
Local Nondeterminism in Asynchronously
Communicating Processes

F.S. de Boer and M. van Hulst

Utrecht University, Dept. of Comp. Sc.,
P.O. Box 80089, 3508 TB Utrecht, The Netherlands

A b s t r a c t . In this paper we present a simple compositional Hoare logic
for reasoning about the correctness of a certMn class of distributed sys-
tems. We consider distributed systems composed of processes which in-
teract asynchronously via unbounded FIFO buffers. The simplicity of
the proof system is due to the restriction to local nondeterminism in the
description of the sequential processes of a system. To illustrate the use-
fulness of the proof system we use PVS (Prototype Verification System,
see [ORS92]) to prove in a compositional manner the correctness of a
heartbeat algorithm for computing the topology of a network.

1 I n t r o d u c t i o n

In [dBvH94] we have shown that a certain class of distributed systems com-
posed of processes which communicate asynchronously via (unbounded) FIFO
buffers, can be proved correct using a simple compositional proof system based
on Hoare-logic. The class of systems introduced in [dBvH94] is characterized
by the restriction to deterministic control structures in the description of the
locM sequential processes. An additional feature is the introduction of input
s ta tements as tests in the choice and iterative constructs. Such input s ta tements
involve a test on the contents of the particular buffer under consideration. Even
in the context of deterministic sequential control structures this feature gives rise
to global nondeterminism, because the choices involving tests on the contents of
a buffer depend on the environment.

To reason about the above-mentioned class of distributed systems a buffer is
represented in the logic by an input variable which records the sequence of val-
ues read from the buffer and by an output variable which records the sequence
of values sent to the buffer. The communication pat tern of a system then can
be described in terms of these inpu t /ou tpu t variables by means of a global in-
variant. This should be contrasted with logics which formalize reasoning about
distr ibuted systems in terms of histories ([OG76, AFdR80, ZdRvEB85, Pan88,
HdR86]). The difference between inpu t /ou tpu t variables and histories is that
in the former information of the relative ordering of communication events on
different buffers is lost. In [Fra92] these inpu t /ou tpu t variables are used in a

368

non-compositional proof system based on a cooperation test along the lines of
[AFdR80] for FIFO buffered communication in general. A compositional proof
system based on input/output variables is given in [dBvH94] for the class of
systems composed of deterministic processes as described above. However, the
proof system in [dBvH94] allows only a decomposition of the pre/postcondition
part of the specification of a distributed system. The global invariant, which is
needed for completeness and which describes the ongoing communication be-
haviour of the system in terms of the input/output variables, does not allow
a decomposition into local invariants corresponding to the components of the
system. This is due to the global non-determinism inherent in the distributed
systems considered in [dBvH94].

In this paper, we investigate local nondeterminism, that is, we restrict to dis-
tributed systems composed of processes which may test only their own private
program variables. The resulting computational model is still applicable to a
wide range of applications: For example, it can be applied to the description of
socalled heartbeat algorithms like, for instance, the distributed leader election
problem and the network topology determination problem. The latter problem
we will discuss in some detail in this paper.

We show that when restricting to local non-determinism, a complete specification
of a distributed system can be derived from local specifications of its components,
that is, from specifications which only refer to the program variables and the
input/output variables of the component specified. This additional compositional
feature is very important because it allows for the construction of a library of
specified components which can be reused in any parallel context. The proof
system in [dBvH94] does not allow this because part of a local specification
is the global invariant which specifies the overall communication behaviour of
the entire system. Moreover, the relevance of a compositional reasoning pattern
[dB94, dBHdR, dBvH95, HdR86] with respect to the complexity of (mechanically
supported) correctness proofs of concurrent systems lies in the fact that the
verification of the local components of a system can in most practical cases
be mechanized fully (or at least to a very large extent). What remains is a
proof that the conjunction of the specifications of the components implies the
desired specification of the entire system. This latter proof in general involves
purely mathematical reasoning about the underlying datastructures and does
not involve any reasoning about the flow of control. This abstraction from the
flow of control allows for a greater control of the complexity of correctness proofs.

