
Formalizing New Navigation Requirements for
NASA's Space Shuttle

Ben L. Di Vito

VIGYAN, Inc., 30 Research Drive, Hampton, Virginia 23666, USA

Abstract . We describe a recent NASA-sponsored pilot project intended
to gauge the effectiveness of using formai methods in Space Shuttle soft-
ware requirements analysis. Several Change Requests (CRs) were se-
lected as promising targets to demonstrate the utility of formal methods
in this demanding application domain. A CR to add new navigation
capabilities to the Shuttle, based on Global Positioning System (GPS)
technology, is the focus of this industrial usage report. Portions of the
GPS CR were modeled using the language of SRI's Prototype Verifica-
tion System (PVS). During a limited analysis conducted on the formal
specifications, numerous requirements issues were discovered. We present
a summary of these encouraging results and conclusions we have drawn
from the pilot project.

1 I n t r o d u c t i o n

Among all the software developed by the U.S. National Aeronautics and Space
Administration, Space Shuttle flight software is generally considered exemplary.
Nevertheless, much of the quality assurance activity in early lifecycle phases re-
mains a manual exercise in need of more precise analysis techniques. Software
upgrades to accommodate new missions and capabilities are continually intro-
duced. Such upgrades underscore the need recognized in the NASA community,
and in a recent assessment of Shuttle flight software development, for "state-of-
the-art technology" and "leading-edge methodologies" to meet the demands of
software development for increasingly large and complex systems [12, p. 91].

Over the last three years, NASA's Langley Research Center (LaRC) has in-
vestigated the use of formal methods (FM) in space applications, as part of a
three-center demonstration project involving LaRC, the Jet Propulsion Labora-
tory (JPL), and the Johnson Space Center (JSC). The goal of NASA's Formal
Methods Demonstration Project for Space Applications is to find effective ways
to use formal methods in requirements analysis and other phases of the develop-
ment lifecycle. The Space Shuttle program has been cooperating in several pilot
projects to apply formal methods to live requirements analysis activities such
as the upgrades supporting the recent MIR docking missions, improved algo-
ri thms for the newly automated three-engine-out contingency abort maneuvers
(3E/O), and the recent optimization of Reaction Control System Jet Selection
(JS) [4, 6]. Other programs participating in the demonstration effort include the
Cassini deep-space probe and the International Space Station [9, 7].

161

We focus in this paper on the formal methods-based analysis of a new
Global Positioning System (GPS) navigation capability for the Shuttle. This
work was performed in the context of a broader program of formal methods ac-
tivity at LaRC [2]. The effort consisted of formalizing selected Shuttle software
(sub)system modifications and additions using the PVS specification language
and interactive proof-checker [13]. Our objective was to explore and document
the feasibility of formalizing critical Shuttle software requirements.

The key technical results of the project include a clear demonstration of
the utility of formal methods as a complement to the conventional Shuttle re-
quirements analysis process. Although proof-based analysis was a goal of the
project, the effort has thus far been limited to formalization of the require-
ments. Nevertheless, the GPS project uncovered anomalies ranging from minor
to substantive, many of which were undetected by existing requirements analysis
processes. These results corroborate the experiences of others in formalizing re-
quirements [3, 1]. Dissemination of these techniques to the aerospace community
should encourage further experimentation [14, 11]. Full details of the GPS study
will appear in a forthcoming report [5].

1.1 Shu t t l e Software Background

NASA's prime contractor for the Space Shuttle is the Space Systems Division of
Rockwell International. Loral Space Information Systems (formerly IBM, Hous-
ton) is their software subcontractor. Draper Laboratory also serves Rockwell,
providing requirements expertise in Guidance, Navigation and Control.

Shuttle flight software executes in four redundant general purpose comput-
ers (GPCs), with a fifth backup computer carrying dissimilar software. Much
of the Shuttle software is organized into major units called principal functions,
each of which may be subdivided into subfunctions. Software requirements are
written using conventions known as Functional Subsystem Software Require-
ments (FSSRs) - - low-level software requirements specifications written in En-
glish prose with strong implementation biases, and accompanied by pseudo-code,
tables, and flowcharts. Interfaces between software units are specified in input-
output tables. Inputs can be variables or one of three types of constant data:
I-loads (fixed for the current mission), K-loads (fixed for a series of missions),
and physical constants (never changed).

