of
e and then adding all successors of e, i.e., by N = (M \ pred(e)) tJ succ(e).
In this way, by

M -Lt N : ~
e is enabled by M and its exe-
cution transforms M into N

every (unmarked) net induces a labeled transition relation on markings.
The above net is a somewhat simplified description of E.W. Dijkstra 's

dining philosophers [5]. Three philosophers are sitting round a table with a
large bowl of tangled spaghetti in the middle. A hungry philosopher needs
two forks to eat but there are only three forks on the entire table, one
between each pair of neighbours. Each philosopher is thinking most of the
t ime but can decide to s tar t eating at any t ime provided both his forks
are free. After eating his fill, he is supposed to return the forks to their
places and go back into thinking mode. The initial marking indicates tha t
all philosophers are busy thinking (ca, c6, and c9) and all three forks are
available (cl, c4, and c~). The eating states c2, c5, and cs are unmarked.

54

The transitions e2, e4, and e6 from thinking to eating are enabled (although
the philosophers may only eat one at a time} whereas the transitions from
eating to thinking are disabled.

3.2 The R E L V I E W Sys tem

RELVIEW [4] is a relation-based computer system for visualization, analy-
sis and manipulat ion of discrete structures. Written in the C programming
language, it runs under X windows and makes full use of the graphical user
interface. Currently RELVIEW is used in about 30 installations all over
the world.

All da ta are represented as binary relations, which RELVIEW visualizes
in different ways. RELVIEW offers several different algorithm for pretty-
printing a relation as a directed graph, including an algorithm for drawing
biparti te graphs such as Petri nets. Alternatively, a relation may be dis-
played as a Boolean matr ix which is very useful for visual editing and also
for discovering various structural properties that are not evident from a
graphical presentation.

For example, in RELVIEW the marked dining philosophers net is rep-
resented by the following relations (matrices) R and S and the (column)
vector init:

I l::i:::,::i::l I I |]i]]::]l []

1

I li~::~i~] i I I I
I I !!::~i!i1 I I I I t.ii::ii..1 I I
I I I l]Ji]il I I I I I liii~il
I I I l:.::;i~ii |i:::.':~]l I I I I liiiiiil I I I I
I l l l ,i::i::i, i F..~:~i~il I I I I I~i~!~]~[~i~::~i I
I I I I I [!i!i!ii I I I I I I !i!i!!

RELVIEW can manage as many relations simultaneously as memory al-
lows and the user may manipulate and analyse them by combining them
with the operators of relational algebra. The elementary operations can
be accessed through simple mouse-click and combined into relational pro-
grams which can then be stored and applied to many sets of input data.
Because RELVIEW often is used on large input data, we have incorporated
some very efficient routines for computing relational products, residuals and
transitive closures.

Relational programs are extremely compact: Every program considered
in this paper easily fits on a single line. To the uninitiated they seem arcane.
However, tha t does not mean relational programming is difficult. On the
contrary, each program is constructed from its obvious logical specification
in a short series of refinement steps each of which is formally based on one
of a very small set of t ransformation rules. As a result, every relational
program we present in this paper is correct by construction.

55

4 Reachability and Liveness

Given a net and two markings M and N, we say that N is reachable from
M iff there is a sequence of transitions M L~ . . . 5_~ N that t ransforms
M into N. Many safety properties of nets depend on the (un-)reachability
of certain markings. Unlike the properties we considered in the previous
section, reachability is a dynamic quality in the sense that its definition
involves a potentially large number of transition steps. As a consequence,
the costs of computing reachability are inherently exponential. Nevertheless
the relational program for testing reachability which we derive in Sec. 4.1
is very useful for experimenting with small to medium-sized nets. It can
be used as a building block for analysing more specific properties such as
liveness which we investigate in Sec. 4.2.

4.1 Reachability

Reachabili ty is defined in terms of sequences of transitions. Therefore, in
the first step of our development we consider a single transition from a
marking M to a marking N which is caused by the execution of an event
e. We have to transscribe the definition of the transition relation of a net
into a logical predicate. The first condition in that definition requires tha t
M enables e which yields

(Yc Rc~ --+ c E M) A (Yc S~c -~ c ~ M) .

Now we represent events by points from [E ++ 1]. Then R; e : C ~-~ 1 is
the vector of the set of predecessors and SV;e : C ++ 1 the vector of set
of the successors of the point e : E 4-~ 1. Furthermore, a condition c is a
predecessor of e if and only if (R; e)c and a successor of e if and only if
(S I ; e)c. Hence, the above formula becomes

(re (n;e)o-~ e ~ M) ^ (re (ST;e)~-~eCM).