We will illustrate the above observation by proving the correctness of a heartbeat
algorithm for computing the network topology using the Prototype Verification
System (PVS). As the formalization of the local reasoning is straightforward, our
verification effort concentrates on the second, global part of the correctness prob-
lem, viz. the proof that the conjunction of the specifications of the components
implies the desired specification of the entire system.

The specification language of PVS is a strongly typed, higher-order logic. Speci-

369

fications can be structured into a hierarchy of parameterized theories. There are
a number of built-in theories (e.g. reals, lists, sets, ordering relations, etc.) and a
mechanism for automatically generating theories for abstract datatypes. Due to
its high expressivity, the specification language can be invoked in many domains
of interest whilst maintaining readable (i.e. not overly constructive) specifica-
tions. At the core of PVS is an interactive proof checker with, for instance,
induction rules, automatic rewriting, and decision procedures for arithmetic.
Moreover, PVS proof steps can be combined into proof strategies.

The reason to choose PVS is a pragmatic one: it allows a quick start, and, more
importantly, its powerful engine allows one to disregard many of the trivial but
tedious details in a proof, a virtue that is not shared by most of the currently
available proof checkers/theorem provers. Much effort has already been invested
in developing a useful tool for (automated) verification by means of PVS [CS95,
Raj94].

The rest of this paper is organized as follows: In section 2, the programming
language is defined. Section 3 explains the algorithm for computing the topol-
ogy of a network. Then, in section 4, the proof system is introduced and its
formal justification is briefly touched upon. The theorem prover PVS and the
specification of the correctness of the algorithm in PVS are discussed in section
5. Finally, section 6 contains some concluding remarks and observations.

2 T h e p r o g r a m m i n g l a n g u a g e

In this section, we define the syntax of the programming language. The language
describes the behaviour of asynchronously communicating sequential processes.
Processes interact only via communication channels which are implemented by
(unbounded) FIFO-buffers. A process can send a value along a channel or it
can input a value from a channel. The value sent will be appended to the buffer,
whereas reading a value from a buffer consists of retrieving its first element. Thus
the values will be read in the order in which they have been sent. A process will
be suspended when it tries to read a value from an empty buffer. Since buffers
are assumed to be unbounded, sending values can always take place.

We assume given a set of program variables Vat, with typical elements x, y ,
Channels are denoted by c, d , We abstract from any typing information.

Defini t ion 1. The syntax of a statement S which describes the behaviour of a
sequential process, is defined by

370

S ::= skip
I x : ~ - - e
I c??xlc!!e
I S1; $2

I *li[b +

In the above definition skip denotes the 'empty' statement. Assigning the value
of e to the variable x is described by the statement x := e. Sending a value of an
expression e along channel c is described by c!!e, whereas storing a value read
from a channel c in a variable x is described by c??x. The execution of c??x is
suspended in case the corresponding buffer is empty. Furthermore we have the
usual sequential control structures of sequential composition, guarded command
and iterated guarded command (b denotes a boolean expression). In the example
below, we only have need for simple guarded statements, which we will denote
by if b then $1 else $2 fi and while b do S od.

In [dBvH94] we considered deterministic choice and iteration constructs which
use input statements as tests. For example, the execution of a (conditional in-
put) statement if c??x then $1 else $2 fi consists of reading a value from channel
c, in case its corresponding buffer is non-empty, storing it in x and proceed-
ing subsequently with $1. In case the buffer is empty control moves on to $2.
These constructs will in general enhance the capability of a deterministic process
to respond to an indeterminate environment and in this respect they give rise
to global nondeterminism in the sense that the choices of a process depend on
the environment. Note that this is not the case in our present language, where
processes can only inspect their local variables. Nevertheless many interesting
algorithms described in the literature can be expressed in a programming lan-
guage based on local nondeterminism. As an example we consider in the next
section the algorithm for computing a network topology.

D e f i n i t i o n 2. A parallel program P is of the form [$1 II ..- II S~], where we as-
sume the following restrictions: the statements Si do not share program variables,
channels are unidirectional and connect exactly one sender and one receiver.