Shuttle software modifications are packaged as Change l~equests (CRs), that
are typically modest in scope, localized in function, and intended to satisfy spe-
cific needs for upcoming missions. Roughly once a year, software releases called
Operational Increments (OIs) are issued incorporating one or more CRs. Shuttle
CRs are written as modifications, replacements, or additions to existing FSSI~s.
Loral Requirements Analysts (RAs) conduct thorough reviews of new CRs, ana-
lyzing them with respect to correctness, implementability, and testability before
turning them over to the development team. Their objective is to identify and
correct problems in the requirements analysis phase, avoiding far more costly
fixes later in the lifecycle.

162

2 O v e r v i e w o f t h e E n h a n c e d S h u t t l e N a v i g a t i o n S y s t e m

GPS is a satellite-based navigation system operated by the U.S. Department
of Defense (DoD), comprising a constellation of 24 satellites in high earth or-
bits. Navigation is effected using a receive-only technique. Dedicated hardware
receivers track four or more satellites simultaneously and recover their signals
from the code division multiplexing inherent in their method of transmission.
Receivers solve for position and velocity, with a horizontal position accuracy of
100 meters for the Standard Positioning Service mode of operation.

The GPS retrofit to the Shuttle was planned in anticipation of DoD's phase-
out of TACAN, a ground-based navigation system currently used during entry
and landing. Originally, GPS was required for navigation only during the entry
i flight phase after the disappearance of TACAN, but the scope has been broad-
ened to cover all mission phases. As one of the larger ongoing Shuttle Change
Requests (CRs), the GPS CR involves a significant upgrade to the Shuttle's
navigation capability. Shuttles are to be outfitted with GPS receivers and the
primary avionics software will be enhanced to accept GPS-provided positions
and integrate them into navigation calculations. In particular, the GPS CR will
provide the capability to update the Shuttle navigation filter states with selected
GPS state vector estimates similar to the way state vector updates currently are
received from the ground. In addition, the new functions will provide feedback
to the GPS receivers and will support crew control and operation of GPS/GPC
processing.

2.1 G P S Change Reques t

The GPS upgrade is being conducted according to a two-phase integration plan.
First, a single-string implementation will be carried out involving only a single
GPS receiver. After adequate testing, the full-up implementation involving three
receivers will provide the operationM configuration. Software requirements are
structured to accommodate the three-receiver setup from the outset, requiring
only minimal changes to go to the full-up version.

Figure 1 shows the integrated architecture for the enhanced navigation sub-
system. GPS receivers are managed by the GPS Subsystem Operating Pro-
gram (SOP), which acts as a device driver. The new principal function GPS
Receiver State Processing accepts GPS state vectors, and selects and conditions
a usable one for presentation to the appropriate navigation user. Another new
principal function, GPS Reference State Processing, maintains reference states
for the receivers and navigation functions. Inertial measurement units (IMUs)
provide acceleration data and Redundancy Management (RM) functions main-
tain failure status information.

The GPS formalization focused on a few key areas because the CR itself
is very large and complex. After preliminary study of the CR and discussions
with the GPS RAs, we decided to concentrate on two major new principal func-
tions, emphasizing their interfaces to existing navigation software and excluding
crew I/O functions. The two principal functions, known as GPS Receiver State

163

N A V i !

Sensors [

GPS]~
Receivers]

L

.I
il RM
1

il PS soP
-I

'1 GPSRef. I.
', State Proc. 1"

General Purpose Computer

Low Rate Navigation
Principal Functions

Baseline
JGPS Receiver I I Navigation
-] StatelPr~ I I

'tT
G u i d a n c e [_]

'1 Input Calc. I -[Guidance

Fig. 1. Architecture for integrating GPS into navigation subsystem.

Processing and GPS Reference State Processing, select and modify GPS state
vectors for consumption by the existing entry navigation software. As these func-
tions are entirely new, we felt that concentrating on these areas would yield a
high return on our formalization investment. Moreover, this choice obviated the
need to model large amounts of existing Shuttle functionality.

The two chosen principal functions, in turn, are organized into several sub-
functions each.

- GPS Receiver State Processing
1. GPS IMU Assign
2. GPS Navigation State Propagation
3. GPS State Vector Quality Assessment
4. GPS State Vector Selection
5. GPS Reference State Announced Reset
6. GPS Downlist Computat ion

- GPS Reference State Processing
1. GPS External Data Snap
2. IMU GPS Selection
3. GPS Reference State Initialization and Reset
4. GPS Reference State Propagation

164

The subset of the GPS CR represented here contains approximately 110 pages
of requirements in the form of prose, pseudo-code, and tables. The entire CR is
about 1000 pages long.

