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Abstract .  We describe a recent NASA-sponsored pilot project intended 
to gauge the effectiveness of using formai methods in Space Shuttle soft- 
ware requirements analysis. Several Change Requests (CRs) were se- 
lected as promising targets to demonstrate the utility of formal methods 
in this demanding application domain. A CR to add new navigation 
capabilities to the Shuttle, based on Global Positioning System (GPS) 
technology, is the focus of this industrial usage report. Portions of the 
GPS CR were modeled using the language of SRI's Prototype Verifica- 
tion System (PVS). During a limited analysis conducted on the formal 
specifications, numerous requirements issues were discovered. We present 
a summary of these encouraging results and conclusions we have drawn 
from the pilot project. 

1 I n t r o d u c t i o n  

Among all the software developed by the U.S. National Aeronautics and Space 
Administration, Space Shuttle flight software is generally considered exemplary. 
Nevertheless, much of the quality assurance activity in early lifecycle phases re- 
mains a manual  exercise in need of more precise analysis techniques. Software 
upgrades to accommodate new missions and capabilities are continually intro- 
duced. Such upgrades underscore the need recognized in the NASA community, 
and in a recent assessment of Shuttle flight software development, for "state-of- 
the-art technology" and "leading-edge methodologies" to meet the demands of 
software development for increasingly large and complex systems [12, p. 91]. 

Over the last three years, NASA's Langley Research Center (LaRC) has in- 
vestigated the use of formal methods (FM) in space applications, as part of a 
three-center demonstration project involving LaRC, the Jet Propulsion Labora- 
tory (JPL), and the Johnson Space Center (JSC). The goal of NASA's Formal 
Methods Demonstration Project for Space Applications is to find effective ways 
to use formal methods in requirements analysis and other phases of the develop- 
ment lifecycle. The Space Shuttle program has been cooperating in several pilot 
projects to apply formal methods to live requirements analysis activities such 
as the upgrades supporting the recent MIR docking missions, improved algo- 
ri thms for the newly automated three-engine-out contingency abort maneuvers 
(3E/O), and the recent optimization of Reaction Control System Jet Selection 
(JS) [4, 6]. Other programs participating in the demonstration effort include the 
Cassini deep-space probe and the International Space Station [9, 7]. 
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We focus in this paper on the formal methods-based analysis of a new 
Global Positioning System (GPS) navigation capability for the Shuttle. This 
work was performed in the context of a broader program of formal methods ac- 
tivity at LaRC [2]. The effort consisted of formalizing selected Shuttle software 
(sub)system modifications and additions using the PVS specification language 
and interactive proof-checker [13]. Our objective was to explore and document 
the feasibility of formalizing critical Shuttle software requirements. 

The key technical results of the project include a clear demonstration of 
the utility of formal methods as a complement to the conventional Shuttle re- 
quirements analysis process. Although proof-based analysis was a goal of the 
project, the effort has thus far been limited to formalization of the require- 
ments. Nevertheless, the GPS project uncovered anomalies ranging from minor 
to substantive, many of which were undetected by existing requirements analysis 
processes. These results corroborate the experiences of others in formalizing re- 
quirements [3, 1]. Dissemination of these techniques to the aerospace community 
should encourage further experimentation [14, 11]. Full details of the GPS study 
will appear in a forthcoming report [5]. 

1.1 Shu t t l e  Software Background  

NASA's prime contractor for the Space Shuttle is the Space Systems Division of 
Rockwell International. Loral Space Information Systems (formerly IBM, Hous- 
ton) is their software subcontractor. Draper Laboratory also serves Rockwell, 
providing requirements expertise in Guidance, Navigation and Control. 

Shuttle flight software executes in four redundant general purpose comput- 
ers (GPCs), with a fifth backup computer carrying dissimilar software. Much 
of the Shuttle software is organized into major units called principal functions, 
each of which may be subdivided into subfunctions. Software requirements are 
written using conventions known as Functional Subsystem Software Require- 
ments (FSSRs) - -  low-level software requirements specifications written in En- 
glish prose with strong implementation biases, and accompanied by pseudo-code, 
tables, and flowcharts. Interfaces between software units are specified in input- 
output tables. Inputs can be variables or one of three types of constant data: 
I-loads (fixed for the current mission), K-loads (fixed for a series of missions), 
and physical constants (never changed). 