Using the correspondences between certain kinds of logical and relation-
algebraic constructions, our next aim is to replace the set-theoretic and
logical symbols of this formula with relational operations and "outermost"
subscripts M, N following the general method outlined in the introduction.
The desired form is derived by

(Vc (R; e)r --~ c e M) A (Vc (sT; e)~ --+ c ~ M)

.~ ;. (r e (R;e)o ~ e~M) A (r e (ST; e)~ --~ ~ M) (1), E : C ~ 2 c

(VC (R;e;L)c N ---~ 6cM) A (Vc (sT;e;L)cN --+ ~cM) L : l J~-~2 C

-' }- (R; e; L \ e)NM A (,ST; e; L \ ~)NM (2)

~, ~ ((R; e; L \ e) T N (sT; e; L \ "g)T)MN,

56

where composit ion binds more than the residuals. If e is executed, the new
marking N results from the old marking M by replacing the predecessors
of e with its successors. On account of our point representation e : E ++ 1
of events and since thus .R; e : C ++ 1 is the complement of set of the
predecessors of e, this is specified by the formula

Vc (c E M A R;ec) V (S-r;e)r ++ c E g .

Again, we are able to replace all the set-theoretic and predicate logic sym-
bols with relational operations and subscripts M and N; a possible deriva-
tion is

V c (c E M A R;ee) v(ST;e)c 44, c E N

Vc (ecM A R;ec) V (ST;e)c ++ ee/v (1), s : C ++ 2 c

Vc (ecM A('R;e;L)cM)V(ST;e;L)cM ++SEN L : l ++ 2 C

Vc ((s n R; e; L) U ST;e; L)cM ++ SeN

r syq((s fq .R; e; L) U sT; e; E, E)MN (4).

Now we can remove the subscripts M and N in the results of the last two
derivations. Put t ing together the remainig relation-algebraic expressions,
we arrive at the component-free specification

trans(R, S, e) := ('R; e; L \ 6) T
n (ST;e;L\ ~)x
n syq((~ n R;e;L) U ST;e;L,6)

of a relation trans(R, S, e) : 2 c ++ 2 c that describes all possible single
transitions between markings of JV" which are caused by an execution of
the event (point) e : E ++ 1.

Having derived a relational specification of the transition relation, we
have solved the most difficult par t of the teachability problem. By defini-
tion, the reachability relation on markings we have searched for is precisely
the reflexive-transitive closure of the union of all transition relations. Hence,
we define a relation

 ach(.R, S) := (U tra..(.R, S,.))"
eEP(E)

the type of which is also [2 c ++ 2c], where P(E) denotes the set of all
points from [E ++ 1].

Also testing whether one marking can be reached from another is now
trivial. If they are given as vectors m : C ++ 1 and n : C ++ 1, we then
produce the corresponding points syq(e, m) : 2 c +-~ 1 and syq(E, n) : 2 C ++ 1
in the powerset as described in Sec. 2.4 and have tha t n is reachable f rom
a marking vector m if and only if syq(e, m); syq(e; n) -r C reach(.R, S).

57

To obtain the set of all markings reachable from m : C <-+ 1, we s tar t
by computing the vector Reach(R, S, m) :2 C <-~ 1 of the relation-theoretic
successors (wrt. the reachability relation) of the point corresponding to m
using

Reach(R, S, m) := reach(R, S)-r ; syq(e, m) .

Then, we represent the elements contained in the subset of 2 c described by
the vector Reach(R, S, m) as the columns of a Boolean matr ix as described
in Sec. 2.3.

We have formulated the above specifications in the RELVIEW system
and applied to the relational representation of the philosophers net given
in Sec. 3.2. The left-hand of the following two RELVIEW pictures shows
the column-wise representation of the four markings reachable from the
initial one; on the right-hand we have the "transition matr ix" describing the
possible transitions between these markings. This latter matr ix is obtained
as value of the relational expression z(r); (Ue trans(R, S, e)); z (r) T , w h e r e e

ranges over the points P(E) and r := Reach(R, S, init).

mmmm
m)mm
mmmm
mmmw
mmmm
Hm)
mmm
mmmm
mmu

mml m
Ilmmmmm
Ilnmmmm
H ~ n

The last column of the first matr ix describes the initial marking init (all
philosophers are thinking). Three different markings are reachable (exactly
one philosopher eats) and each of them corresponds to one of the first three
columns. The 4 • 4 transition matr ix shows that each of the three eating
states can evolve into the thinking state and vice versa, but that no other
transitions are possible. Thus, every sequence of markings/events of the
token game of the philosophers net which starts with the initial marking
corresponds to a run of a philosopher's dinner and vice versa.