2.2 C h a r a c t e r i s t i c s o f A p p l i c a t i o n

The nature of the GPS CR application is that of a significant augmentation to
a mature body of complex navigation functions. Interfaces among components
are broad, containing many variables. Typical classes of data include:

- Flags to indicate status, to request services, and to select options among
processing choices.

- T ime values and t ime intervals both to serve as t imestamps within state
vectors and to control when operations should be performed.

- Navigation-related values such as positions and velocities.
- Arrays of M1 these types indexed by GPS receiver number.
- Various numeric quantities representing thresholds, tolerance values, etc.

Navigation state vectors are of the form (r, v, t), where r is a position, v is
a velocity, and t is the t ime at which the position and velocity apply. A position
r or a velocity v is a three-element vector relative to a Cartesian or geodetic
coordinate system. Usually the Shuttle uses an inertial coordinate system called
the "Aries mean of 1950" system, abbreviated as "M50."

An impor tant operation on state vectors is propagating them to a new instant
of time. If we have a state vector (r, v, t), and we have a measurement or estimate
of the accelerations experienced by the vehicle over the (short) t ime interval
It, tr], we can propagate the state to a new state vector (r ' , v ' , t ') using standard
techniques of physical mechanics. This type of operation is typically performed
to synchronize state vectors to a common point in time.

Processing requirements within the CR are generally expressed in an algo-
ri thmic style using high-level language assignments and conditional statements.
Within conditionally invoked assignments, the assumption is the usual procedu-
ral one that a variable not assigned retains its previous value, which may or may
not have a meaningful interpretation in the current context. Flag variables are
used to indicate when other (non-flag) variables hold currently valid data.

3 T e c h n i c a l A p p r o a c h

The formal methods approach is loosely based on earlier work conducted by
the inter-center team during 1993 on subsystems called Jet Select and Orbit
DAP [10]. Those techniques were adapted to accommodate the needs of this
new area of the Shuttle software. All work has been mechanically assisted by
the PVS toolset. PVS (Prototype Verification System) is an environment for
specification and verification developed at SRI International 's Computer Science

165

Labora tory [13]. The distinguishing characteristic of PVS is a highly expressive
specification language coupled with a very effective interactive theorem prover
tha t uses decision procedures to au tomate most of the low-level proof steps.

3 .1 S t a t e M a c h i n e M o d e l s

We have devised a s trategy to model Shuttle principal functions based on the
use of a conventional abstract s tate machine model. Each principal function is
modeled as a s tate machine tha t takes inputs and local s tate values, and produces
outputs and new state values. This method provides a simple computa t ional
model similar to popular state-based methods such the A-7 model [8, 15].

One transit ion of the s tate machine model corresponds to one scheduled
execution of the principal function, e.g., one cycle at rate 6.25 Hz or other
applicable rate. All of the inputs to the principal function are bundled together
and a similar bundling of the outputs is arranged. The s tate variable holds values
tha t are (usually) not delivered to other units, but instead are held for use on
the next cycle.

The state machine transit ion function is a mathemat ica l ly well-defined func-
tion tha t takes a vector of input values and a vector of previous-state values,
and maps them into a vector of outputs and a vector of next-state values.

M : I x S--* [O x S]

This function M is expressed in PVS and forms the central par t of the formal
specification. We construct a tuple composed of the output and s tate values
so only a single top-level function is needed in the formalization. Some values
may appear in both the output list and the next-state vector, i.e., they are not
mutual ly exclusive.

While the function M captures the functionality of the software subsystem
in question, the state machine framework can also serve to formalize abst ract
properties about the behavior of the subsystem. The common approach of writ-
ing assertions about traces or sequences of input and output vectors is easily
accommodated. For example, we can introduce sequences I(n) = < i l , . . . , in >
and O(n) = < ol, �9 . . , on > to denote the flow of inputs and outputs tha t would
have occurred if the state machine were run for n transitions. A property about
the behavior of M can be expressed as a relation P between I(n) and O(n) and
formally established, i.e., we can prove tha t the property P does indeed follow
from the formal specification M using the PVS proof-checker.