Shuttle software modifications are packaged as Change l~equests (CRs), that 
are typically modest in scope, localized in function, and intended to satisfy spe- 
cific needs for upcoming missions. Roughly once a year, software releases called 
Operational Increments (OIs) are issued incorporating one or more CRs. Shuttle 
CRs are written as modifications, replacements, or additions to existing FSSI~s. 
Loral Requirements Analysts (RAs) conduct thorough reviews of new CRs, ana- 
lyzing them with respect to correctness, implementability, and testability before 
turning them over to the development team. Their objective is to identify and 
correct problems in the requirements analysis phase, avoiding far more costly 
fixes later in the lifecycle. 
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2 O v e r v i e w  o f  t h e  E n h a n c e d  S h u t t l e  N a v i g a t i o n  S y s t e m  

GPS is a satellite-based navigation system operated by the U.S. Department 
of Defense (DoD), comprising a constellation of 24 satellites in high earth or- 
bits. Navigation is effected using a receive-only technique. Dedicated hardware 
receivers track four or more satellites simultaneously and recover their signals 
from the code division multiplexing inherent in their method of transmission. 
Receivers solve for position and velocity, with a horizontal position accuracy of 
100 meters for the Standard Positioning Service mode of operation. 

The GPS retrofit to the Shuttle was planned in anticipation of DoD's phase- 
out of TACAN, a ground-based navigation system currently used during entry 
and landing. Originally, GPS was required for navigation only during the entry 
i flight phase after the disappearance of TACAN, but the scope has been broad- 
ened to cover all mission phases. As one of the larger ongoing Shuttle Change 
Requests (CRs), the GPS CR involves a significant upgrade to the Shuttle's 
navigation capability. Shuttles are to be outfitted with GPS receivers and the 
primary avionics software will be enhanced to accept GPS-provided positions 
and integrate them into navigation calculations. In particular, the GPS CR will 
provide the capability to update the Shuttle navigation filter states with selected 
GPS state vector estimates similar to the way state vector updates currently are 
received from the ground. In addition, the new functions will provide feedback 
to the GPS receivers and will support crew control and operation of GPS/GPC 
processing. 

2.1 G P S  Change  Reques t  

The GPS upgrade is being conducted according to a two-phase integration plan. 
First, a single-string implementation will be carried out involving only a single 
GPS receiver. After adequate testing, the full-up implementation involving three 
receivers will provide the operationM configuration. Software requirements are 
structured to accommodate the three-receiver setup from the outset, requiring 
only minimal changes to go to the full-up version. 

Figure 1 shows the integrated architecture for the enhanced navigation sub- 
system. GPS receivers are managed by the GPS Subsystem Operating Pro- 
gram (SOP), which acts as a device driver. The new principal function GPS 
Receiver State Processing accepts GPS state vectors, and selects and conditions 
a usable one for presentation to the appropriate navigation user. Another new 
principal function, GPS Reference State Processing, maintains reference states 
for the receivers and navigation functions. Inertial measurement units (IMUs) 
provide acceleration data and Redundancy Management (RM) functions main- 
tain failure status information. 

The GPS formalization focused on a few key areas because the CR itself 
is very large and complex. After preliminary study of the CR and discussions 
with the GPS RAs, we decided to concentrate on two major new principal func- 
tions, emphasizing their interfaces to existing navigation software and excluding 
crew I/O functions. The two principal functions, known as GPS Receiver State 
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Fig. 1. Architecture for integrating GPS into navigation subsystem. 

Processing and GPS Reference State Processing, select and modify GPS state 
vectors for consumption by the existing entry navigation software. As these func- 
tions are entirely new, we felt that  concentrating on these areas would yield a 
high return on our formalization investment. Moreover, this choice obviated the 
need to model large amounts of existing Shuttle functionality. 

The two chosen principal functions, in turn, are organized into several sub- 
functions each. 

- GPS Receiver State Processing 
1. GPS IMU Assign 
2. GPS Navigation State Propagation 
3. GPS State Vector Quality Assessment 
4. GPS State Vector Selection 
5. GPS Reference State Announced Reset 
6. GPS Downlist Computat ion 

- GPS Reference State Processing 
1. GPS External Data  Snap 
2. IMU GPS Selection 
3. GPS Reference State Initialization and Reset 
4. GPS Reference State Propagation 



164 

The  subset of the GPS CR represented here contains approximately 110 pages 
of requirements in the form of prose, pseudo-code, and tables. The entire CR is 
about  1000 pages long. 

2.2 C h a r a c t e r i s t i c s  o f  A p p l i c a t i o n  

The nature of the GPS CR application is that  of a significant augmentation to 
a mature  body of complex navigation functions. Interfaces among components 
are broad, containing many variables. Typical classes of data  include: 

- Flags to indicate status, to request services, and to select options among 
processing choices. 

- T ime values and t ime intervals both to serve as t imestamps within state 
vectors and to control when operations should be performed. 

- Navigation-related values such as positions and velocities. 
- Arrays of M1 these types indexed by GPS receiver number. 
- Various numeric quantities representing thresholds, tolerance values, etc. 