4.2 Liveness

In the li terature one finds several notions of liveness. Five different formal
definitions of a marking to be live are given, investigated, and compared in
[8]. All of them can easily be specified in our relational framework. In the
following, we concentrate on the version which is preferred by [8]: Given a
net Af = (C, E, R, S), an event e is said to be dead under a marking M
if there is no reachable marking N which enables e, and a marking M is
called live if for all markings N reachable from M and all events e we have
tha t e is not dead under N.

58

We start our development of an executable relational specification of
liveness by reconsidering the predicate logic formula

(Vc Rce --+ c e M) A (Vc S~e -+ c ~ M)

which specifies that the marking M enables the event e. In contrast with
Sec. 4.1, however, we do not represent events by points in t h e relational
sense. This allows the following derivation which replaces the set-theoretic
and predicate logic symbols with relational operations and the subscripts
M and e:

(Vc R c e - ~ c e M) A(Vc S~c-~cC M)

,: :, (Vc Re\ -~ 6~o) ^ (Vc S+, - , ~ M e) (1), ~: C ~+ 2 ~

(e T / Rr)M,+ A (e "r / S)Me (2)

> ((~+ I n T) n (e T I S))M+ �9

Now the subscripts M and e can be removed, yielding

enable(R, S) := (~T / R T) n (~ / S)

as a component-free specification of the enabling relation of type [2 c ++ El.
In the Boolean matr ix model this means that the entry in the M-row and
e-column of enable(R, S) is true if and only if e is enabled by M.

Combining the above relation enable (R, S) with the reachability relation
reach(R, S) derived in Sec. 4.1, we have that e is dead under M if and only
if

-~S N reach(R, S) M N /~ enable(R, S) lve .

So the set of all such pairs M, e, the "is-dead-under" relation, is given by

dead(R, S) := reach(R, S); enable(R, S)

which is a relational specification of type [2 C ~-r E].
To specify liveness in predicate logic, finally, we use the reachability

relation reach(R, S) again, but now in combination with dead(R, S). We
get that a marking M is live if and only if the formula

V N V e reach(R, S) M N -'+ -~dead (R, S) N e

holds. In this case, the replacement of the set-theoretic and predicate logic
symbols with relational operations and the subscript M proceeds as follows:

V N V e reach(R, S) M N --~ -~dead (R, S) Ne

-~ ~ V N reach(R,S)MN -+ -,3e dead(R,S)Ne

--q N reach(R, S) M N A 3 e dead(R, S)Ne

4--4. 73 g reach(R, S)MlV A (dead(R, S);L)N L : E 44 1

r reach(R, S); dead(R, S); L M .

59

Finally, a removal of the subscript M yields

live(R, S) := reach(R, S); dead(R, S); !_

as the desired vector of type [2 C +4 1] which describes all markings of A;
which are live. Considered as Boolean column vector this means that for a
subset M of 2 C the M-component of live(R, S) is true if and only if M is
a live marking.

The following picture shows the column-wise representation of the eight
live markings of the philosophers net as computed by RELVIEW:

i | i i J | | M
i |wnnim
nmli ||i
| i l W i | | l
ummmmm|m
l ~ n m i ~ n m
i m i m i t i E
i l m m i l M I
l l i l i B i t

From the columns 1, 2, 5, and 6 of this matrix we see that every marking
reachable from init is live. This means that the marked philosophers net
is live, a result which can also be verified with RELVIEW using the test
Reach(R, S, init) C_ live(R, S). There are four more live markings, but none
of them corresponds to a "real" state in a philosopher's dinner. For example,
the marking depicted in the third column describes the impossible situation
where each philosopher is eating

5 Protoptyping Some Further Dynamic Properties

Now we consider further examples for prototyping relational specifications
of dynamic net properties. First, we consider concurrency and conflicts.
Then we are then concerned with deadlocks and traps. Finally, we treat
the notion of contact-freeness.

5.1 Concurrency and Conflicts

When we use nets to model concurrent and interacting processes, we can-
not state whether and when an event will happen, but can only specify
conditions that enable it. In this connection, however, it is very interesting
to know which events can take place concurrently at a given state. This
leads to the following notion. Two events e and f are concurrently enabled
by a marking M if both of them are enabled by M in the sense of Sec. 3.1
and they have neither a predecessor nor a successor in common.