3 . 2 E x p r e s s i o n i n P V S

Figure 2 shows the abstract structure of a Shuttle principal function rendered
in PVS notation. Key features of this structure are:

- Principal functions use two kinds of variable da ta (input values, previous-
s tate values) and three kinds of constant data (I-loads, K-loads, constants).

166

pf_result: TYPE = [# output: pf_outputs, state: pf_state #]

principal_function (pf_inputs, pf_state,
pf_I_loads, pf_g_loads,
pf_constants) : pf_result =

(# output := <output expression>,
state := <next-state expression>

#)

Fig. 2. PVS model of a Shuttle principal function.

- Executing a principal function produces output values and next-s tate values.
- All externally visible effects on variables are to be captured by this model.

The PVS definition assumes all input and state values have been collected
into the structures p f _ i n p u t s and p f _ s t a t e . Additionally, all I-load, K-load, and
constant inputs used by the principal function are collected into similar struc-
tures. The p f_ .vesu l t type is a record tha t contains an output component and
a next-s tate component . Each of these objects is, in turn, a structure containing
(possibly many) subcomponents .

The output and next-state expressions in the general form above describe
the effects of invoking the subfunctions belonging to the principal function. In
practice, this can be very complicated so a stylized method of organizing this
information has been devised. It is based on the use of a LET expression to
introduce variable names corresponding to the intermediate inputs and outputs
exchanged among subfunctions.

3.3 D e v i a t i o n s f r o m C R / F S S R R e q u i r e m e n t s

In deriving the preceding specification method, we have tried to be faithful to
the FSSR method of expressing requirements. A few deviations and omissions,
however, should be noted.

- The concept of state variables is not explicitly mentioned in FSSl%style
requirements. Their use has been inferred and a method has been provided
for their specification to make the final requirements more clear.

- No provision was introduced to capture initialization requirements for s tate
variables. This issue can be handled at the next higher level of modeling.

- Condit ional assignments in algorithmic requirements occasionally leave vari-
able values unspecified. We assign default values to such cases when it is
clear tha t the variable 's value on one branch of a conditional is a "don ' t
care."

167

4 F o r m a l i z i n g t h e R e q u i r e m e n t s

Initially, the relevant portions of the CI~ were analyzed to determine the basic
structure of the principal functions and how they are decomposed into subfunc-
tions. Based on this organization, a general approach for modeling the functions
and expressing the formal specifications in PVS was devised. A document on
this prescribed technique for writing formal specifications for the GPS CR was
written and sent to the Loral requirements analysts.

Next, the interfaces of the principal functions and their subfunctions were
carefully scrutinized. Particular emphasis was placed on being able to identify
the types of all inputs and outputs, and to match up all the data flows that
are implicit in the tabular format presented in the requirements. While con-
ducting this analysis and preparing to write the formal specifications, various
minor discrepancies were detected in the CR and these were reported to Loral
requirements analysts.

A set of preliminary formal specifications was developed for the principal
functions known as GPS Receiver State Processing and GPS Reference State
Processing, using the language of PVS. Assumptions were made as needed to
overcome the discrepancies encountered. Enough detail was provided in the for-
mal specifications to characterize the functions with high precision. In parallel
with this activity, several Loral RAs have been learning formal methods and
PVS and positioning themselves to carry out this work after the trial project is
completed.

Formalization of the two principal functions in PVS has been completed and
revised three times to keep up with requirements changes. Because of the breadth
of this CR, convergence has been slow. Requirements changes have been frequent
and extensive as the CR was worked through the review process. Our initial
formal specification was based on a preliminary version of the CR, before the
two-phase implementation plan was adopted. Subsequent versions were written
to model the single-string GPS CR and its revisions. PVS versions were written
for Mod B, Mod D/E and Mod F /G of the CR. (Revisions or modifications are
denoted Mod A, Mod B, etc.)

Excerpts from the formalization are shown in Figures 3 through 8. The full
formal specifications contain over 3300 lines of PVS notation (including com-
ments and blank lines), packaged as eleven PVS theories.

Figure 3 shows a portion of the vector and matrix utilities needed to formalize
operations in this application domain. Using a parameterized theory such as this
made it easy to declare vectors of reals where the index type differs from one
vector type to the next. Figure 4 illustrates the declaration of some typical types
found in this application and how the vector types are incorporated. All the types
needed are rather simple and concrete; structured types are all of fixed size. As is
customarily done in PVS, vectors and arrays are represented by function types.