Navigation state vectors are of the form (r, v, t), where r is a position, v is 
a velocity, and t is the t ime at which the position and velocity apply. A position 
r or a velocity v is a three-element vector relative to a Cartesian or geodetic 
coordinate system. Usually the Shuttle uses an inertial coordinate system called 
the "Aries mean of 1950" system, abbreviated as "M50." 

An impor tant  operation on state vectors is propagating them to a new instant 
of time. If we have a state vector (r,  v, t), and we have a measurement or estimate 
of the accelerations experienced by the vehicle over the (short) t ime interval 
It, tr], we can propagate the state to a new state vector (r ' ,  v ' ,  t ')  using standard 
techniques of physical mechanics. This type of operation is typically performed 
to synchronize state vectors to a common point in time. 

Processing requirements within the CR are generally expressed in an algo- 
ri thmic style using high-level language assignments and conditional statements. 
Within conditionally invoked assignments, the assumption is the usual procedu- 
ral one that  a variable not assigned retains its previous value, which may or may 
not have a meaningful interpretation in the current context. Flag variables are 
used to indicate when other (non-flag) variables hold currently valid data.  

3 T e c h n i c a l  A p p r o a c h  

The  formal methods approach is loosely based on earlier work conducted by 
the inter-center team during 1993 on subsystems called Jet  Select and Orbit  
DAP [10]. Those techniques were adapted to accommodate the needs of this 
new area of the Shuttle software. All work has been mechanically assisted by 
the PVS toolset. PVS (Prototype Verification System) is an environment for 
specification and verification developed at SRI International 's  Computer  Science 
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Labora tory  [13]. The distinguishing characteristic of PVS is a highly expressive 
specification language coupled with a very effective interactive theorem prover 
tha t  uses decision procedures to au tomate  most  of the low-level proof  steps. 

3 .1  S t a t e  M a c h i n e  M o d e l s  

We have devised a s trategy to model Shuttle principal functions based on the 
use of a conventional abstract  s tate machine model. Each principal function is 
modeled as a s tate  machine tha t  takes inputs and local s tate values, and produces 
outputs  and new state values. This  method provides a simple computa t ional  
model  similar to popular  state-based methods such the A-7 model  [8, 15]. 

One transit ion of the s tate  machine model corresponds to one scheduled 
execution of the principal function, e.g., one cycle at rate 6.25 Hz or other 
applicable rate.  All of  the inputs to the principal function are bundled together 
and a similar bundling of the outputs  is arranged. The s tate  variable holds values 
tha t  are (usually) not delivered to other units, but  instead are held for use on 
the next cycle. 

The  state machine transit ion function is a mathemat ica l ly  well-defined func- 
tion tha t  takes a vector of input values and a vector of previous-state values, 
and maps  them into a vector of outputs  and a vector of next-state values. 

M : I x S--* [O x S] 

This function M is expressed in PVS and forms the central par t  of the formal  
specification. We construct a tuple composed of the output  and s tate  values 
so only a single top-level function is needed in the formalization. Some values 
may  appear  in both  the output  list and the next-state vector, i.e., they are not 
mutual ly  exclusive. 

While the function M captures the functionality of the software subsystem 
in question, the state machine framework can also serve to formalize abst ract  
properties about  the behavior of the subsystem. The  common approach of writ- 
ing assertions about  traces or sequences of input and output  vectors is easily 
accommodated.  For example,  we can introduce sequences I(n)  = < i l , . . . ,  in > 
and O(n) = < ol, �9 . . ,  on > to denote the flow of inputs and outputs  tha t  would 
have occurred if the state machine were run for n transitions. A property about  
the behavior of M can be expressed as a relation P between I(n) and O(n) and 
formally established, i.e., we can prove tha t  the property P does indeed follow 
from the formal  specification M using the PVS proof-checker. 

3 . 2  E x p r e s s i o n  i n  P V S  

Figure 2 shows the abstract  structure of a Shuttle principal function rendered 
in PVS notation.  Key features of this structure are: 

- Principal functions use two kinds of variable da ta  (input values, previous- 
s tate  values) and three kinds of constant data  (I-loads, K-loads, constants).  
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pf_result: TYPE = [# output: pf_outputs, state: pf_state #] 

principal_function (pf_inputs, pf_state, 
pf_I_loads, pf_g_loads, 
pf_constants) : pf_result = 

(# output := <output expression>, 
state := <next-state expression> 

#) 

Fig. 2. PVS model of a Shuttle principal function. 

- Executing a principal function produces output  values and next-s tate  values. 
- All externally visible effects on variables are to be captured by this model.  