60

Assume Af - (C, E, R, S) is a net. Expressed as logical formulae, the first
part of the definition of the two events e and f being concurrently enabled
by the marking M reads as

(Vc Rc~ -+ c e M) A (Vc &~--+ c ~ M)
A (VcRcf-+ceM) A(VcSic--}c~M)

and the second part as

~(3 c Ro~ A RoD ^ ~(~ c &o ^ Sic).

Compared with Sec. 4.1 and Sec. 4.2, in the sequel we choose a third variant
for a transformation of the formulae describing that a marking enables an
event. Assume the marking to be represented by a vector m : C ++ 1. Then
c E M resp. c ~ M will be replaced by me resp. ~ and we get for the first
part the derivation

(vc Ro~ ~ too) A (Vc &~ -+ ~)
^ (v~ R~s -+ too) ^ (Vc $Io -+ ~o)
(R \ ~)~ A (s T \ ~)~ ^ (R \ m)s ^ (S -r \ ~)s (2)
((R \ m) n (S T \ ~))o A ((R \ m) n (S T \ ~))s

r (((R \ ,n) n (s: \ ~)); ((R \ ,n) n (s: \ m)):)os �9

A transformation of the second part is even simpler. We obtain

~ (3c Ro~ A R~]) A ~(3c S0o A SSo)

RT; Re] A S; STef
r162 RT;RUS;STe].

Combining the results of these two derivations and dropping the subscripts
e and f , we arrive at the relational specification

concur(R, S, m) := aux(R, S, m); aux(R, S, m) x N RT; RU S; S T

of type [E <--} E], where the auxiliary function aux is defined by

aux(R, S, m) := (R \ m) n (S T \ ~) .

It computes for the net Af and a given marking vector m : C 4-+ 1 all pairs of
events which are concurrently enabled by m. If we evaluate concur(R, S, m)
using Boolean matrices and vectors and their standard procedures for im-
plementing relationM algebra, then the run time is determined by the times
needed for the compositions RT; R and S; S T.

The dual notion to concurrency is that of a conflict. Given a marking
M, two events e and f are in conflict under M if they are both enabled
by M in the sense of Sec. 3.1, have a common predecessor or a common

61

successor, and are different. In a predicate logic form we have, hence, the
conjunction of the above formula describing that e and f are enabled by
the marking M with

(3e nc~ A R~s) v (3c s ~ A ssc) ,

saying tha t pred (e) (3 pred (f) ~- 0 or succ (e) r (f) # 0, and the inequality
e # f . For a net Af = (C, E, R, S) and a vector m : C 6+ 1 representing the
marking, this immediately leads (using the function aux again) to

conf(R, S, m) := auz(R, S, m); aux(R, S, m) T n (RT; RU S; S T) n i

as a relational specification of type [E ~ E] for computing all pairs of
events which are in conflict under m. It has the same t ime complexity as
concur(R, S, m).

Let us apply the results to our running example. Since two or more
philosophers cannot eat at the same time, one would expect that no two
events are concurrently enabled by a marking reachable from init. The
RELVIEW system confirms this conjecture. For every column m~ of the
column-wise representation of Reach(R, S, init) given in Sec. 4.1, the eval-
uation of the relational specification concur(R, S, mi) yields the empty
Boolean 6 • 6 matr ix. On the other hand, conflicts do exist. For the columns
ml , m2, m3 the conflict matr ix is empty, but for the last column - the initial
marking vector - RELVIEW yields the following Boolean 6 • 6 matrix:

l i | i |
nmmmu
l i i l |
i n i u l
l i | i i

Hence, in the initial state we have conflicts between each pair of events
representing transitions from eating to thinking. This result agrees with
the transit ion matr ix shown in Sec. 4.1.

5.2 Deadlocks and Traps

Let Af = (C, E, R, S) be a net. A set D of conditions is called a deadlock
if each of its predecessors is also a successor. The dual notion is tha t of a
trap: A subset T of C is said to be a trap if its successor set is a subset of its
predecessor set. Both deadlocks and traps are useful for reasoning about
liveness properties; details about the deadlock approach to the liveness
problem can be found in [7].

If we represent sets of conditions by vectors of type [C <-+ 1], then S; v
describes the set of predecessors and RT; v the set of successors of v : C t-~ 1.

62

Hence, it is very easy to test a single set to be a deadlock or a trap. We
have that d : C <-~ 1 is a deadlock if and only if S ; d C RT;d and, by
exchanging the r61e of the relations S and R x, also that t : C +-~ 1 is a trap
if and only if RT; t C S; t. These inclusions can be tested efficiently if we
implement R, S by Boolean matrices and d, t by Boolean vectors and use
again the standard procedures for the relational operations.