Figure 5 presents one of the subfunctions from GPS Receiver State Process-
ing. The outputs are bundled together into a single record type and used as the
result type for the PVS function used to model the Shuttle software subfunction.
The definition of the function contains a single expression, a record constructor

168

vectors [index_type: TYPE]: THEORY

BEGIN

vector: TYPE = [index_type -> real]

i,j,k: VAR index_type

a,b,c: VAR real

U,V: VAR vector

zero_vector: vector = (LAMBDA i: 0)

vector_sum(U, V): vector = (LAMBDA i: U(i) + V(i))

vector_dill(U, V): vector = (LAMBDA i: U(i) - V(i))

scalar_mult(a, V): vector = (LAMBDA i: a * V(i))

END vectors

Fig. 3. Vector operations organized as a PVS theory.

major_mode_code:

mission_time:

GPS_id:

receiver_mode:

AIF_flag:

M50_axis:

IMPORTING

M50_vector:

position_vector:

velocity_vector:

GPS_positions:

GPS_velocities:

G P S _ p r e d i c a t e :
GPS_t imes :
GPS_FOM_vector:

TYPE = nat

TYPE = real

TYPE = {n: nat [1 <= n & n <= 3}

TYPE = {init, test, nay, blank}

TYPE = {auto, inhibit, force}

TYPE = {Xm, Ym, Zm}

vectors[M50_axis]

TYPE = vector[M50_axis]

TYPE = MBO_vector
TYPE = M50_vec to r
TYPE = [GPS_id -> p o s i t i o n _ v e c t o r]
TYPE = [GPS_id -> velocity_vector]

TYPE = [GPS_id -> bool]

TYPE = [GPS_id -> mission_time]

TYPE = [GPS_id -> GPS_figure_of_merit]

F i g . 4. Selected type declarat ions.

169

ref_state_anncd_reset_out: TYPE = [#
GPS_anncd_reset_avail:

GPS_anncd_reset:
R_ref_anncd_reset:
T_anncd_reset:
T_ref_anncd_reset:
V_IMU_ref_anncd_reset:
V_ref_anncd_reset:
#]

GPS_predicate,

GPS_predicate,
GPS_positions,
GPS_times,
GPS_times,
GPS_velocities,
GPS_velocities

ref_state_announced_reset(DT_anncd_reset,
GPS_DG_SF,
GPS_SW_cap,
R_GPS,
T anncd_reset,

T_current_filt,
T_GPS,
V_current_GPS,
V_GPS) : ref_state_anncd_reset_out =

(# GPS_anncd_reset_avail := GPS_DG_SF,
GPS_anncd_reset :=

(LAMBDA I: IF GPS_DG_SF(I)
THEN (T_current_filt - T_anncd_reset(I)

>= DT_anncd_reset)
ELSE false

ENDIF),
R_ref_anncd_reset :=

(LAMBDA I: IF GPS_DG_SF(I) THEN R_GPS(I)
ELSE null_position ENDIF),

T_anncd_reset :=
(LAMBDA I: IF GPS_DG_SF(I) AND

(T_current_filt - T_anncd_reset(I)
>= DT_anncd_reset)

THEN T_current_filt
ELSE null_mission_time

ENDIF),
T_ref_anncd_reset :=

(LAMBDA I: IF GPS_DG_SF(I) THEN T_GPS(I)
ELSE null_mission_time ENDIF),

V_IMU_ref_anncd_reset :=
(LAMBDA I: IF GPS_DG_SF(I)

THEN V_current_GPS(I)
ELSE null_velocity

ENDIF),
V_ref_anncd_reset :=

(LAMBDA I: IF GPS_DG_SF(I) THEN V_GPS(I)

ELSE null_velocity ENDIF)
#)

Fig. 5. Sample subfunction of Receiver State Processing.

170

that gives values for each of the required outputs. In this case they are all struc-
tured objects with GPS_id as the index type. Therefore, lambda-expressions with
the variable I ranging over GPS_id are used to construct suitable values.

To further illustrate the approach, consider the following example:

(LAMBDA I: IF GPS_DG_SF(1) THEN R_GPS(I) ELSE null_position ENDIF)

This expression evaluates to a function from {1, 2, 3} to position vectors. For
GPS receiver I, if its "data good" flag is set (GPS_.DG_SF(I) holds), then use the
position value R_GPS(I) derived from the input R_GPS, otherwise use a default
position value.