3 A n e x a m p l e : C o m p u t i n g t h e n e t w o r k t o p o l o g y

We consider a symmetric and distributive algorithm for computing a network
topology, which is described in [And91]. We are given a network of processes
which are connected by bi-directional communication links, and each link is
represented by two (unidirectional) channels, i.e. between any two processes S~
and Sj there is a channel from Si to Sj iff there is a channel from Sj to S~. Each

371

process can communicate only with its neighbors and knows only about the
links to its neighbors. We assume that the network is connected. A symmetric
distributed solution to the network topology problem can be obtained as follows:
Each process first sends to its neighbors the information about its own links
and then each of its neighbors is asked for its links. After having obtained this
information each process will know its links and those of its neighbors. This it
will know about the topology within two links of itself. Assuming that we know
the diameter D of the network, that is, the largest distance between two nodes,
i terating the above D times will solve the problem.

To formalize the above algorithm we represent the network topology by a ma-
tr ix top[1 : n, 1 : n] of BOOL, where n is the number of processes, top[i,j]
indicates whether there exists a link from process i to process j . Since we have
bi-directional links we have for all processes i and j top[i,j] = top~, i]. For each
pair of linked processes i and j we have channels cij and cjl. With respect to
channel clj process i is the sender and j the receiver. The contents of each chan-
nel c is described by two variables c?? and c!!. The first variable c?? is local to
the receiver and records all values that have been read; the second variable c!!
is local to the sender and records the sequence of values that were sent. Thus
the inpu t /ou tpu t variables of process i are cji?? and cij!!, for all processes j
such that i and j are linked. Processes communicate by sending and receiving
their local views of the global topology. Each process has a local variable lview~,
which represents its (local) knowledge of the global topology top. Initially, Iview~
is intialized to the neighbors of process i, that is Iviewi[k, l] = true if and only
if k = i and top[i, l] = true. A local view received by a process i from one of its
neighbors is stored in a local variable nviewl. These local views are combined
by an or-operation on matrices, denoted by V, which is an obvious extension
of the corresponding boolean operation on the t ruth values. The diameter of
the network is given by D. The behaviour of process i is then described by the
following statement:

Si = rl := O;
while r~ < D
do j := 1;

while j < n
do if top[i,j]

then cij ![lview~
fi;
j : = j + l

od;
j := 1;
while j < n
do if top[i,j]

then cdi??nview~;
lviewi := Iviewi V nviewi

fi;

od

j : = j + l
od;
r : - - r i + l

372

For a network of n processes the program for computing the network topology,
i.e. the matr ix top, is defined by [$1 II-.. II Sn].

4 T h e p r o o f s y s t e m

In this section we provide a proof system for proving partial correctness and
deadlock freedom of programs. To this end, we introduce correctness formulae
{p}P{q} which we interpret as follows:

Any computation starting in a state which satisfies p does not deadlock,
and moreover, if its execution terminates, then q holds in the final state.

Note that this interpretation is stronger than the usual partial correctness in-
terpretat ion in which absence of deadlock is not required. The precondition p
and postcondition q are formulae in some first-order logic. We omit the formal
definition of this logic which is rather standard; here we only mention that p
and q will contain besides the program variables of P the inpu t /ou tpu t variables
c?? and c!!, where c is a channel occurring in P. These variables c?? and c![are
intended to denote the sequences of values received along channel c and those
sent along channel c, respectively. Logically they are simply interpreted as (fi-
nite) sequences of values (thus we assume in the logic operations like append,
tail, the length of a sequence etc.).

To derive the correctness of a program P compositionally, we introduce local
correctness formulae of the form I : {p}S{q}, where p and q are (first-order logic)
assertions, allowed to refer to the variables of S only. The set of variables of a
s tatement S consists of its program variables and those inpu t /ou tpu t variables
c?? (c!!) for which c is an input channel of S (c is an output channel of S). The
assertions p and q are called the precondition and postcondition, respectively,
while the assertion I is called the invariant. The invariant I is a conjunction of
implications of the form Rc -+ p, where Rc denotes a predicate which indicates
that the next execution step involves a read on channel c. An assertion Rc -+ p
thus specifies that if control is about to execute a read on the channel c then p
holds. The information in I will be used in the analysis of deadlock. Intuitively
the meaning of a correctness formula I : (p}S{q} can be rendered as follows:

The invariant I holds in every state of a computation of S starting in a
state which satisfies p and upon termination q is guaranteed to hold.