In the following we concentrate on algorithms describing all deadlocks
and traps. For a net without restrictions, the number of deadlocks and
traps can grow exponentially with its size. As in the case of the algorithms
of Sec. 4, therefore, our approach will lead to a complexity which is expo-
nential in time and space.

Expressed in predicate logic we have that a set D of conditions is a
deadlock if and only if the formula

Ve (3c c e D AS~r --~ (3c cE D ARc~)

is valid and that a set T of conditions is a trap if and only if

Ve (3c cE T ARce) -+ (qc ce T AS~r

holds. The first formula can be transformed as follows, in doing so replacing
the set-theoretic and logical symbols with relational operations and the
subscript D:

v~ (3c c e D ASoo) -+ (~c ce D A Rc~)

~..~ Ve (d ; s T) o , ~ (d ; R) o ~ (1), ~ : C ++ 2 c

4 ~- Ve (eT ;S T ueX;R)De

,'. '.- ((S;----~ T U eT; R) / L)D (3), L: 1 e E.

Therefore, changing to a component-free relation-algebraic notation, we get

deadlock(R, S) := (S; T U ~T; R) / L

as specification of the vector of type [2 r 4-+ 1] describing all deadlocks of
the net Af. In the same way one obtains from the above predicate logic
description of traps by exchanging the rble of the relations R and S T that

trap(R, S) := (ex; R U (S; e) x) / L

is the vector of type [2 c ++ 1] describing all traps of Af.
Using RELVIEW to compute the set of all deadlocks of the philosophers

net (which coincides with the set of all traps due to the net's symmetric
form), we obtain the following column-wise representation:

. l:.i . t . I . |

I I I~::|:.:|~:1~;:1 I I I I:~:I~:'IP:~I:~:I I I I~:rll ':t:::l:::l I I I i:;,t;~i;,;|~;-I I I I I::r I I I i :~;| : ; t : : l ;~, l I i I I : : t : : l : ~]~ : | I i i i-:~1;~:11-:,1

63

Since none of these 64 deadlocks can be reached from init, so the (marked)
philosophers net is deadlock-free. To verify this by hand is troublesome; a
mechanicM verification with RELVIEW is easy. We only need to evaluate
the expressions Reach(it, S, init) n deadlock(it, S) and test the result for
emptiness.

5.3 Contact -Freeness

Suppose we have a net and a present marking M. A necessary condition
for an event to be executed is that no condition of its successor set is
contained in M. If an execution of an event is prevented since the successors
are marked, then one speaks of a contact situation. Contact situations are
undesirable. A marking M is said to be contact-free if it is true for every
event e that pred(e) C M implies succ(e) C C \ M and succ(e) C M implies
pred(e) C C \ M.

Assume an event e and a marking M. Then we have that pred(e) C M
implies succ(e) C_ C \ M if and only if

(re Itc, -~ c e M)-+ (Vc S,~ - ~ c ~ M)

holds, and that succ(e) _ M implies pred(e) C_ C \ M if and only if

(V c Se~ --~ c E M) --+ (V c Rc~ --+ c ~ M)

is valid. In the first case, the replacement of the logical and set-theoretic
symbols with relational operations and the subscripts e and M proceeds as
follows:

(r e I t ~ --4 c C M) -+ (Vc S~ -+ c ~ M)

-', '.- (Vc Itce -'9" 6cM) -'+ (r e SZe ~ 6cM) (1), ~ : C ~ 2 c

~-~ (it \ ~)oM -~ (s T \ 3)~M (2)

By exchanging the r61e of the two relations R and S T in this derivation,
the second predicate logic formula for contact-freeness is t ransformed into

(sT \ ~ u (i t \ ~))~M �9

Now we combine these expressions and obtMn

Ve (i t \ ~ U (ST \ ~)).~ ^ (ST \ ~ U (i t \ 3))~

< .'. Ve ((i t \ ~ U (s T \ ~))n (s~ \ ~ u (i t \ 3))),~

,~-->, ((i t \ E u (ST \ ~)) n (St \ ~ U (it \ Z)) \ 0)~ (3), O : E + + 1

which in turn yields the vector

contactfree(it, S) := (n \ e U (S T \ 3)) O (S T \ e U (tt \ 3)) \ 0

64

of type [2 c ~-~ 1] as component-free relational specification of the set of all
contact-free markings ofAZ = (C, E, R, S). As with deadlocks and traps, the
complexity of this algorithm is exponential in t ime and space. Evaluating
this te rm for the philosophers net reveals that there are exactly 95 contact-
free markings. Their column-wise representation is:

r m �9 m � 9 � 9 1 4 9 m m m m m m m m m m �9 m m . l m . m m m ~ x ~ 9 ~ K ~ ~ :
�9 �9 �9149 ~ �9 �9 mmmwmmmmmm �9 �9 �9 �9 immmmmmmmmmmmmmm mmmm mmmm ~) . ~ b mm �9 mmmm mmmmmm mmmmmml