In several cases, the subfunction requirements are fairly complex and it was
necessary to introduce intermediate PVS functions to decompose the formaliza-
tion. While this is a natural thing to do, it does cause some loss of traceability to
the original requirements. Clarity and readability were judged more important ,
however, and such decompositions were introduced as needed.

Figure 6 shows the method of modeling principal function interfaces as records
of individual values corresponding to Shuttle program variables. Because the in-
terfaces at this level are quite broad, some of these lists become moderately long,
on the order of 20 or 30 elements. In reality, these inputs and outputs are not
actually "passed" in any programming language sense during execution; they
are usually accessed as global variables and thus can be thought of as having the
semantics of "call by reference." Consequently, our formalization must necessar-
ily be viewed as a model of the software structure, and in some cases there are
unpleasant artifacts of the difference between the model and the real system.

Figures 7 and 8 depict the top-level structure of the GPS Receiver State
Processing model. Its interface types are given by the declarations shown in
Figure 6. Its body is of the form

LET sf_l_out = subfun-l(...),

IN
s f _ n _ o u t = s u b f u n - n (. . .)

(# o u t p u t := (# . . . #) ,
s t a t e := (# . . . #)

#)

Each local variable assignment of the LET-expression represents the invocation
of a subfunction and the storage of its intermediate results. Those values can be
used directly as principal function outputs or passed to later subfunctions on the
list. The final expression denotes the ul t imate principal function result, which
has the form of output values plus state values.

5 R e s u l t s

The formalization step demonstrated that it is not difficult to bring the precision
of formalization to bear on the type of requirements we examined. Expressing

171

rec_sp_inputs: TYPE = [#
crew_deselect_rcvr:
earth_pole:

V_GPS_ECEF:
V_Iast_GPS :
#]

GPS_predicate,
position_vector,

�9 �9 �9

GPS_velocities_WGS84,
GPS_velocities

rec_sp_state: TYPE = [#
G_two_prev:
GPS_DG_SF_prev:

V_last_GPS_sel:
V_last_GPS_two:
#]

GPS_accelerations,
GPS_predicate,

velocity_vector,
velocity_vector

rec_sp_I_loads: TYPE = [#
acc_prop_min_GPS:
acc_prop_thresh_GPS:

�9 �9 .

SF_vel:
sig_diag_GPS_nom:
#]

real,
real,

real,
coy_diagonal_vector

rec_sp_K_loads: TYPE = [#
acc_prop_min: real,
GPS_SN_cap: num_GPS
#]

rec_sp_constants: TYPE = [#
deg_to_rad: real,
earth_rate: real,
GO: real,
nautmi_per_ft: real
#]

rec_sp_outputs: TYPE = [#

corr_coeff_GPS: corr_coeff_vector,
crew_des_rcvr_rcvd: GPS_predicate,

�9 �9 . . �9 ,

V_IMU_ref_anncd_reset: GPS_velocities,
V_ref_anncd_reset: GPS_velocities
#]

rec_sp_result: TYPE = [# output: rec_sp_outputs,

state: rec_sp_state #]

Fig. 6. Principal function interface types.

172

GPS_receiver_state_processing((rec_sp_inputs:

LET IMU_assiEn_out =
IMU_assign(

GPS_installed
GPS_SW_cap
nav_IMU_to_GPS
V_current_filt
V_last_GPS_two

rec_sp_inputs),
(rec_sp_state: rec_sp_state),
(rec_sp_I_Ioads: rec_sp_I_loads),
(rec_sp_K_ioads: rec_sp_K_loads),
(rec_sp_constants: rec_sp_constants))
: rec_sp_result =

(rec_sp_I_loads),
(rec_sp_K_loads),
(rec_sp_inputs),
(rec_sp_inputs),
(r ec_sp_s ta te)) ,

nay_state_prop_out =
nay_state_propagation(

acc_prop_min
acc_prop_min_GPS

V_last_GPS_prev
V_last_GPS_sel

(rec_sp_K_loads),
(rec_sp_I_loads),

(IMU_assign_out),
(rec_sp_state)),

SV_qual_assess_out =
state_vector_quality_assessment (

G_two (nay_st ate_prop_out),
GPS_DG_SF (nay_st at e_prop_out),

�9 ~ �9 �9 �9 �9

V_GPS (nay_st at e_prop_out),
V_GPS_prev (rec_sp_s ta te)) ,

state_vect_sel_out =
state_vector_selection(

corr_coeff_GPS_nom
crew_deselect_rcvr

V_GPS
V_GPS_sel

(rec_sp_I_loads),
(rec_sp_inputs),

(nay_state_prop_out),
(nay_state_prop_out)),

ref_st_ann_reset_out ffi
ref_state_armounced_reset(

DT_anncd_reset (rec_sp_I_loads),
GPS_DG_SF (nay_state_prop_out),

�9 �9 �9 �9 �9 �9

V_current_GPS (IMU_assiEn_out),
V_GPS (nay_state_prop_out)),

Fig. 7. Principal function specification.