373

Note that the invariance of I - RCl --+ Pl A ... A Rck ~ Pk amounts to the fact
tha t whenever control is at an input ci?x, 1 < i < k, Pl is guaranteed to hold.
In other words, I expresses certain invariant properties which hold whenever an
input s tatement (specified by I) is about to be executed. It is important to note
that thus the predicates Rci are a kind of 'abstract ' location predicates, in the
sense that they refer not just to a particular location of a statement but to a set
of locations.

Now we present the axioms and rules of our proof system.

The axiom for the assignment statement is as usual, apart from the addition
of an arbi t rary invariant; this is allowed because there is no communication, so
none of the Rc will hold during execution of the statement.

A x i o m 1 (assignment) I : {p[e/x]}x := e{p}

The output s tatement c!!e is modeled as an assignment to the corresponding
output variable c!! which consists of appending the value sent to the sequence
c!!. The operation of 'append' is denoted by '.'. With respect to the invariant, a
similar remark holds as for the assignment axiom.

A x i o m 2 (output) I : {p[c!!-e/c!!]}c!!e{p}

An input s tatement c??x is modeled as a (multiple) assignment to the variable
x and the input variable c??. The associated invariant states that when reading
on c, the substi tuted postcondition should hold.

Axiom 3 (input) Rc ~ Vv. Mvtx, c??. v/c??] : {Vv. p[vlx, v/c??]}c??x{p}

We now give the rule for sequential composition; the rules for the choice and
while s tatement can be obtained by extending in a similar way the usual rules
for these constructs.

R u l e 1 (sequential composition)

I : {p}Sl{q} , I : {q}S2{r}
z : {p}S1; s2{r}

So in order to prove that I is an invariant of S 1 ; $2 one has, naturally, to prove
that I is both an invariant of $1 and $2.

We have the following local consequence rule:

R u l e 2 (local consequence)

I ' -+ I, p ~ p', I ' : {p'}S{q'}, q' --+ q
z: {p}S{q}

374

We introduce the expression c as an abbreviation of the expression c!! - c??. By
c!! - c?? we denote the suffix of the sequence c!! (i.e. the sequence of values sent)
which is determined by its prefix c?? (i.e. the sequence of values read). Thus c
represents the contents of the buffer, that is, the values sent but not yet read.
The empty sequence we denote by ~.

In preparation of the parallel composition rule, we first observe that a possible
deadlock configuration of a program P is characterized by: Every process is
either done or about to execute a read on a channel for which the corresponding
buffer is empty; moreover at least one process is not yet done. Suppose P = IS1 II
�9 ..]1S~] and each S~ has input channels c~, ..., c,~,~. Hence we have the predicates
RC~l, ..., Rc~, for each i E {1, ..., n}. Furthermore assume a postcondition q~ for
each of the Si. Now we introduce a set of assertions C(P), the disjunction of
which characterizes all possible deadlock configurations of P:

C(P) = { h i p i I p~ =- Rc~ Ac~ = e, for some k _< m~, o r p~ = q~,

and there exists j : pj ~ qj }.

Note that each assertion p E C(P) characterizes a set of possible deadlock con-
figurations.

D e f i n i t i o n 3. Given some local postconditions ql, ..., q~, we define for local in-
variants I1,..., I~ the assertion DF(I1, ..., I~) as

A Ii A --+ false
pEt(P)

The above assertion DF(I1, ..., I~) expresses that the conjunction of the local
invariants is inconsistent with any possible deadlock configuration, i.e. the as-
sertion Ai=l ~ guarantees deadlock freedom.