The  PVS definition assumes all input and state values have been collected 
into the structures p f _ i n p u t s  and p f _ s t a t e .  Additionally, all I-load, K-load, and 
constant  inputs used by the principal function are collected into similar struc- 
tures. The  p f_ .vesu l t  type is a record tha t  contains an output  component  and 
a next-s tate  component .  Each of these objects is, in turn, a structure containing 
(possibly many)  subcomponents .  

The  output  and next-state expressions in the general form above describe 
the effects of invoking the subfunctions belonging to the principal function. In 
practice, this can be very complicated so a stylized method of organizing this 
information has been devised. It  is based on the use of a LET expression to 
introduce variable names corresponding to the intermediate inputs and outputs  
exchanged among subfunctions. 

3.3 D e v i a t i o n s  f r o m  C R / F S S R  R e q u i r e m e n t s  

In deriving the preceding specification method,  we have tried to be faithful to 
the FSSR method  of expressing requirements. A few deviations and omissions, 
however, should be noted. 

- The  concept of state variables is not explicitly mentioned in FSSl%style 
requirements.  Their  use has been inferred and a method has been provided 
for their specification to make the final requirements more clear. 

- No provision was introduced to capture initialization requirements for s tate  
variables. This  issue can be handled at the next higher level of modeling. 

- Condit ional assignments in algorithmic requirements occasionally leave vari- 
able values unspecified. We assign default values to such cases when it is 
clear tha t  the variable 's  value on one branch of a conditional is a "don ' t  
care." 
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4 F o r m a l i z i n g  t h e  R e q u i r e m e n t s  

Initially, the relevant portions of the CI~ were analyzed to determine the basic 
structure of the principal functions and how they are decomposed into subfunc- 
tions. Based on this organization, a general approach for modeling the functions 
and expressing the formal specifications in PVS was devised. A document on 
this prescribed technique for writing formal specifications for the GPS CR was 
written and sent to the Loral requirements analysts. 

Next, the interfaces of the principal functions and their subfunctions were 
carefully scrutinized. Particular emphasis was placed on being able to identify 
the types of all inputs and outputs, and to match up all the data flows that 
are implicit in the tabular format presented in the requirements. While con- 
ducting this analysis and preparing to write the formal specifications, various 
minor discrepancies were detected in the CR and these were reported to Loral 
requirements analysts. 

A set of preliminary formal specifications was developed for the principal 
functions known as GPS Receiver State Processing and GPS Reference State 
Processing, using the language of PVS. Assumptions were made as needed to 
overcome the discrepancies encountered. Enough detail was provided in the for- 
mal specifications to characterize the functions with high precision. In parallel 
with this activity, several Loral RAs have been learning formal methods and 
PVS and positioning themselves to carry out this work after the trial project is 
completed. 

Formalization of the two principal functions in PVS has been completed and 
revised three times to keep up with requirements changes. Because of the breadth 
of this CR, convergence has been slow. Requirements changes have been frequent 
and extensive as the CR was worked through the review process. Our initial 
formal specification was based on a preliminary version of the CR, before the 
two-phase implementation plan was adopted. Subsequent versions were written 
to model the single-string GPS CR and its revisions. PVS versions were written 
for Mod B, Mod D/E and Mod F /G of the CR. (Revisions or modifications are 
denoted Mod A, Mod B, etc.) 

Excerpts from the formalization are shown in Figures 3 through 8. The full 
formal specifications contain over 3300 lines of PVS notation (including com- 
ments and blank lines), packaged as eleven PVS theories. 

Figure 3 shows a portion of the vector and matrix utilities needed to formalize 
operations in this application domain. Using a parameterized theory such as this 
made it easy to declare vectors of reals where the index type differs from one 
vector type to the next. Figure 4 illustrates the declaration of some typical types 
found in this application and how the vector types are incorporated. All the types 
needed are rather simple and concrete; structured types are all of fixed size. As is 
customarily done in PVS, vectors and arrays are represented by function types. 

Figure 5 presents one of the subfunctions from GPS Receiver State Process- 
ing. The outputs are bundled together into a single record type and used as the 
result type for the PVS function used to model the Shuttle software subfunction. 
The definition of the function contains a single expression, a record constructor 
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vectors [index_type: TYPE]: THEORY 

BEGIN 

vector: TYPE = [index_type -> real] 

i,j,k: VAR index_type 

a,b,c: VAR real 

U,V: VAR vector 

zero_vector: vector = (LAMBDA i: 0) 

vector_sum(U, V): vector = (LAMBDA i: U(i) + V(i)) 

vector_dill(U, V): vector = (LAMBDA i: U(i) - V(i)) 

scalar_mult(a, V): vector = (LAMBDA i: a * V(i)) 

END vectors 

Fig. 3. Vector operations organized as a PVS theory. 

major_mode_code: 

mission_time: 

GPS_id: 

receiver_mode: 