173

GPS_downlist_out =
GPS_downlist_computation(

crew_deselect_rcvr (rec_sp_inputs),
DT_qA2 (SV_qual_assess_out),

�9 �9 �9

SFvel (rec_sp_I_ioads),
V_GPS_sel (state_vect_sel_out))

IN ($ output := (#
corr_coeff_GPS := corr_coeff_GPS (state_vect_sel_out),
crew_des_rcvr_rcvd := crew_des_rcvr_rcvd (state_vect_sel_out),

�9 ~ �9

V_IMU_ref_anncd_reset :=
V_IMU_ref_anncd_reset (ref_st_ann_reset_out),

V_ref_anncd_reset := V_ref_anncd_reset (ref_st_ann_reset_out)
#),

state := (#
G_two_prev := G_two_prev
GPS_DG_SF_prev := GPS_DG_SF_prev

�9 �9 �9 �9

V_last_GPS_sel := Y_last_GPS_sel
V_last_GPS_two := V_lastGPS_two
#)

#)

(SV_qual_assess_out),
(SV_qual_assess_out),

(nay_st at e_prop_out),
(nay_st at e_prop out)

Fig. 8. Principal function specification (cont'd).

the requirements in the language of an off-the-shelf verification methodology was
straightforward. We found PVS effective for this purpose; we feel other languages
would also fare well.

This much was unsurprising. What was more of a pleasant discovery was
the number of problems found in the requirements as a simple consequence of
carrying out the formalization. While many have claimed this as a benefit of
formal methods, we can offer another piece of anecdotal evidence to support it.
All of the errors identified so far have been due to carrying the analysis only
to the point of typechecking. It was also our intention to take up some theorem
proving as well, but this has had to wait for the requirements themselves to
reach a firmer state of convergence.

Based on our initial results, some Shuttle RAs are optimistic about the po-
tential impact of formal methods. Others in the Shuttle community are curious
about the potential benefits of formalization. The RAs' feedback indicated our
approach was helpful in detecting three classes of errors:

1. Type 4 - - requirements do not meet CR author 's intent.
2. Type 6 - - requirements not technically clear, understandable and maintain-

able.
3. Type 9 - - interfaces inconsistent.

174

An example of Type 4 errors encountered in the CR is oimission due to con-
ditionally updating variables. Suppose, for example, one branch of a conditional
assigns several variables, leaving them unassigned on the other branch. The re-
quirements author intends for the values to be "don't cares" in the other branch,
but occasionally this is faulty because some variables such as flags need to be as-
signed in both cases. Similar problems encountered are those due to overlapping
conditions, leading to ambiguity in the correct assignments to make

Examples of Type 9 errors include numerous, minor cases of incomplete
and inconsistent interfaces. Missing inputs and outputs from tables, mismatches
across tables, inappropriate types, and incorrect names are all typical errors
seen in the subfunction and principal function interfaces. Most are problems
that could be avoided through greater use of automation in the requirements
capture process.

All requirements issues detected during the formalization were passed on to
Loral representatives. Those deemed to be real issues, that is, not caused by the
misunderstandings of an outsider, were then officially submitted on behalf of
the formal methods analysis as ones to be addressed during the requirements in-
spections. Severity levels are attached to valid issues during the inspections. This
allowed us to get "credit" for identifying problems and led to some rudimentary
measurements on the effectiveness of formalization.

Issue Severity Mod BI Mod D/E
itIigh Major 1 0
Low Major 7 3
High Minor 19 40
Low Minor 8 0
Totals 35 43

Mod F / G Totals
0 1
0 10
6 65
2 10
8 ~ 86

Fig . 9. Summary of issues detected by formal methods.