Local correctness formulas then can be combined into correctness formulas of an
entire program as follows:

R u l e 3 (parallel composition)

Ii : {pi}Si{q~}(i = 1, ..., n), DF(II , . . . , I,~)
{h~p~}[s l II .-. II s~]{h~q~}

375

In the premise of the above rule the formula DF(I1,..., I,~) is implicitly assumed
to be defined with respect to the local postconditions q l , . . . , qn. The composi-
tional method of proving deadlock freedom incorporated in the above rule can
be best understood by comparing it with the standard way of proving deadlock
freedom using the proof outlines. For example in [AFdRS0], given proof outlines
of the components of a CSP program P - [$1 [[. . . [] S,~], absence of deadlock
can be proved by first determining statically all possible deadlock configurations.
Such a configuration consists of a n-tuple of local locations Cone location for each
component). Each possible deadlock configuration then is characterized by the
conjunction of the assertions associated with its locations by the given proof out-
lines. Absence of deadlock then can be established by showing that the assertion
associated with each possible deadlock configuration is equivalent to false. The
main difference with our deadlock analysis lies in the use of the predicates Rc
which do not refer to a specific location but represent a set of locations, namely
all those locations where the corresponding process is about to execute a read
on channel c. In our case then deadlock freedom can be established by showing
that the conjunction of the local invariants, which provide information about
the local states of processes when these are about to execute a read, is incon-
sistent with any possible deadlock configuration. This abstraction from specific
locations, which is due to the restriction to local nondeterminism, allows for the
simple compositional proof rule for parallel composition described above.

Apart from the above rule for parallel composition we also have the usual con-
sequence rule for programs. With respect to reasoning about global states we
moreover have for each channel c the following axiom of asynchronous commu-
nication:

c?? _< c!!

where < denotes the prefix ordering on sequences.

The formal justification of the proof system, i.e. soundness and (relative) com-
pleteness can be proved in a rather straightforward manner using a compositional
semantics which associates with each statement S a meaning

M (S) e E -+ P (~ • Chan -* P (~))

(Z denotes the set of states, a state being a function which assigns values to
the program variables and the input /ou tput variables, and Chan denotes the set
of channel names). Here (a', f) E Ad(S)(a), with f E Chan ~ P(Z) , indicates
that a ' is the result of a terminating computation of S starting from or, and
every intermediate state a" just before an input on a channel c belongs to fCc).
In other words, f(c) collects all the intermediate states which occur just before
an input on channel c is executed. Formally we then define for I -- A~ Rc~ ~ p~,

I : {p}S{q} iff for every pair of states a and a' and function f E
than --4 7~(Z), such that Ca', f) E AdCS)Ca) and p holds in ~, it is the
case that q holds in a I and p~ holds in every state a" E f(ci).

376

The semantics of a program can be defined in terms of the meaning A~I(S) of its
components by a straightforward 'translation' of the parallel composition rule of
the proof system. Moreover it is rather straightforward to prove the correctness
of the compositional semantics with respect to an operational semantics. More
details can be found in the technical report [dBvH96].

5 A u t o m a t e d verification in P V S

In this section, we will show how the network topology determination algorithm
can be specified and verified using PVS.

The specification to be proved is

{Ai(lv iewi[i , l] = top[i, l] A (j ~ i -+ lviewi[j, l] = false))}
[sl II ... II s~]

{Ai Iview~ = top}

In words, if initially for every i, lviewl is initialized to the neighbours of i, then
the program [$1 11 ... II S~] terminates in a state in which for any i, Iview~ equals
the actual network topology top .

Using the local proof rules, it is not difficult to derive the following local speci-
fication for each Si (it is implicitly assumed that the indices j and k range over
the neighbours of i):

Aj Rcj~ -+ (Ak Ic~k!!l = r~ ^ Ak<j Ic~.*?l = r~ A A~_>j Ic~??l -- r~ - 1):
{ lv i e~ [i , l] = top[i, l] A (j # i -+ l v ie~ , [j , l] = false))

&
{q~ A Aj Ic~j!!l = Ic~??l = n }

For the moment, we do not consider yet the first part of the postcondition ql,
which we will consider in detail later in this section. The invariant informally
states that when a process is ready to receive on channel cj~, all its outgoing
channels have length r~, as well as its in-going channels from processes with
index smaller than j , and the in-going channels from all processes from index j
upward have length r~ - 1.

