
Integrating Real-Time Scheduling 
Theory and Program Refinement 

C. Fidge M. Utting P. Kearney I. Hayes 

Software Verification Research Centre, Department of Computer Science, 
The University of Queensland, Queensland 4072, Australia. 

Abs t rac t .  We show how real-time schedulability tests and program re- 
finement rules can be integrated to create a formal development method 
of practical use to real-time programmers. A computational model for 
representing task scheduling is developed within a 'timed' refinement cal- 
culus. Proven multi-tasking schedulability tests then become available as 
feasibility checks during system refinement. 

1 Introduction 

There has long been a gulf between formal methods for specifying and developing 
real-time programs and the needs of real-time programmers 'in the field'. 

�9 Formal methods for specifying concurrent real-time systems typically make 
unrealistic simplifying assumptions. In particular, 'maximal parallelism' as- 
sumes that  each task resides on its own processor and is thus never pre- 
empted. This is often justified by pointing to the ever-decreasing cost of 
hardware. 

�9 Embedded systems programmers, on the other hand, constrained by the 
realities of power, cost and space limitations, try to implement as many 
tasks on the same processor as possible. Real-time scheduling theory is used 
to determine whether a given task set can meet its deadlines. 

Consequently real-time programmers find that  formal specification and develop- 
ment methods do not model their true concerns. If formal methods are to become 
a useful industrial tool for real-time programming this gap must be bridged. 

In this paper we take a first step towards merging these two previously 
separate streams of activity by representing the computational model used by 
scheduling theory in a ' t imed'  refinement calculus. This makes already-proven 
schedulability results available as a basis for formal development of multi-tasking 
programs with hard real-time deadlines. 

2 Background 

2.1 R e v i e w  o f  t i m e d  r e f i n e m e n t  

The timed refinement calculus [10, 11] is based on predicate transformer seman- 
tics with the specification language Z used as a convenient notation for express- 
ing predicates. To make the calculus suitable for expressing parallel, reactive 



328 

behaviours, it replaces the familiar pre/post-condition model with one based on 
environmental assumplions and desired effects. 

A specification statement 

+~: [A, E] 

has three parts. Let ~ , . . . ,  ~ denote mutually disjoint sets of variables. 

1. The set of variables ~ in the frame denote the observable variables which 
the specification constructs. Variables in ~" may appear in E but not A. 

2. The assumption A defines knowledge the specification can use about the 
environment. It is a predicate on a set of variables ~ disjoint from ~. 

3. The effect E is a predicate on variables in ~ and ~, typically defining the 
value of those variables in ~ in terms of those in ~. 

Predicates are ordered in the underlying semantics by an entailment relation 
[10, p.3]. 
Time is introduced into the calculus by a convention on the types of con- 

structed variables. Each variable v E ~ is actually a trace, or history, of values, 
one for each moment in time. The trace index is absolute time. For instance, a 
timed variable v of 'base' type V is declared as a function 

v : A ~  V ,  

where A is the absolute time domain. Specifications thus define the values of 
each variable in the frame over all time. 

The refinement relation _ on such specification statements is defined us- 
ing a handful of fundamental rules. Provisos are shown above the line and the 
refinement rule below. 

Law R I :  Weaken assumption [10, p.7] 

A1 ~ A2 
+~: [A1, E] ~ -t-t: [As, E] 

Law R2:  Strengthen effect [10, p.7] 

A ~  ( r Y e  E2 =a El) 
+~: [A, El] K +~: [A, E2] 

Law R3:  Introduce local constructions [10, p.9] 

variables in ~ are fresh 

+~:[A, E] __E 1[+ ~ u ~ :  [A, [E; ~]] \~]1 

On the right-hand side the signature of schema E is extended to include 
declaration ~. (For brevity we omit types in these generic definitions.) The 
I[ '"  " \~  ]1 construct declares local variables E that  cannot be seen outside 
its scope [10, p.9]. 



329 

Law R4: Introduce parallel composition [11, p.8] 

A ~ ( 3 ~ ; ~ . E )  

+~ U ~: [A, E] ~ +~: [A A (3 ~ * E), E] II -t-Y: [A A (3 ~ * E), E] 

The II operator denotes parallel composition of specification statements [11]. 
The proviso prevents effect E from accidently strengthening assumption A 
when added to the assumptions of the two parallel components [10, p.8]. 

Laws R1 to R3 are variants of well-known refinement rules. Law R4 allows a 
specification to be partitioned into parallel components where each component 
can assume properties effected by its siblings, as long as the properties do not 
reference the variables to be constructed by the component. 

Significantly, the parallelism operator II is a 'true' concurrency operator. It is 
not directly suited to modelling the 'interleaved' concurrency found in unipro- 
cessor multi-tasking applications. 

2.2 Rev iew of  schedulabi l i ty  t e s t ing  

Uniprocessor scheduling theory offers proven schedulability tests for verifying 
that a system design, with given timing characteristics, can be successfully sched- 
uled under a particular scheduling policy and communication protocol. 

To make analysis of complex real-time systems manageable, the theory uses 
an abstract computational model [1]. In this model a system consists of a set of 
tasks. Each task i arrives infinitely often, each arrival separated from the last 
by at least Ti time units. A periodic task arrives regularly with a separation 
of exactly T, time units. A sporadic task arrives irregularly with each arrival 
separated from its predecessor by at least Ti time units. 