AIF_flag: 

M50_axis: 

IMPORTING 

M50_vector: 

position_vector: 

velocity_vector: 

GPS_positions: 

GPS_velocities: 

G P S _ p r e d i c a t e :  
GPS_t imes :  
GPS_FOM_vector: 

TYPE = nat 

TYPE = real 

TYPE = {n: nat [ 1 <= n & n <= 3} 

TYPE = {init, test, nay, blank} 

TYPE = {auto, inhibit, force} 

TYPE = {Xm, Ym, Zm} 

vectors[M50_axis] 

TYPE = vector[M50_axis] 

TYPE = MBO_vector 
TYPE = M50_vec to r  
TYPE = [GPS_id -> p o s i t i o n _ v e c t o r ]  
TYPE = [GPS_id -> velocity_vector] 

TYPE = [GPS_id -> bool] 

TYPE = [GPS_id -> mission_time] 

TYPE = [GPS_id -> GPS_figure_of_merit] 

F i g .  4.  Selected type  declarat ions.  
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ref_state_anncd_reset_out: TYPE = [# 
GPS_anncd_reset_avail: 

GPS_anncd_reset: 
R_ref_anncd_reset: 
T_anncd_reset: 
T_ref_anncd_reset: 
V_IMU_ref_anncd_reset: 
V_ref_anncd_reset: 
#] 

GPS_predicate, 

GPS_predicate, 
GPS_positions, 
GPS_times, 
GPS_times, 
GPS_velocities, 
GPS_velocities 

ref_state_announced_reset(DT_anncd_reset, 
GPS_DG_SF, 
GPS_SW_cap, 
R_GPS, 
T anncd_reset, 

T_current_filt, 
T_GPS, 
V_current_GPS, 
V_GPS) : ref_state_anncd_reset_out = 

(# GPS_anncd_reset_avail := GPS_DG_SF, 
GPS_anncd_reset := 

(LAMBDA I: IF GPS_DG_SF(I) 
THEN (T_current_filt - T_anncd_reset(I) 

>= DT_anncd_reset) 
ELSE false 

ENDIF), 
R_ref_anncd_reset := 

(LAMBDA I: IF GPS_DG_SF(I) THEN R_GPS(I) 
ELSE null_position ENDIF), 

T_anncd_reset := 
(LAMBDA I: IF GPS_DG_SF(I) AND 

(T_current_filt - T_anncd_reset(I) 
>= DT_anncd_reset) 

THEN T_current_filt 
ELSE null_mission_time 

ENDIF), 
T_ref_anncd_reset := 

(LAMBDA I: IF GPS_DG_SF(I) THEN T_GPS(I) 
ELSE null_mission_time ENDIF), 

V_IMU_ref_anncd_reset := 
(LAMBDA I: IF GPS_DG_SF(I) 

THEN V_current_GPS(I) 
ELSE null_velocity 

ENDIF), 
V_ref_anncd_reset := 

(LAMBDA I: IF GPS_DG_SF(I) THEN V_GPS(I) 

ELSE null_velocity ENDIF) 
#) 

Fig. 5. Sample subfunction of Receiver State Processing. 
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that  gives values for each of the required outputs. In this case they are all struc- 
tured objects with GPS_id as the index type. Therefore, lambda-expressions with 
the variable I ranging over GPS_id are used to construct suitable values. 

To further illustrate the approach, consider the following example: 

(LAMBDA I: IF GPS_DG_SF(1) THEN R_GPS(I) ELSE null_position ENDIF) 

This expression evaluates to a function from {1, 2, 3} to position vectors. For 
GPS receiver I,  if its "data good" flag is set (GPS_.DG_SF(I) holds), then use the 
position value R_GPS(I) derived from the input R_GPS, otherwise use a default 
position value. 

In several cases, the subfunction requirements are fairly complex and it was 
necessary to introduce intermediate PVS functions to decompose the formaliza- 
tion. While this is a natural  thing to do, it does cause some loss of traceability to 
the original requirements. Clarity and readability were judged more important ,  
however, and such decompositions were introduced as needed. 

Figure 6 shows the method of modeling principal function interfaces as records 
of individual values corresponding to Shuttle program variables. Because the in- 
terfaces at this level are quite broad, some of these lists become moderately long, 
on the order of 20 or 30 elements. In reality, these inputs and outputs  are not 
actually "passed" in any programming language sense during execution; they 
are usually accessed as global variables and thus can be thought of as having the 
semantics of "call by reference." Consequently, our formalization must necessar- 
ily be viewed as a model of the software structure, and in some cases there are 
unpleasant artifacts of the difference between the model and the real system. 