To derive the specification for [$I II .-. II S~] we have to show first that the
condition for deadlock freedom holds, so that we can apply the parallel compo-
sition rule. Then there remains to show that the conjunction of the q~ implies
the globM postcondition A~ lviewi --'- top.

As to the first problem, we have to show for any p E C(P): A~ I~ A p --+ false.
The proof of this is far from trivial, and omitted for reasons of space. Essentially,

377

it involves start ing at some process waiting for an input, and tracking down the
processes on which it is waiting until arriving at the first process again or at a
terminated process, which in both cases leads to a contradiction. The intricacy
of the proof stems from the fact that the processes may run 'out of phase' to a
considerable degree.

In the rest of this section, we will focus on the second essential part of the proof,
which involves an application of the global consequence rule. We now focus on
the specification of this problem in PVS. �9

Specifications in PVS are organized in theories, which may depend on other
theories via an importing mechanism. In particular, any theory may import
from the set of built-in theories. As an example of this, in the theory p r o c e s s e s
below the type na t is (silently) imported. Theories may be parameterized, as in
our case: the parameter n denotes the number of processes that participate in
the algorithm. The first axiom below takes care that we are dealing with at least
2 processes. The type p r o c e s s is defined as a subtype of the natural numbers,
i.e. the primitive type na t . The type p a i r s e t will be used further on in the
definition of type l i n k s ; it fixes the type of sets of 2-tuples of processes.

processes [n: nat] : THEORY

BEGIN

process : TYPE = {m: nat I 1 <= m AND m <= n}

pairset : TYPE = setof[[process,process]]

The variable declarations which follow below should be self-explanatory. The
constraints on the type l i n k s express the properties that any network topology
should possess: no channel should connect a process with itself (n o n r e f l) , chan-
nels are bidirectional (more accurately: the existence of a channel implies the
existence of the reverse channel) (symmetr ic) and any process should be con-
nected to at least one process (connec ted) (we provide the definition of n o n r e f l
only). The projection functions p r o j _ l and pro j_2 are built-in accessor functions
on tuples.

m,ml,k : VAR nat

i,j,il,jl,i2,j2 : VAR process

z, zl : VAR [process,process]

P : VAK pairset

378

nonrefl : pred[pairset] =
LAMBDA (p):

(FOKALL(z):

(member(z, p)) IMPLIES proj_l(z) /= proj_2(z))

links : TYPE = { p: pairset I nonrefl(p) AND
symmetric(p) AND
connected(p) }

1 : VAK links

The following fragment should be self-explanatory.

neighbors(l,i) yields the set of neighbors of process i in

linkset 1

neighbors: [links,process -> setof[process]] =
LAMBDA (l,i): { j I EXISTS (z): member (z,l) AND

proj_l(z) = i AND proj_2(z) = j }

path(l,i,j,m) = TRUE iff there exists a path of length m
between i and j in linkset 1

path : pred[[links,process,process,nat]] =
LAMBDA (l,i,j,m):

(EXISTS(sp: sequence[process]l:
i = sp(O) AND j = sp(m) AND
(FOKALL (mO: nat): mO < m IMPLIES
(member(sp(mO + i), neighbors(l,sp(mO))))))

379

The next two lemmas are useful in proving the larger lemmas below. Their proof
in PVS requires minimal effort, while they provide more clarity in bigger proofs.
chain states that if there exists a path from i to j of length m + 1 then there
exists a neighbor of i which has distance m to j.

chain LEMMA

FORALL (m:nat):
(path(l,i,j,m+l)

IMPLIES
(EXISTS (jl:process): member(jl, neighbors(l,i))

AND path(l,jl,j,m)))

zeropath : LEMMA
path(l, i, j, O)

IMPLIES
i=j

The type matr ix is used as representation for the data objects in our domain,
viz. lview~ and nview~ in the algorithm. Each channel c~j is described by the
channel variables • j) for c~j?? and ou tchan(i , j) for c~j!!.