At each arrival, task i issues a nominal invocation request for up to Ci units 
of processor time, its worst-case computation time [1]. (For simplicity the model 
assumes that only tasks consume time. Scheduling overheads such as context 
switching and shared resource locking are factored into the worst case computa- 
tion time for each task.) To complete its workload, task i must have this request 
for processor time satisfied before some deadline Di expires, measured relative 
to the arrival time of the task invocation. Usually Di does not exceed Ti. 

The scheduler places each task making a request in a notional ready queue [8]. 
It decides which task in the queue is currently running using the priority 7ci of 
each ready task i and the particular scheduling policy it implements. In static- 
priority scheduling there is a fixed base priority associated with each task, al- 
though a higher effective (or active) priority may be temporarily allocated to 
the task at run time. In dynamic-priority scheduling a run-time metric is used 
to determine priorities during execution. Tasks of higher priority can pre-empt 
some task i, resulting in a degree of interference Ii to the progress of i. 

So that communications overheads can be predicted accurately, the model 
assumes that all inter-task communication occurs through mutually-exclusive 
access to shared variables. This allows a priori knowledge of the worst-case 



330 

blocking time Bi that  task i may experience due to lower-priority tasks having 
locks on resources that  it wishes to access, for a known locking protocol. 

In generM, schedulability tests can be divided into two classes, both based on 
analysis of worst-case scenarios. Tests that  measure 'processor utilisation' check 
a bound on the total percentage of time that  all tasks occupy the processor. For 
instance, the following test applies to a set of tasks under the earliest deadline 
first scheduling policy, using the slack resource locking protocol. Earliest dead- 
line first scheduling is a dynamic-priority scheduling policy in which the task 
with the earliest absolute deadline from the current moment has the highest 
priority. The stack resource protocol [2] guarantees that  task invocations begin 
executing only when all resources they may wish to access are free, and that  
each task invocation is blocked by a lower-priority task at most once. 

Under these conditions a set of tasks 1..  n, ordered by increasing size of their 
deadlines, is schedulable if [2] 

Bi 
V i : l . . n *  ~ D ~ + ~ / /  ~<1. (1) 

jE1..i 

The test checks, for each task i, that  the processor utilisation by that task, 
plus that  by higher-priority tasks that may pre-empt i, plus that by lower- 
priority tasks that  may block i, is less than 100%. The first term is the processor 
utilisation by all tasks j of priority equal or higher than i. The second term is the 
degree of blocking that  may be experienced. Under the stack resource protocol 
Bi is the execution time of the longest critical section executed by some task of 
lower priority than i. 

Test 1 is a useful feasibility test in general; earliest deadline first scheduling 
is 'optimal '  in the sense that  if a task set is schedulable by any policy then it is 
schedulable by earliest deadline first. 

The second class of tests works by precisely characterising system 'response 
times'. The worst case response time R~ for an invocation of task i defines how 
long it may take the task to complete its computation, measured from its arrival 
time. For instance, the following test applies to any assignment of base priorities 
to tasks [1], under a slatic-priorily scheduling policy and using the ceiling locking 
protocol. A static-priority scheduler is one which makes the running task the one 
in the ready queue with the highest effective priority (favouring the currently 
running task in the case of ties to avoid unnecessary context switching). The 
ceiling locking protocol [8] is a special case of the stack resource protocol in 
which (a) each shared variable has an associated 'ceiling' value as great as the 
highest base priority of any task that  may access it, and (b) each task that  locks 
a variable has its effective priority set to that  variable's ceiling value. 

Under these circumstances, a set of n tasks, with a static assignment of 
unique base priorities, is schedulable if [1] 

V i : 1 .. n ,, Ri <~ Di where Ri = Ci + Bi + Ii (2) 

and I i =  ~ -~-j C j .  
jEhp(i) 



331 

Here hp(i) is the set of tasks with higher base priorities than task i. For each 
task i the test checks that  the response time R, of the task does not exceed its 
deadline Di. The worst case response time for i is the sum of its own worst case 
computation time Ci, plus its worst case blocking time due to lower-priority tasks 
B~, plus the worst case interference due to higher-priority tasks I~. Assuming use 
of the ceiling locking protocol B~ equals the longest critical section of any lower 
priority task accessing a shared variable with a ceiling as great as the priority of 
task i[1]. 

The interference term Ii determines how much pre-emption task i will expe- 
rience during the interval of time defined by Ri due to higher-priority tasks j .  
For each task j this is its execution time Cj multiplied by the number of arrivals 
[R,/T;I that  j may have in R~ time units. Thus interference up to time R~ 
is defined in terms of the number of pre-emptions that  may occur during the 
interval of time defined by Ri: the definition is recursive! 

Fortunately, however, the equation can be solved iteratively [1]. Let / ~  be 
the X th  approximation to the value of Ri. Starting with R ~ = 0, equation 

a~+I=C~+B,+ ~ IT. j /  Q 
jEhp(~) 

converges to Ri. Evaluation stops either when the equation has converged, i.e., 
/~x+l = R~, or, because R~ +1 /> R~ for any x, iteration can stop as soon as 
R~ +1 > D~ in which case the test has failed. 