Figures 7 and 8 depict the top-level structure of the GPS Receiver State 
Processing model. Its interface types are given by the declarations shown in 
Figure 6. Its body is of the form 

LET sf_l_out = subfun-l(...), 

IN 
s f _ n _ o u t  = s u b f u n - n ( . . . )  

(# o u t p u t  := (# . . .  # ) ,  
s t a t e  := (# . . .  #) 

#) 

Each local variable assignment of the LET-expression represents the invocation 
of a subfunction and the storage of its intermediate results. Those values can be 
used directly as principal function outputs  or passed to later subfunctions on the 
list. The  final expression denotes the ul t imate principal function result, which 
has the form of output  values plus state values. 

5 R e s u l t s  

The formalization step demonstrated that  it is not difficult to bring the precision 
of formalization to bear on the type of requirements we examined. Expressing 
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rec_sp_inputs: TYPE = [# 
crew_deselect_rcvr: 
earth_pole: 

V_GPS_ECEF: 
V_Iast_GPS : 
#] 

GPS_predicate, 
position_vector, 

�9 �9 �9 

GPS_velocities_WGS84, 
GPS_velocities 

rec_sp_state: TYPE = [# 
G_two_prev: 
GPS_DG_SF_prev: 

V_last_GPS_sel: 
V_last_GPS_two: 
#] 

GPS_accelerations, 
GPS_predicate, 

velocity_vector, 
velocity_vector 

rec_sp_I_loads: TYPE = [# 
acc_prop_min_GPS: 
acc_prop_thresh_GPS: 

�9 �9 . 

SF_vel: 
sig_diag_GPS_nom: 
#] 

real, 
real, 

real, 
coy_diagonal_vector 

rec_sp_K_loads: TYPE = [# 
acc_prop_min: real, 
GPS_SN_cap: num_GPS 
#] 

rec_sp_constants: TYPE = [# 
deg_to_rad: real, 
earth_rate: real, 
GO: real, 
nautmi_per_ft: real 
#] 

rec_sp_outputs: TYPE = [# 

corr_coeff_GPS: corr_coeff_vector, 
crew_des_rcvr_rcvd: GPS_predicate, 

�9 �9 . . �9 , 

V_IMU_ref_anncd_reset: GPS_velocities, 
V_ref_anncd_reset: GPS_velocities 
#] 

rec_sp_result: TYPE = [# output: rec_sp_outputs, 

state: rec_sp_state #] 

Fig. 6. Principal function interface types. 
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GPS_receiver_state_processing((rec_sp_inputs: 

LET IMU_assiEn_out = 
IMU_assign( 

GPS_installed 
GPS_SW_cap 
nav_IMU_to_GPS 
V_current_filt 
V_last_GPS_two 

rec_sp_inputs), 
(rec_sp_state: rec_sp_state), 
(rec_sp_I_Ioads: rec_sp_I_loads), 
(rec_sp_K_ioads: rec_sp_K_loads), 
(rec_sp_constants: rec_sp_constants) ) 
: rec_sp_result = 

(rec_sp_I_loads), 
(rec_sp_K_loads), 
(rec_sp_inputs), 
(rec_sp_inputs), 
( r ec_sp_s ta te ) ) ,  

nay_state_prop_out = 
nay_state_propagation( 

acc_prop_min 
acc_prop_min_GPS 

V_last_GPS_prev 
V_last_GPS_sel 

(rec_sp_K_loads), 
(rec_sp_I_loads), 

(IMU_assign_out), 
(rec_sp_state)), 

SV_qual_assess_out = 
state_vector_quality_assessment ( 

G_two (nay_st ate_prop_out), 
GPS_DG_SF (nay_st at e_prop_out ), 

�9 ~ �9 �9 �9 �9 

V_GPS (nay_st at e_prop_out ), 
V_GPS_prev ( rec_sp_s ta te ) ) ,  

state_vect_sel_out = 
state_vector_selection( 

corr_coeff_GPS_nom 
crew_deselect_rcvr 

V_GPS 
V_GPS_sel 

(rec_sp_I_loads), 
(rec_sp_inputs), 

(nay_state_prop_out), 
(nay_state_prop_out)),  

ref_st_ann_reset_out ffi 
ref_state_armounced_reset( 

DT_anncd_reset (rec_sp_I_loads), 
GPS_DG_SF (nay_state_prop_out), 

�9 �9 �9 �9 �9 �9 

V_current_GPS (IMU_assiEn_out), 
V_GPS (nay_state_prop_out)), 

Fig. 7. Principal function specification. 
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GPS_downlist_out = 
GPS_downlist_computation( 

crew_deselect_rcvr (rec_sp_inputs), 
DT_qA2 (SV_qual_assess_out), 

�9 �9 �9 

SFvel (rec_sp_I_ioads), 
V_GPS_sel (state_vect_sel_out)) 

IN ($ output := (# 
corr_coeff_GPS := corr_coeff_GPS (state_vect_sel_out), 
crew_des_rcvr_rcvd := crew_des_rcvr_rcvd (state_vect_sel_out), 

�9 ~ �9 . . . . . .  