matrix : TYPE = [process,process -> bool]

index : TYPE = {m:nat I m < n-l}

ix,ix2 : VAR index

chan : TYPE = [[process,process],index -> matrix]

inchan :chan

outchan : chart

topo ld (1 , i) yields the matrix with only the i-th row filled in according to the
neighbor set of i with respect to 1. Thus it corresponds to the value of lview~ at
the beginning of the algorithm.

topold : [links,process -> matrix] =

LAMBDA (i, i) :

380

(LAMBDA(il,jl):
IF i = il THEN member(jl,
ELSE FALSE
ENDIF)

neighbors(l,i))

Using the rules of the proof system for local correctness formulas it is straightfor-
ward to derive the following postcondition, for each i (note that any free variable
is implicitly universally quantified over, so that postcond below expresses the
conjunction over all i). Note that, because the postcondition directly relates the
values of indexed channel variables (which are matrices), there is no need to
introduce local variables. The postcondition, referred to as qi above, is plainly
expressed by

cij!![ix] = (topold(1,i) v V
i2eneighbors (i, i)

O<ix2<ix

ci2 # ? ? [ix2])

In words, the matrix that is sent out to any j in the ix-th (outer) loop equals
the original topology of the sender, or-ed with all inputs from its neighbors so
far (note that V denotes the logical or lifted to matrices). Wrapping together all
postconditions, this amounts to the following PVS expression:

postcond :AXIOM
member(j,neighbors(l,i)) IMPLIES

o u t c h a n ((i , j) , i x) =
(aAMBDA(il,jl):(topold(l,i)(il,jl) OR

(EXISTS(i2:process):
(EXISTS(ix2:index):
(member(i2,neighbors(l,i)) AND
ix2 < ix AND
inchan((i2,i),ix2)(il,jl))))))

The next temma chansp l i t which is used in the proof of main below was proven
with induction on k. It expresses the following relation:

cij!![k + l] = (cij!![k] V V cj2~??[k])
j2eneighbors (1, i)

381

It reduces the matr ix that has been sent over clj in the k + 1-th (outer) loop to
an expression consisting of matrices that were sent and received by i in the k-th
loop.

chansplit : LEMMA
forall(k) :
k<n-2

IMPLIES
(member (j, neighbors (i, i))
IMPLIES

outchan((i,j) ,k+l) (il,jl) =
(outchan((i,j) ,k) (il,jl) OR
(EXISTS (j 2) : member (j 2, neighbors (i, i))

AND inchan((j2,i),k)(il,jl))))

Before coming to the main theorem, we show a few other helpful lemmas:

Z
Z lessdist is true iff there is a path between i and j with length

smaller than or equal to k

lessdist : [links,process,process,nat -> bool] =
LAMBDA(I,i,j,m):
EXISTS(ml):(ml <= m AND path(l,i,j,ml))

nextneigh : LEMMA
(lessdist(l,i,j,m+l) AND i /=3)

IMPLIES
(EXISTS(i2):(member(i2,neighbors(1,i))

AND lessdist(1,i2,j,m)))

Idistl : LEMMA
lessdist(l,i,j,m) IMPLIES lessdist(l,i,j,m+l)

idist2 : LEMMA
(NOT lessdist (i, i, j ,m+l))

382

IMPLIES
FORALL(jl): (member(jl,neighbors(l,i))

IMPLIES
(NOT lessdist(l,jl,j,m)))

We now come to the main theorem which states that the k-th output over channel
cij is a matr ix that equals t o p o l d (1 , i l) with respect to row i l if the distance
in the network between i and i l is less than or equal to k, and otherwise it
yields FALSE on that Tow. In particular, it follows from this theorem (again
using local reasoning) that after D executions of the loop, the value of Iviewi
corresponds with the network topology top. The second conjunct may not seem
too exciting, but is needed to keep the induction going.

main THEOREM
k < n-i IMPLIES
((lessdist(l,i,il,k)

IMPLIES
FOKALL (j): member(3, neighbors(l,i))

IMPLIES
(outchan((i, j), k) (il, j I) = topold(l, il) (il, j i)))

AND
((NOT lessdist(l,i,il,k))

IMPLIES
FORALL (j): member(j, neighbors(l,i))

IMPLIES
(outchan((i,j),k)(il,jl) = FALSE)))

END processes

The proof of main is currently about 15 pages. Possibly this can be improved
by defining some clever strategies (in fact macros of proof steps). Perhaps more
interesting is to construct as general as possible a proof, so that it can be re-used
in the light of small changes.