3 A real-time multi-tasking refinement model 

Our aim is to represent the computational model used by scheduling theory (Sec- 
tion 2.2) in the timed refinement calculus (Section 2.1) in such a way that  proven 
schedulability results benefit the refinement process. To do this refinements must 
introduce those computational entities of interest in scheduling theory, namely 
tasks, protected shared variables and the scheduler itself, in order to capture the 
behaviour of a multi-tasking system. 

This is illustrated in Figure 1. Boxes denote parallel specification components 
and arcs the flow of information, via the named variables. A top-level specifi- 
cation, defining values of output variables in terms of inputs, is refined to a 
description known to map to the scheduling behaviour of our target program- 
ming language. 

The development procedure from top-level specification to multi-tasking sys- 
tem can be described in the following ten steps. A detailed example illustrating 
each step is given in the next section. 

. Requirements specification. This defines the functional requirement and its 
absolute time constraints, expressing the 'effect' variables ou~-~ in terms of 
the 'assumption' variables in. 



332 

2 n  
: >  ~ec 

out 

?.. 
zni 

readyi 

IR 

IR 

Task~ 
I I 
I I 

"I- 
t - - ' . -  " - -  - -  - -  a J  

updateij 

"I] i I Prolectedj 
i I 
i I 

! j 
t J 

Scheduler 

l ouli  
J 

17. 
I- 

sharedj 

runmng 

Fig.  1. Overview of the refinement procedure (for static-priority scheduling using 
the ceiling locking protocol). 

2. Introduce shared variables. To allow for later system partitioning, new shared 
variables sharedj are introduced�9 Typically this is done so that  separate parts 
of the specification need not have input and output  variables in common�9 

3. Introduce periodic and sporadic requirements. The functional requirements 
are re-expressed in forms corresponding to the notions of periodic and spo- 
radic tasks. Interarrival times Ti and deadlines Di are introduced here. 

4. Introduce worst case execution times�9 For each task i a worst case execution 
time Ci is hypothesised. 



333 

5. Introduce feasible schedule. Variable running, representing the run-time 
schedule of executing tasks, is introduced and constrained so that each task 
i is guaranteed to get sufficient processing time. Each task specification can 
examine running to determine when it is making progress. 
At this point a scheduling feasibility lest can be undertaken to ensure devel- 
opment is proceeding in a viable direction. 

6. Introduce ready indicators. The readyi variables are introduced so that  each 
task i can indicate its preparedness to run. These variables must ult imately 
be constrained so that each task i asks for no more than Ci t ime units. 

7. Introduce protected objects. Access to the sharedj variables is restricted 
so that  they are manipulated in a way consistent with the target locking 
protocol. A protected object specification must accept 'writes' via updaleij, 
and allow a task i to 'read' sharedj, only when i is known to hold the lock. 
Worst case blocking times Bi can be expressed at this stage. 

8. Introduce scheduler. An abstraction of the scheduling policy, defining 
running in terms of the readyi indicators, is introduced. 
Sufficient information is now available to perform a full schedulability lest. 

9. Separate tasks, protected objects and scheduler. The specification can now 
be parti t ioned into independent Taski, Protectedj and Scheduler descrip- 
tions. Future refinement of the tasks and protected subroutines can then be 
performed in isolation. 

10. Map to target programming language. The specification should now be in a 
form known to correspond to a program template in a trusted subset of the 
target programming language. 

As with any development procedure, the exact steps required vary with each 
application. Not all of the above steps are needed in every case and the order 
in which the steps are applied may differ. The precise form of the components 
constructed also varies depending of the target scheduling policy and locking 
protocol. 

For instance, in the example below we target an Ada 95 implementation. 
Ada 95 supports static-priority scheduling and ceiling priority locking, a com- 
bination which is easy to implement. Consequently the Scheduler description 
merely needs to form an imaginary ready queue from the readyi indicators and 
use this to set the value of running accordingly. Each Protectedj definition is 
merely a 'merge' function that,  when an updateij value appears, sets the value 
of sharedj to be this new value. However, to allow such simple definitions, each 
Taski specification must be suitably well-behaved. The readyi indicator must 
always carry the effective priority at which Taski wishes to run, and i may make 
computational progress only when running indicates that  it is executing. Fur- 
thermore, Taski may produce an updateij value, or examine the value of sharedj, 
only when it knows that  it is the currently running task, and that  its readyi 
priority is at least as great as the ceiling value for that  shared object. 

Other target implementations can be handled by our framework, however. 
For instance, earliest deadline first scheduling could be treated by including the 
(absolute) deadline of each Taski invocation in its readyi request. The Scheduler 
definition can then use these deadlines to determine which task to make running. 



334 

4 E x a m p l e  

We consider a version of the 'mine shaft '  example that  has proven to be a popular 
test-bed for real-time development methods [4]. The system aims to keep the 
level of ground water seeping into a mine shaft below a certain height as long as 
atmospheric conditions in the shaft are safe for operating electrical equipment. 

4.1 R e q u i r e m e n t s  s p e c i f i c a t i o n  

Firstly we introduce a discrete absolute time domain A and a type for durations 
ID) of time: 

A = = N  ] I ) = = N .  

Input  to the system consists of readings provided by two sensors. A water 
level sensor continuously provides depth readings. 

_ W a t e r  
H20 : A ---* Z 

The system will a t tempt  to keep this reading below a certain mark. 