:mmmmmmmmmmmmmmmmmmmmmm~x~ �9 ~ o~ X ~x~o~xmmmmmmmmmmmmmmme �9 mmmmmmmmm �9 �9 �9 ~ •
i m m m m m m m m u m m m e ~ �9 ~ m m m m m m m m m m n m m ~ e v �9 ~ ~ �9 v �9 v ~ ~ ~ ~ m m m m m m u m m m ~ e ~ e v~

�9 mm mmnmmmmmmmmmmm~(mmmmmmmmmmnmmmm mmm n~ummmmmmmmmmmm o �9 immm mmmmmo~ mmmm m n u m m ~ m m m �9 mmm~ mmmmmml
�9 mm m ~ m m m v u m m m ~ m m m m m ~ (x) m m mm m m x) ~ x m m m m m ~ m mm �9 ~x~mmmmm p v ~ m m m m v ~ m mm ~x,

mmm �9 mnn~ mmm mmm~nmNmmm~mmne~mm mm ~mm �9149 ~ �9 �9 �9 �9 i m m ~ m l m ~ m �9 ~ ~ ~ . m ~ n m m ~ m m m e ~ �9) m ~ m mm~ �9 ~;
�9 �9 �9 �9 �9 ~m mm~mmmm~mm~mmmmxmm �9 mm �9 �9 �9 i p �9 m~mmmmx m~mmm)mmmm �9 �9 ~mmm mmmm �9 mmml

)~ �9 �9 �9 �9 �9 �9149 �9149 mm)mm~memm �9 mem~m~mam~m~m~m~m m~m~m~n*m~m~m~n �9

Moreover, RELVIEW can check that Reach(R, S, init) C contactfree(R, S)
holds, thereby proving that no contact situation can be reached from the
initial marking of the philosophers net. A marked net with this property is
said to be contact-free.

6 Testing Structural Properties of Nets

Structural (or static) properties of a net can be decided from its definition
as a bipart i te graph without considering the token game. Their main pur-
pose is to characterize subclasses of nets with nice characteristics. As an
example, for the special subclass of nets called "synchronisation graphs"
the reachability problem is polynomial in the size of the net [6]. By means
of some examples, in this section we demonstrate how structural properties
of nets can be decided using a relational approach.

6.1 Free Choice Nets

In general nets there may occur the situation that a marking can only
enable an event if two further concurrently enabled events are executed in
a specific order. To exclude such a confused situation, i.e., to allow tha t
the choice of the event to execute is taken locally, the specific class of free
choice nets has been introduced in [7]. Formally, a net Af = (C, E, RI'S)
is called a free choice net if for all conditions c and events e from Rc~ it
follows tha t suet(c) = {e} or pred(e) = {c}. This means that an event with
a forward-branching predecessor may not be backwards-branching.

For a relation-algebraic specification of a net to be free choice we follow
the pat tern of Sec. 5.3. Hence, we start the formula

v e V c R~o -~ (V.f R~y -~ e = jr) v (v d R,~ -~ d = c)

expressing tha t Af is a free choice net and remove then the universal quan-
tification over e and c. A transformation of the resulting formula (now with
free ocurrences of e and c) into a form with only relational operations and

65

the subscripts e, c is obtained by

Rce --+ (V f Rc/ --+ e = f) V (Y d Rde --~ d = c)

Rl~c V (V I R~ I --+ Ie/) V (Vd Rd~ -+ Ida)

,: :, RT~c V (I / R) ~ V (R \ I)~: (2)

, -~ (n~u (I /n) u (n \ I))ec.

Note tha t we have used two identity relations during this development, viz.
I : E <-+ E in the left residual 1 / R and I : C <-+ C in the right residual
R \ I. As an immediate consequence from the above derivation we obtain

Af is a free choice net

r Ve Vc (R T U (I / R) U (R \ [)),c

R T u (I / R) U (R \ I) : L L : E + + C .

In the s tandard Boolean matr ix model for relational algebra, the latter
equality can be tested in a t ime complexity which is determined by the
costs for computing the residuals.