6 C o n c l u s i o n s

We have shown how the restriction to local nondeterminism gives rise to a simple
compositional proof system based on Hoare logic for distributed systems com-
posed of processes which interact asynchronously via unbounded FIFO buffers.

383

We used the theorem prover PVS in a non trivial application of the proof sys-
tem to the correctness of a heartbeat algorithm for computing the topology of

a network.

In general we believe that a fruitful line of research with respect to automated
verification is the syntactic identification of classes of distributed systems which
allow a simple compositional reasoning pattern.

R e f e r e n c e s

[AFdR80]

lAnd91]

[cs95]

[dB941

[dBHdR]

[dBvH941

[dBvH95]

[dBvH96]

[fra92]
[HdR86]

[OG76]

[ORS92]

[Pan88]

K.R. Apt, N. Francez, and W.-P. de Roever. A proof system for commu-
nicating sequential processes. A CM- TOPLAS, 2(3):359-385, 1980.
Gregory R. Andrews. Concurrent Programming, Principles and Practice.
The Benjamin/Cummings Publishing Company, Inc., 1991.
D. A. Cyrluk and M. K. Srivas. Theorem proving: Not an esoteric di-
version, but the unifying framework for industrial verification. In IEEE
International Conference on Computer Design (ICCD) '95, Austin, Texas,
October 1995.
F.S. de Boer. Compositionality and completeness of the inductive asser-
tion method for concurrent systems. In Proc. IFIP Working Conference
on Programming Concepts, Methods and Calculi, San Miniato, Italy, 1994.
F.S. de Boer, J. Hooman, and W.-P. de Roever. State-based proof theory
of concurrency: from noncompositional to compositional methods. Draft
of a book.
F.S. de Boer and M. van Hulst. A proof system for asynchronously
communicating deterministic processes. In B. Rovan I. Prfvara and
P. Ru~i~ka, editors, Proc. MFCS '9~, volume 841 of Lecture Notes in Com-
puter Science, pages 256-265. Springer-Verlag, 1994.
F.S. de Boer and M. van Hulst. A compositional proof system for asyn-
chronously communicating processes. In Proceedings MPC'95, Kloster
Irsee, Germany, 1995.
F.S. de Boer and M. van Hulst. LocM nondeterminism in asynchronously
communicating processes. Technical report, Utrecht University, 1996. In
Preparation.
N. Francez. Program Verification. Addison Wesley, 1992.
J. Hooman and W.-P. de Roever. The quest goes on: a survey of proof
systems for partial correctness of CSP. In Current trends in concur-
rency, volume 224 of Lecture Notes in Computer Science, pages 343-395.
Springer-Verlag, 1986.
S. Owicki and D. Gries. An axiomatic proof technique for parallel pro-
grams I. Acta Informatica, 6:319-340, 1976.
S. Owre, J. Rushby, and N. Shankar. PVS: A prototype verification sys-
tem. In 11th Conference on Automated Deduction, volume 607 of Lecture
Notes in Artificial Intelligence, pages 748-752. Springer-Verlag, 1992.
P.K. Pandya. Compositional Verification of Distributed Programs. PhD
thesis, Tata Institute of Fundamental Research, Homi Bhabha Road, Bom-
bay 400 005, INDIA, 1988.

384

[Raj94] S. Rajan. Transformations in high-level synthesis: Formal specification
and efficient mechanical verification. Technical Report CSL-94-10, CSL,
1994.

[ZdRvEB85] J. Zwiers, W.-P. de Roever, and P. van Emde Boas. Compositionality
and concurrent networks: Soundness and completeness of a proofsystem.
In Proc. ICALP'85, volume 194 of Lecture Notes in Computer Science.
Springer-Verlag, 1985.