I H2Omark :2~ 

A methane sensor generates ' true'  whenever the methane level in the mine 
becomes unsafe and 'false' whenever it falls back to a safe level again. The known 
rate of change of methane gas, and the callibration of the sensing equipment, 
guarantees that  such values are generated no closer together than a fixed sepa- 
ration. At start-up time 0 some initial value is generated. 

CH4sep : ~ _ Methane 

CH4sep > 0 CH4 : A -++ 

0 E dom CH4 
V x ,  y : dom CH4 ] x < y �9 

x - k  CH4sep ~ y 

Our goal is to pump the water out of the shaft whenever it becomes too deep. 
However the pump may run only when methane levels are low, for fear of causing 
an explosion. Also an alarm bell must ring while methane levels are dangerously 
high. The pump and alarm actuators are controlled by two variables, 

Pump = [ p u m p i n g :  A --* I~ ] A larm ~ [r ing ing:  A --* 1~] , 

The system is allowed to take a certain amount  of time to react to environmental 
changes. 



335 

react : ID 

react <~ CH4sep 

Lambda expressions provide us with a convenient way to express properties 
of trace variables such as H~O and CH4: 

deep~ = = A l : A , t / > 6 A m i n H 2 0 ~ t - 6 . . t  P >l H2Omark 
shallow~ = =  A t : A *  t/> 6 A max H20~ t - 6 . .  t P < H2Omark 
currCH4 == A t :  A �9 CH,(max dom(0 . ,  t <1 CH4)) 
danger~ == A l : A . t >~ 6 A eurrCH4~ t - 6 . . t  P = { t r u e }  
safe6 ==  A t :  A *  t /> 6 A currCH40 t -  5 . .  t D = {false}. 

For instance, shallow~ is true at some time l only if the water level has been 
constantly below H~Omark for the last 6 time units. Similarly, safe~ is true at 
t if, for the last 6 t ime units, the most recent CH4 value was always 'false'. 
(Function currCH4 returns the most recent CH4 value at any time t.) 

The system is required to raise the alarm when the methane level is high, 
but not when it is low. 

__ ControlAlarm 
Methane; Alarm 

V t :  A * (dangerreact(t) ::~ ringing(t)) 
m (safer ,a~, ( t )  ~ -~ r i ng ing ( t ) )  

If the methane level changed within the last react t ime units the value of ringing 
is unspecified. 

Similarly, the pump must he switched on only when needed, and only when 
conditions are safe to do so. 

__ ControlPump 
Water; Methane; Pump 

V t :  A �9 (deepr~act(t) A safer~ct(t) ~ pumping(t)) 
/k ( shallowreact( t ) V dangerreact( t ) ::~ ---1 pump ing ( t ) )  

The full requirements specification is then 

[Water ControlAlarm] 
+ ringing, pumping: [Methane ' ControlPump J " (1) 

4.2 I n t r o d u c e  s h a r e d  v a r i a b l e  

Both ControlAlarm and ControlPump use the C/-/4 sensor variable. In order to 
achieve independent interfaces to the environmental inputs, we want to prevent 
the pump controller from directly using the methane sensor and instead have it 
access a shared variable set by the alarm controller to determine if conditions 
are safe or not. 



336 

In fact, a suitable variable already exists, ringing. For brevity we will use 
ringing as not only an ' ou tpu t '  variable, but also as the shared variable used for 
communicat ion between the a larm and pump controllers. 

Again some syntactic conveniences can be defined for referring to the state 
of this variable in the recent past: 

noisy~ = =  A t : A -  t >/5 A ringing~ t - 6 . .  t D = {true} 
quiel6 = =  A t : A .  t />  5 A ringing~ t - 5 . .  t D = {false}. 

Since the pump  controller will now use ringing to determine if methane levels 
are high, and it takes some t ime to update  ringing whenever methane levels 
change, we need to shorten the available t ime to update  the output  variables in 
order to ensure that  pumping is still always set correctly within react t ime units 
of environmental  changes. Let rt and pt be tighter deadlines on how quickly 
ringing and pumping must  be updated,  respectively. 

rt,pt :II) 

rt + pt <~ react 

Development proceeds by using the stronger update  t imes and having the 
pump  controller refer to shared variable ringing rather  than the methane  sensor. 

i V  C~176 larm 2 
Methane; Alarm 

t: A �9 (dangerrt(t) ~ ringing(t)) 
A (safert(t) ~ -~ ringing(t)) 

~ _ ControIPump2 
Water; Alarm; Pump 

/ V  t :  A �9 (deeppt(t) A quietpt(t) ~ pumping(t)) 
| A (shallowpt(t) V noisypt(t) ~ "~ pumping(t)) 

( i )  K "by R2"  

Water ControlAlarm2] 
+ringing,pumping: Methane ' ControlPump2 J (2) 

4.3 I n t r o d u c e  p e r i o d i c  a n d  s p o r a d i c  r e q u i r e m e n t s  

We will ' implement '  the pump controller as a periodic behaviour and the a larm 
controller as a sporadic one. Interarrival t imes and deadlines for the sporadic s 
and periodic p requirements are introduced as follows. 

I T~,Ds :D Tp,Dp :II) 

Ds <~ Ts Dp <. Tp 
Ts = CH4sep rt + Tp + Dp <~ pt 
D~ <~ rt 



337 

The second constraint on the right ensures that  pumping is updated in time. 
Apart from the reliance on ringing, which may be rt t ime units out of date, two 
successive updates to pumping may be separated by period Tp plus deadline Dp 
in the worst case (i.e., where the first update occurs immediately after arrival in 
one period and the next occurs just before the deadline in the following period). 