The philosophers net is not a free choice net. Using RELVIEW, this can
easily be verified and the system then yields:

8 E ~ m m m l l M
B B E m ~ m i l B
u ~ m m m ~ l l u
t l w m ~ M i u m
~ s E m m ~ E i m
i l ~ m m m i B ~

This Boolean 6 z 9 mat r ix relates the events and conditions which fulfil the
free choice property. A comparison of this matr ix with the 6 • 9 universal
mat r ix shows that this property is violated by exactly 6 pairs, viz. by
(e2, Cl), (e2, c4), (e4, c4), (e4, c7), (e6, Cl), and (e6, eT).

6.2 Synchron i sa t i on Graphs and State Machines

We say that a net is a synchronisation graph (or S-graph) if every con-
dition has at most one predecessor and at most one successor. Such nets
model the branching (or splitting) of a process into concurrent threads and
the synchronisation of these threads. Due to the absence of branching con-
ditions for synchronisation graphs the reachability problem can be solved
in polynomial time. The same holds in nets without branching events, i.e.,
in the case that every event has at most one predecessor and at most one
successor. Such a net is said to be a state machine (or T-graph).

On account of our special representation of a net as a relational structure
A/" -= (C, E, R, S) we have that A/" is a synchronisation graph if and only if

66

S is injective and R is functional and that N" is a state machine if and only
if R is injective and S is functional. Efficient tests for Boolean matrices to
be functional resp. injective inspect row by row resp. column by column,
i.e., need only two nested loops.

Using the method outlined in the introduction, we are also able to develop
relational specifications of the vectors of non-branching conditions resp.
non-branching events such that the resulting algorithms are polynomial.
In the case of a condition c, first we consider the property that it has at
most one predecessor. The derivation of a relational specification from its
predicate logic description proceeds as follows:

Ve V l S o o A S I c --+ e = $

V e S~r --+ V f SIc --+ II~ I : E 6+ E

r v e &o -~ (s \ I)c0 (2)

~==~ ve (ST U (S \ I)h .

z. , . . ((S T U (S \ I)) / L) c (3), L : 1 ++E.

Next, we deal with the property that c has at most one successor. I ts
logical formalization is

V e V f Rr A Rcl "+ e = f

and a replacement of S by R T in the above derivation transforms it into

(('RU (R "r \ I)) / L)~.

It remains to put the two relational forms together and to remove the
subscript c. In doing so, we arrive at

s-graph(R, S) := ((S---$U (S \ I)) / L) n ((R U (R T \ I)) / L)

as the vector s-graph(R, S) : C 6+ 1 of non-branching conditions. Hence,
the net Af is a synchronisation graph if and only if s-graph(R, S) equals
the universal vector L : C 6+-> 1.

If we change the r61e of the relations R and S in the development of
s-graph(R, S), then the result is the component-free specification

t-graph(R, S) := ((RVU (R\ I)) /L) I-I ((SU (S T \ I)) /L)

of a vector of type [E 6+ 1] for enumerating the non-branching events. In
this specification we use an identity relation I : C 6+ C and an universal
relation L : 1 6+ C.

For small examples these properties can easily be read off the mat r ix rep-
resentation. For example, the philosophers net is neither a synchronisation
graph nor a s tate machine, because R and S have both rows and columns
with more than one entry.

67

6.3 Causal Nets

As a last s tructural property we consider causal nets introduced in [11]. A
net is a causal net if it is a synchronisation graph and the set of its arcs,
called its "flow relation", is cycle-free. The latter property implies that each
event can occur only once. If we define a partial order on events by e < f
if and only if f can be executed only after e, then a causal net can be seen
as the net-theoretic way to represent this partial order.

In Sec. 6.2 we have shown how to decide the property to be a syn-
chronisation graph using relational algebra. Therefore, it remains to de-
velop a similar test for cycle-freeness. To this end, let us represent the
net Af = (C, E, R, S) as an "ordinary" directed graph • = (V, F) , where
V := C O E and the flow relation F : V ++ V has the special form 1

S 0 "

The relation F is acyclic if and only if its transitive closure is contained in
I : V ++ V. A simple induction on the powers F i of/w shows the equation

F + = ((R;S)+ (R;S)+;R).
(S;R)+;S ($;R) +

Thus, F is cyclefree if and only if (R;S) + C i a n d (S;R) + C I. In the
Boolean mat r ix model, the costs for these tests are the same as for com-
puting the transitive closures, for instance we obtain cubic t ime complexity
if S. Warshall 's well-known algorithm is used.