V_IMU_ref_anncd_reset := 
V_IMU_ref_anncd_reset (ref_st_ann_reset_out), 

V_ref_anncd_reset := V_ref_anncd_reset (ref_st_ann_reset_out) 
#), 

state := (# 
G_two_prev := G_two_prev 
GPS_DG_SF_prev := GPS_DG_SF_prev 

�9 �9 �9 �9 

V_last_GPS_sel := Y_last_GPS_sel 
V_last_GPS_two := V_lastGPS_two 
#) 

#) 

(SV_qual_assess_out), 
(SV_qual_assess_out), 

(nay_st at e_prop_out ), 
(nay_st at e_prop out ) 

Fig. 8. Principal function specification (cont'd). 

the requirements in the language of an off-the-shelf verification methodology was 
straightforward. We found PVS effective for this purpose; we feel other languages 
would also fare well. 

This much was unsurprising. What  was more of a pleasant discovery was 
the number of problems found in the requirements as a simple consequence of 
carrying out the formalization. While many have claimed this as a benefit of 
formal methods, we can offer another piece of anecdotal evidence to support it. 
All of the errors identified so far have been due to carrying the analysis only 
to the point of typechecking. It was also our intention to take up some theorem 
proving as well, but this has had to wait for the requirements themselves to 
reach a firmer state of convergence. 

Based on our initial results, some Shuttle RAs are optimistic about the po- 
tential impact of formal methods. Others in the Shuttle community are curious 
about the potential benefits of formalization. The RAs'  feedback indicated our 
approach was helpful in detecting three classes of errors: 

1. Type 4 - -  requirements do not meet CR author 's  intent. 
2. Type 6 - -  requirements not technically clear, understandable and maintain- 

able. 
3. Type 9 - -  interfaces inconsistent. 
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An example of Type  4 errors encountered in the CR is oimission due to con- 
ditionally updating variables. Suppose, for example, one branch of a conditional 
assigns several variables, leaving them unassigned on the other branch. The re- 
quirements author intends for the values to be "don't  cares" in the other branch, 
but  occasionally this is faulty because some variables such as flags need to be as- 
signed in both cases. Similar problems encountered are those due to overlapping 
conditions, leading to ambiguity in the correct assignments to make 

Examples of Type  9 errors include numerous, minor cases of incomplete 
and inconsistent interfaces. Missing inputs and outputs from tables, mismatches 
across tables, inappropriate types, and incorrect names are all typical errors 
seen in the subfunction and principal function interfaces. Most are problems 
that  could be avoided through greater use of automation in the requirements 
capture process. 

All requirements issues detected during the formalization were passed on to 
Loral representatives. Those deemed to be real issues, that  is, not caused by the 
misunderstandings of an outsider, were then officially submitted on behalf of 
the formal methods analysis as ones to be addressed during the requirements in- 
spections. Severity levels are attached to valid issues during the inspections. This 
allowed us to get "credit" for identifying problems and led to some rudimentary 
measurements on the effectiveness of formalization. 

Issue Severity Mod BI Mod D/E  
itIigh Major 1 0 
Low Major 7 3 
High Minor 19 40 
Low Minor 8 0 
Totals 35 43 

Mod F / G  Totals 
0 1 
0 10 
6 65 
2 10 
8 ~ 86 

Fig .  9. Summary  of issues detected by formal methods. 

Figure 9 summarizes a preliminary accounting of the issues identified during 
our analysis. The issues are broken out by severity level for the three inspections 
of the CI~ that  took place during the formal methods study. A grand total  of 
86 issues were submitted for the three inspections. Of these issues, 72 of the 86 
were of Type  9 (interfaces inconsistent). The rest were primarily scattered among 
Type 4 (requirements do not meet C1% author 's  intent) and Type 6 (requirements 
not technically clear, understandable and maintainable). Note that  many issues 
submit ted at a given inspection remained unresolved in the next revision. These 
were not resubmitted, however, meaning all the issues cited in the table are 
distinct. 
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The meaning of the severity codes used in Figure 9 is as follows: 

1. High major - -  Loral cannot implement requirement. 
2. Low major - -  Requirement does not correctly reflect CR author's intent. 
3. High minor - -  "Support" requirements are incorrect or confusing. 
4. Low minor - -  Minor documentation changes. 