We define some convenient notations for referring to the sporadic and periodic 
arrival times, and the moment  before the next arrival after some time t: 

arrives == dom CH4 
arrivep == { n : N * n * Tp } 

f cx~, t >/ max  dom CH4 nexUs(t) 
m a x ( u :  A I u < ( m i n d o m ( O . .  t ~ CH4))}, otherwise 

nextp( t )  = m a x { u  : A l u < rtT_~] Tp} . 

The sporadic task arrives at each detected change in methane levels. The periodic 
task arrives every Tp t ime units. (There is no need to use Ts in defining arrives 
in this example because CH4 inputs are already known to be separated by at 
least this amount.)  

It is also helpful to be able to assert that  some timed variable v does not 
change its value at any of the absolute times in some, not necessarily contiguous, 
set A (where to be 'changed' a variable must have a different value than it had 
in the previous instant): 

unchanged (v ,A )  = V t : A *  t ~ 0 ~ v ( t )  = v(t  - 1) .  

We now re-express the controllers as behaviours that ,  following each arrival 
a, achieve their functional requirement by the time of their absolute deadline d, 
and update their output  variables only at some time u between a and d. 

_ Sporadic 
Methane; A larm 

V a : arrives �9 
l e t  d == a + Ds . 

( danger~ s (el) ~ r inging(d))  
A (safe~s(d) ~ ~ ringing(d)) 
A 3 u:  a . .  d �9 unchanged(ringing, ( a . .  nexts(a)) \ (u}) 

__ Periodic 
Water;  Alarm;  P u m p  

V a : arrivep �9 
l e t  d == a + Dp . 

(deep~p (d) A quietDp (d) ~ pumping(d)) 
A (shallowDp(d) V noisyDp(d)  ~ - 1  pumping(d ) )  
A 3 u :  a . .  d �9 unchanged(pumping,  ( a . .  nextp(a))  \ {u}) 



338 

(2) E "by R2" 

[ Water  
+ringing,  pumping: [Methane 

Sporadic] 
' PeriodicJ (3) 

4.4 Introduce worst  case execut ion  t imes 

Constants are introduced to represent the programmer 's  anticipated worst case 
computation times for the sporadic and periodic requirements. 

Cs:D Cp:D 

Cs <~ Ds 6~ <~ Dp 

The actual computation time required upon each arrival is not yet known 
(and, indeed, will not be known until the final object code is generated!). At 
most, therefore, we can say only that  at each arrival the notional invocation 
request will not exceed the worst case execution time. 

invreqs : A -~ D invreqp : A -~ D 

dom invreqs = arrives dom invreqp = arrivep 
max ran invreqs ~ Cs max ran invreqp ~ Cp 

4.5 I n t r o d u c e  f ea s ib l e  schedule 

There are three possible 'tasks' ~ that  may occupy the processor in our system, 
the sporadic s and periodic p application tasks, and no activity at all: 

::= s l P I idle . 

One of these is running at every moment  in time: 

Run ~ [ running : A --* ~ ] . 

Our overall constraint on the processor is that,  for each invocation request, 
it gives the application tasks as many units of run time as they need. 

t Processor 
Methane; Run 

a :  arrives * # ( a  ,. a + Ds <~ running E> {s}) -- invreqs(a) 
a:  arrivep �9 ~r a + Dp <~ running t> {p}) =- invrcqp(a) 

(3) E_ "by R3, R2" 
ringing, 

+pumping,:  
running 

Water  Sporadic 
Methane ' Periodic 

Processor 
(4) 



339 

Here the scheduling model we are constructing first begins to benefit us. How 
can we be sure that  the property of running specified in Processor is feasible? 
It is not obvious by inspection, especially in more complex examples. If it is 
infeasible then the above refinement step makes the effect 'false', i.e., we have 
refined to 'magic', and any further development effort would be wasted. 

We require a feasibility test to guarantee that  this is not the case. Test 1 
from Section 2.2 is suitable. The programmer merely needs to supply anticipated 
values for the symbolic constants introduced above to see if the development is 
proceeding along a viable path. For instance, assuming Ds = 15, C~ = 6, Dp = 20 
and Cp = 10, we can use test 1 to show that  the requirement can be met for the 
sporadic behaviour because 

c~ 6 
- ~ < 1 .  

D~ 15 

Similarly, the periodic behaviour can also be satisfied because 

c~ cp 6 10 
D---/+ D----~ = 1---~ + ~-6 ~< 1 �9 

(We have not yet introduced enough detail in the refinement to determine task 
blocking overheads, so these figures are omitted.) 

Of course, this tells us only that  a scheduler exists that  will satisfy the re- 
quirement, not that  the particular scheduling policy we will ul t imately employ 
c a n  d o  so .  

4.6 I n t r o d u c e  r e a d y  i n d i c a t o r s  

Effective priorities E for tasks can be represented by natural  numbers, with 
higher values denoting higher priorities, 

]E ==  1~. 

The lowest 'normal '  priority is 1; we use 0 to indicate that  a task is not ready. 
In this example there are base priorities ~rs and zrp for each of the two tasks, 

and a ceiling priority ~re for when they access the shared variable. 