7 C o n c l u s i o n

We have captured many properties of condition/event nets in single-line
relational programs which can be immediately executed in the RELVIEW
system. This experience has taught us to use the RELVIEW system as
a "programmable pocket calculator" for Petri nets. It cannot, of course,
compete in machine efficiency with special purpose tools (although the
complexities are usually the same). For structural properties such as causal-
ity and free choice the RELVIEW algorithms are easily sufficient whereas
dynamic properties like reachability and liveness can only be tested for
small to medium-sized nets. For example, the reachability relation for the
philosophers net can be computed on a SUN workstation for up to five
philosophers.

1We can also express F relat ion-algebraical ly in terms of R and S. But to achieve
this , we need a re lat ional specif icat ion of disjoint un ion which is b ey o n d the a im of this
article.

68

The real attraction of RELVIEW lies in its flexibility: New properties of
nets (and new types of nets!), are introduced all the time and RELVIEW
is an ideal tool for toying with new concepts while avoiding unnecessary
overhead. We have used the system on many more examples, including a
fair version of the philosophers net.

Even in those cases where the obvious transcription of a logical speci-
fication yields a relational algorithm of unacceptable complexity all hope
is not lost. Relational algebra is a powerful transformation tool and it is
often possible to derive an efficient algorithm from a prototype. A number
of examples of this technique can be found in [2, 3].

We have performed the translation from logical specifications to rela-
tional programs manually, but our experience suggests that certain pat-
terns occur very frequently, so that mechanical aid could be helpful. Of
course, the transformation technique presented in this article is not suffi-
cient for translating arbitrary first-order formulae to relational expressions
and in some cases where a translation exists, a certain amount of creativity
is required. Theoretically, completeness can be achieved by including the
direct product of relations and adding appropriate rules. However, the use
of products may lead to inefficient and obscure relational programs and is
therefore best avoided.

For ease of presentation we have considered only condition/event nets
in this paper, but other types of Petri nets can be explored in a similar
way. In this context it is important to know that the natural numbers can
be axiomatized very naturally within relational algebra [1], so that places
with multiple tokens can be modelled.

8 REFERENCES

[1] Berghammer R., Zierer H.: Relational algebraic semantics of deter-
ministic and nondeterministic programs. Theoret. Comput. Sci. 43,
123-147 (1986)

[2] Berghammer R., Gritzner T., Schmidt G.: Prototyping relational spec-
ifications using higher-order objects. In: Heering, J,, Meinke, K.,
MSller, B., Nipkow, T. (eds.): Proc. Int. Workshop on Higher Or-
der Algebra, Logic and Term Rewriting (HOA 93), Amsterdam, The
Netherlands, Sept. 1993, LNCS 816, Springer, 56-75 (1994)

[3] Berghammer R., yon Karger B.: Algorithms from relational specifica-
tion. In: Brink C., Schmidt G., Albrecht R. (eds.): Relational methods
in Computer Science, Supplement volume of Computing (to appear
1996)

[4] Berghammer R., Schmidt G.: RELVIEW - A computer system for the
manipulation of relations. In: Nivat M., Rattray C., Rus T., Scollo G.

69

(eds.): Proc. 3rd Conf. on Algebraic Methodology and Software Tech-
nology (AMAST 93), University of Twente, The Netherlands, June
1993, Workshops in Computing, Springer, 405-406 (1993)

[5] Dijkstra E.W.: Hierarchical ordering of sequential processes. Acta In-
formatica l, 115-138 (1971)

[6] Genrich H.J., Lautenbach K.: Synchronisationsgraphen. Acta Infor-
matica 2, 143-161 (1973)

[7] Hack M.: Analysis of production schemata by Petri nets. TR-94, MIT-
MAC (1972)

[8] Lautenbach K.: Liveness in Petri nets. Bericht 02.1/75-7-29, Gesell-
schaft fiir Mathematik und Datenverarbeitung, St. Augustin (1975)

[9] Reisig W.: Petri nets - An introduction. EATCS Monographs on The-
oret. Comput. Sci., Springer (1985)

[10] Olderog E.-R.: Nets, terms and formulas. Cambridge Tracts in Theo-
ret. Comput. Sci., Cambridge University Press (1991)

[11] Petri C.A.: Non-sequential processes. Bericht GMD-ISF-77-5, Gesell-
schaft fiir Mathematik und Datenverarbeitung, St. Augustin (1977)

[12] Schmidt G., StrShlein T.:Relations and graphs. Discrete Mathematics
for Computer Scientists, EATCS Monographs on Theoret. Comput.
Sci., Springer (1993)

[13] Tarski A.: On the calculus of relations. J. Symbolic Logic 6, 73-89
(1941)