As can be seen by these results, the added precision of formalization used 
early in the lifecycle can yield tangible benefits. While many of these issues 
could have been found with lighter-weight techniques, the use of formal speci- 
fications can detect them and leave open the option of deductive analysis later 
on. Thus, these results by themselves suggest a potential boost from the use of 
formal methods plus the promise of additional benefits if proving is ultimately 
attempted. 

It is worth noting that most errors detected in the CR during the formal- 
ization exercise were not directly found by typechecking or other automated 
analysis activity, but were detected during the act of writing the specifications 
or during the review and preparation leading up to the writing step. Additional 
problems were found during the typechecking phase as well. When we reach the 
point of modeling higher level properties and carrying out proofs, we expect to 
see fewer errors still. This is consistent with general observations practitioners 
have about inspections and reviews. Light-weight forms of analysis applied early 
detect more problems and detect them quickly, but they are usually superfi- 
cial. As more powerful analysis methods are introduced, we find more subtle 
problems, but they tend to be less numerous. 

The next step in the application of formal methods to GPS, which was still 
in progress as of this writing, is to identify and formalize important behavioral 
properties of the processing of GPS position and velocity vectors. In particular, 
the feedback loop shown in Figure 1 involving the principal functions Receiver 
State Processing and Reference State Processing is fertile ground for investi- 
gation. Proving that suitable properties hold would offer a powerful means of 
further shaking out the requirements before passing them on to development. 

Perhaps the most encouraging outcome of the study was a serious interest on 
the part of the requirements analysts to learn formal methods and continue the 
formalization activity themselves. Lora] and JSC personnel received a training 
course at NASA Langley and intend to maintain and extend the GPS formal 
specifications during the implementation phase. Other CRs are being examined 
for potential evaluation as well. We are hopeful that this will lead to a continuing 
involvement by the NASA space community. 

6 C o n c l u s i o n s  

Experience with the GPS effort showed that the outlook for formal methods 
in this requirements analysis domain is quite promising. PVS has been used 
effectively to formalize this application, and the custom specification approach 
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should be easy to duplicate for other areas. There are good prospects for contin- 
uation of the effort by Shuttle personnel. Some Shuttle RAs are optimistic about 
the potential impact of formal methods. Although the specification activity was 
assisted by tools, doing manual specification is also feasible here, albeit with 
reduced benefits. 

PVS provides a formal specification language of considerable theoretical 
power while still preserving the syntactic flavor of modern programming lan- 
guages. This makes the specifications fairly readable to nonexperts and makes 
their development less difficult than might otherwise be the case with specifi- 
cation languages whose features are more limiting. The scheme detailed here 
leads to specifications that RAs and others from the Shuttle community can and 
did learn to read and interpret without having to become PVS practitioners. 
Moreover, the mere construction of formal specifications using this method can 
and did lead to the discovery of flaws in the requirements. Future efforts can use 
the specifications as the foundation for more sophisticated analyses based on the 
use of formal proof. This additional tool provides the means to answer nontrivial 
questions about the specifications and achieve a higher level of assurance that 
the requirements are free of major flaws. 

The methods outlined for formally specifying requirements were devised to 
meet the needs of the chosen CR. They are methods having fundamental utility 
that should lend themselves to other avionics applications. Tailoring a scheme 
for other uses or fine tuning it for the intended CR is easily accomplished. Al- 
ternative specification styles could readily be adopted. Experience in using the 
methods on live applications will help determine what direction future refine- 
ments should take. 

In addition to specifications to capture the functionality of the principal func- 
tions, often it is desirable to formalize abstract properties about the long-term 
behavior of software subsystems. Formulating such properties is a way of assur- 
ing that certain critical constraints on system operation are always observed, 
allowing us to reason in a "longitudinal" manner by expressing what should be 
true about the software behavior over time rather than merely what holds at the 
current step. The specification framework sketched here can be extended easily 
to accommodate invariants or other property-oriented assertions. 

The requirements analysis process used on the Shuttle program was originally 
put in place in the 1970s, and consists largely of manual, best-effort scrutiny 
whose effectiveness depends on the diligence of the analyst. Consider how for- 
malizing requirements would help overcome several often-cited deficiencies of 
this process: 

1. There is no methodology to guide the analysis. 
Formal methods offer rigorous modeling and analysis techniques that bring 
increased precision and error detection to the realm of requirements. 

2. There are no completion criteria. 
Writing formal specifications and conducting proofs are deliberate acts to 
which one can attach meaningful completion criteria. 

3. There is no structured way for RAs  to document the results of their analysis. 
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Formal specifications are tangible products tha t  can be mainta ined and con- 
sulted as analysis and development proceed. When provided as outputs  of 
the analysis process, formalized requirements can be used as evidence of thor- 
oughness and coverage, as definitive explanations of how CRs achieve their 
objectives, and as permanent  artifacts useful for answering future questions 
tha t  may  arise. 
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