7~p, TFs, Tr c : ]E 

O < zr v < zrs <~ ~re 

It is considered more critical to note changes in methane than water levels, so 
7r, is higher than rp.  

Whenever a task is ready to run, its ready indicator records this with a value 
denoting the effective priority at which the task wishes to execute. The periodic 
task may run at its own base priority rp,  or the higher ceiling priority zre while 
it is accessing shared variable ringing: 

t~eadyp ~- [ readyp: A --+ ]E I ran readyp = {0, lrp, rc}]  . 



340 

Our simple sporadic task does nothing but update the shared variable, so it 
always runs at the ceiling priority 7r~, and 7rs is not needed in this case: 

Readys ~- [readys: A --~ IE [ ran readys = {0, 7rc}] . 

(4) E_ "by 1%3, R2"  

ringing, 
pumping, 

+running, : 
readyp, 
readys 

I Sporadic 
Water Periodic 

Processor 
Methane ' Readys 

Readyp 

running,] 
~ readyp, | 

readys ] 
(5) 

4.7 I n t r o d u c e  p r o t e c t e d  o b j e c t s  

In this example we do not need to add any update channels, since Periodic does 
not a t tempt  to write to ringing. Also, the Sporadic specification serves as both  a 
sporadic requirement and custodian of the shared variable so a distinct Protected 
specification is unnecessary. 

The task designs are completed by defining how access to the shared variable 
is controlled through manipulation of effective priorities. In doing so we further 
contrain the task definitions so that  they always complete their work before some 
worst case response time, no greater than their deadlines. 

Rs :ID /tp :ID 

[ts <~ Ds Rp <~ Dp 

Our simple sporadic task does nothing but  update shared variable ringing, 
so it always runs at effective priority re .  

_ Sporadic2 
Methane; [tun; Alarm; Readys 

V a : arrives �9 
3 r: a . .  a + Rs I r = max d o m ( a . ,  a + Ds <3 running [> {s}) ,, 

(danger _a(r) ringing(r)) 
A (safer-a(r) ~ -~ ringing(r)) 
A (3 u: a. .  r �9 unchanged(ringing,(a., nexts(a)) \ {u})) 
A readys~ a. .  r D = {Trc} 
A readys~ r +  1 . . n e x t s ( a  ) D = {0} 

Time r is the (absolute) time at which a particular task invocation completes 
its work, defined to be the earliest t ime at which it has received invreqs(a) units 
of processor time (see schema Processor above). The task is 'ready' from time 
a until r. After this it will not request any more processor time until the next 
arrival. 



341 

The periodic task, on the other hand, must  access the shared variable 'cre- 
a ted '  by the above schema. In doing so it may  block task s if a CH4 event occurs 
while the periodic behaviour p is accessing running. 

B~ : D  

Bs<~Cp 

Activity of the periodic task following each arrival t ime a can be divided into two 
parts.  We require that  it first samples the value of the shared variable ringing, 
before some t ime x; to do so it must  be ready at priority ~'c. It  then samples the 
value of [t20 and sets the value of pumping, before its worst case response t ime 
Rp has elapsed. 

_ Periodic2 
Water; Alarm; Run; Pump; Readyp 

V a : arrivep * 
3 r: a. .  a + Rp I r = max d o m ( a . ,  a + Dp <~ running t> {p}) *, 

3 ~ : a . .  r I # ( a . .  ~ < running > {p} )  ~< B,  �9 
(deepr_~(r) A quiet~_~(x) ~ pumping(r)) 

^ (shallowr_~(r)  V noisy~_~(~) ~ -~ pumping(r ) )  
A (3u:  x . .  r*  unchanged(pumping,(a., nextp(a)) \ {u})) 
A readup~ a . .  ~ I) = {~c} 
^ readypG ~ + a . .  r D = { ~ }  
A readyp~ r + 1 . .  ne~tp(a) D = {0 )  

The new subscripts and arguments  to deep, quiet, etc., reflect the more precise 
times at which these properties are tested. The a larm value is sampled within x 
t ime units of arrival a. The water sensor is sampled some t ime in the remaining 
r - x t ime units, before the particular response t ime r. 

(5) ~ "by R2"  

ringing, 
pumping, 

+running, : 
readyp, 
readys 

Sporadic2] ~ running, ] 
Water Periodic2| readyp, [ 
Methane ' ProcessorJ readys 

(6) 

4.8 I n t r o d u c e  s c h e d u l e r  

The scheduling policy can be introduced easily. At any t ime t it makes the 
running task the highest priority one in a notional ready queue formed from the 
readys and readyp indicators. 

~ Scheduler 
Readyp; 'Readys; Run 

�9 ,running(t) = highpri(t) V t :  A 



342 

Function highpri returns the highest priority ready task at t ime t: 

l idle, readyp(t) = readys(t) = 0 
p, readYv(t) > ready,(t) 

V (readyv(t) = readys(t) • 0 
highpri(t) = A t > 0 A highpri(t - 1) = p) 

s, readys(t) > readyp(t) 
v (re~dy,(O = re~dyp(t) # o 

^ (t > 0 ~ highvri(t - 1) e {s, idle})).  

In other words, the highest priority ready task is idle if neither p or s is ready at 
t ime t. I t  is p if that  task is ready with a higher effective priority than s, or bo th  
tasks are ready with the same priority and the task running at the last momen t  
in t ime was p. An arbi trary decision has been made to favour s when bo th  tasks 
become ready at the same priority at t ime 0 or following an idle period. 

(6) ~ "by R2" 
ringing, 
pumping, 

+running, : 
rea dyp, 
readys 

Water Sporadic2" 
Periodic2 

' Processor Methane 
Scheduler 

running,] 
~ readyp, ] 

ready, J 
(7) 

Again our refinement process benefits f rom scheduling theory. Although we 
claim the existence of worst case response times t 4  and Rp above we now need to 
show tha t  satisfactory values do indeed exist under this scheduling policy. Test 2 
f rom Section 2.2 is suitable. For instance, given values of Ts = 100, Tp = 25 and 
Bs = 5, as well as the values for deadlines and computat ions  t imes used in 
Section 4.5, we can determine that  the sporadic requirement can be satisfied 
because 

R, = C, + B, = 6 + 5 =  l l  ~< Ds . 

There are no tasks of higher priority than s to pre-empt  it, and the only lower- 
priority task tha t  can block it is p, which can do so at most  once. Hence the 
sporadic requirement will always meet its deadline of 15 t ime units f rom arrival. 

To test the periodic requirement we note that  no lower-priority tasks exist 
to block p, so 'Bp' is zero. But p can be pre-empted by s, so interference must  
be considered and 

R p = c , +  ~ c , .  

This recursive equation converges as follows: 

R ~  

IT , |  ~-6 6-1o 



343 

IT,/ 

c,,+ [,-5o] IT,/ 

6 = 1 6  

6 = 1 6 .  

Hence Rp is less than the deadline of 20 and we can conclude that the system is 
indeed schedulable! Intuitively this value is reasonable because, given the longer 
interarrival time of the sporadic task compared to the periodic one, s can pre- 
empt p at most once at any arrival of p. 

4.9 Sepa ra t e  tasks~ shared  ob j ec t s  and  schedule r  

The task requirements and the scheduler can now be separated, for later indi- 
vidual refinement, by straightforward application of the refinement rules. Firstly 
the scheduler is separated from the tasks. 

(7) E "by 1%4, R2, R1, R2, R I "  

r(3 running * 
I[ + running: | Sporadic2 , Scheduler (8) 

L A Periodic2) 
II 

pumping, [Water Sporadic2] 
ringing, : i M . h a n  e , Periodic2,  (9) 

+ readyp, LProcessor J readys 
\running, readyp, readys ][ 

Part of the first 'strengthen effect' step eliminated Processor from the effect of 
the scheduler component by making use of knowledge about the tasks, specifi- 
cally that they ask for exactly invreq time units at each invocation. (The proof 
relies on our scheduling policy model being deterministic; for particular task be- 
haviours a unique running value is defined.) The first 'weaken assumption' step 
then removed unnecessary properties Water, Methane, Scheduler and Processor 
from the assumption of the scheduler component. The second 'weaken assump- 
tion' removed Scheduler, Sporadic2, Periodic2 and the unused existentially- 
quantified variables from the assumption of the tasks component. 

Then the second component, the individual task requirements, is further 
refined to give three parallel components in total. 

(9) E_ "by R4, R2, R1, R2, RI" 
[Methane ] 

+ ringing, readys: [Processor' Sporadic2 (10) 

II 
[Water 

+ pumping, readyp: |Processor, Periodic2 (11) 
[Sporadic2 



344 

In both components the effect is strengthened to eliminate the 'non-constructed'  
variables. The assumption for the sporadic requirement was weakened to re- 
move Water, Sporadic2 and Periodic2, and that  of the periodic task to remove 
Methane and Periodic2. Sporadic2 remains as an assumption for the periodic 
task due to the role of ringing as a shared variable in this example. Both tasks 
retain assumption Processor so that  they know they will receive as much pro- 
cessor t ime as needed. 

4 .10 I m p l e m e n t a t i o n  

Our ult imate aim is to apply the above method to development of Ada 95 pro- 
grams. This is feasible because the Ada 95 language design accounts for recent 
advances in schedulability theory [8]. The system above adheres to constructs 
supported by Ada 95 and can be mapped to the following program. 

with Ada.Real_Time; use Ada.Keal_Time; 

pragma Task_Dispatching_Policy(FIFO_Within_2riorities) ; 

p r o t e c t e d  Alarm is -- implements Sporadic2 
p r a g m a  Locking_Policy(Ceiling_Locking) ; 
p r a g m a  P r i o r i t y ( I n t e r r u p t _ P r i o r i t y ' F i r s t )  ; - -  i.e., vc 
f u n c t i o n  danger  r e t u r n  Boolean;  

p r i v a t e  
p r o c e d u r e  CH4high; p r a g m a  At t ach_Hand le r (CH4h igh , . . . )  ; 
p r o c e d u r e  CH41ow; p r a g m a  Attach_Handler(CH41ow . . . .  ) ; 
- -  We assume blocked interrupts remain pending! 
ringing: Boolean := False; for ringing use ... ; 

end Alarm; 

p r o t e c t e d  b o d y  Alarm is 
p r o c e d u r e  CH4high is 
b e g i n  

ringing := True 

end CH4high; 

p r o c e d u r e  CH41ow is 
b e g i n  

ringing := False 

end CH41ow ; 
f u n c t i o n  danger  r e t u r n  Boolean is - -  part of Periodic2 
b e g i n  

return ringing; 

end danger; 

end Alarm; 

t a s k  ControlPump is -- implements Periodic2 
p r a g m a  Priority(Priority'First) ; -- i.e., rp 



345 

end ControlPump; 

task b o d y  ControlPump is 
H20mark: cons tan t  In t ege r  := H2Omark; 
H20: In teger ;  for H20 use . . . ;  
pumping: Boolean := False;  for pumping use . . .  ; 
period: Time_Span := Tp; 
Next: Time := Clock; -- time "0" 

begin 
loop 

delay unt i l  Next ; - -  arrival time 
pumping := not Alarm.danger and then H20 >= H2Omark; 

Next := Next + period; 

end  loop; 
end ControlPump; 

Our Scheduler specification is implemented trivially by the compiler directive on 
the second line which requests static-priority, pre-emptive scheduling. Similarly, 
another compiler directive within protected object Alarm requests the ceiling 
locking protocol introduced in Section 4.7 above. 

Our degenerate sporadic 'task', Sporadic2, is implemented by two interrupt- 
handling procedures CH4high and CH41ow. (Ada 95 interrupt-handlers are pa- 
rameterless, unlike the CH4 variable which carried a boolean value.) The 
Periodic2 requirement is implemented as an iterative Ada task, with a func- 
tion danger that gives it access to the shared variable r inging .  

Input and output variables H20, r ing ing  and pumping are mapped to 
hardware-specific memory locations which are assumed to be continuously ac- 
cessable by the environment. The hardware-specific interrupt handlers attached 
to the CH4high and CH41ow procedures implement the CH4 input. 

Although not shown above, this program is still considered to be accompanied 
by the calculated timing constraints on each component. These must be retained 
until formally discharged. Real-time development is not considered complete 
until it has been shown, either experimentally or through further proof, that 
a call to function danger takes no more than Bs time units, that procedures 
CH4high and CH41ow execute in under Cs time units, and that each iteration 
of ControlPump takes less than Cp time units (including context switching and 
interrupt handling overheads!). 

We have not discussed in this paper how such computation times are deter- 
mined, or how sequential code segments are generated. However, refinement rules 
that achieve both aims have already appeared [6], and extend the methodology 
above to do this. 

5 C o n c l u s i o n  

We have shown how new results in real-time scheduling and refinement theo- 
ries can be integrated. This was done by representing the computational model 



346 

used by pre-emptive scheduling theory in a real-time refinement calculus. The 
refinement calculus then gained from proven schedulability results. 

This work is part  of the Quartz project, investigating formal methods for the 
development of hard real-time software. A number of major  projects have goals 
similar to Quartz, especially the safemos [3], ProCoS [9] and TAM [13] projects, 
and Hooman's  development method [7], but  none makes use of scheduling theory. 
Previous modelling exercises used Z to define aspects of priority scheduling [5] 
and the priority ceiling protocol [12], but  did not model absolute timing or define 
refinement methods. 

Acknowledgements We wish to thank Andy Wellings for advice on scheduling 
theory, Graeme Smith for correcting errors in the paper, and the anonymous 
FME'96 referees for their comments. The Quartz project is funded by the Infor- 
mation Technology Division of the Australian Defence Science and Technology 
Organisation. Ian Hayes' participation in this work was funded by a University 
of Queensland Project Enabling Grant. 

R e f e r e n c e s  

1. N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. WeUings. Applying new 
scheduling theory to static priority pre-emptive scheduling. Software Engineering 
Journal, 8(5):284-292, September 1993. 

2. T.P. Baker. Stack-based scheduling of real-time processes. Real Time Systems, 
3(1):67-99, March 1991. 

3. J. Bowen, editor. Towards Verified Systems, volume 2 of Real-Time Sa]ety Critical 
Systems. Elsevier, 1994. 

4. A. Burns and A. Wellings. Real-Time Systems and their Programming Languages. 
Addison-Wesley, 1990. 

5. A. Burns and A.J. Wellings. Priority inheritance and message passing communi- 
cation: A formal treatment. The Journal of Real-Time Systems, 3:19-44, 1991. 

6. C. Fidge. Adding real time to formal program development. In M. Naftalin, 
T. Denvir, and M. Bertran, editors, FME'94: Industrial Benefit of Formal Methods, 
volume 873 of Lecture Notes in Computer Science, pages 618-638. Springer-Verlag, 
1994. 

7. J. Hooman. Extending Hoare logic to real-time. Formal Aspects of Computing, 
6(6A):801-825, 1994. 

8. Ada 9X Mapping/Revision Team Intermetrics. Ada 9X reference manual, draft 
version 5.0, June 1994. 

9. H. Jifeng. Provably Correct Systems. McGraw-Hill, 1995. 
10. B. Mahony. Using the refinement calculus for dataflow processes. Technical Report 

TR 94-32, Software Verification Research Centre, October 1994. 
11. B. Mahony. Networks of predicate transformers. Technical Report TR 95-5, Soft- 

ware Verification Research Centre, February 1995. 
12. M. Pilling, A. Burns, and K. Raymond. Formal specifications and proofs of in- 

heritance protocols for real-time scheduling. Software Engineering Journal, 5(5), 
September 1990. 

13. D. Scholefield. Proving properties of real-time semaphores. Science of Computer 
Programming, 24(2):159-181, April 1995. 