Figure 9 summarizes a preliminary accounting of the issues identified during
our analysis. The issues are broken out by severity level for the three inspections
of the CI~ that took place during the formal methods study. A grand total of
86 issues were submitted for the three inspections. Of these issues, 72 of the 86
were of Type 9 (interfaces inconsistent). The rest were primarily scattered among
Type 4 (requirements do not meet C1% author 's intent) and Type 6 (requirements
not technically clear, understandable and maintainable). Note that many issues
submit ted at a given inspection remained unresolved in the next revision. These
were not resubmitted, however, meaning all the issues cited in the table are
distinct.

175

The meaning of the severity codes used in Figure 9 is as follows:

1. High major - - Loral cannot implement requirement.
2. Low major - - Requirement does not correctly reflect CR author's intent.
3. High minor - - "Support" requirements are incorrect or confusing.
4. Low minor - - Minor documentation changes.

As can be seen by these results, the added precision of formalization used
early in the lifecycle can yield tangible benefits. While many of these issues
could have been found with lighter-weight techniques, the use of formal speci-
fications can detect them and leave open the option of deductive analysis later
on. Thus, these results by themselves suggest a potential boost from the use of
formal methods plus the promise of additional benefits if proving is ultimately
attempted.

It is worth noting that most errors detected in the CR during the formal-
ization exercise were not directly found by typechecking or other automated
analysis activity, but were detected during the act of writing the specifications
or during the review and preparation leading up to the writing step. Additional
problems were found during the typechecking phase as well. When we reach the
point of modeling higher level properties and carrying out proofs, we expect to
see fewer errors still. This is consistent with general observations practitioners
have about inspections and reviews. Light-weight forms of analysis applied early
detect more problems and detect them quickly, but they are usually superfi-
cial. As more powerful analysis methods are introduced, we find more subtle
problems, but they tend to be less numerous.

The next step in the application of formal methods to GPS, which was still
in progress as of this writing, is to identify and formalize important behavioral
properties of the processing of GPS position and velocity vectors. In particular,
the feedback loop shown in Figure 1 involving the principal functions Receiver
State Processing and Reference State Processing is fertile ground for investi-
gation. Proving that suitable properties hold would offer a powerful means of
further shaking out the requirements before passing them on to development.

Perhaps the most encouraging outcome of the study was a serious interest on
the part of the requirements analysts to learn formal methods and continue the
formalization activity themselves. Lora] and JSC personnel received a training
course at NASA Langley and intend to maintain and extend the GPS formal
specifications during the implementation phase. Other CRs are being examined
for potential evaluation as well. We are hopeful that this will lead to a continuing
involvement by the NASA space community.

6 C o n c l u s i o n s

Experience with the GPS effort showed that the outlook for formal methods
in this requirements analysis domain is quite promising. PVS has been used
effectively to formalize this application, and the custom specification approach

176

should be easy to duplicate for other areas. There are good prospects for contin-
uation of the effort by Shuttle personnel. Some Shuttle RAs are optimistic about
the potential impact of formal methods. Although the specification activity was
assisted by tools, doing manual specification is also feasible here, albeit with
reduced benefits.

PVS provides a formal specification language of considerable theoretical
power while still preserving the syntactic flavor of modern programming lan-
guages. This makes the specifications fairly readable to nonexperts and makes
their development less difficult than might otherwise be the case with specifi-
cation languages whose features are more limiting. The scheme detailed here
leads to specifications that RAs and others from the Shuttle community can and
did learn to read and interpret without having to become PVS practitioners.
Moreover, the mere construction of formal specifications using this method can
and did lead to the discovery of flaws in the requirements. Future efforts can use
the specifications as the foundation for more sophisticated analyses based on the
use of formal proof. This additional tool provides the means to answer nontrivial
questions about the specifications and achieve a higher level of assurance that
the requirements are free of major flaws.

The methods outlined for formally specifying requirements were devised to
meet the needs of the chosen CR. They are methods having fundamental utility
that should lend themselves to other avionics applications. Tailoring a scheme
for other uses or fine tuning it for the intended CR is easily accomplished. Al-
ternative specification styles could readily be adopted. Experience in using the
methods on live applications will help determine what direction future refine-
ments should take.

In addition to specifications to capture the functionality of the principal func-
tions, often it is desirable to formalize abstract properties about the long-term
behavior of software subsystems. Formulating such properties is a way of assur-
ing that certain critical constraints on system operation are always observed,
allowing us to reason in a "longitudinal" manner by expressing what should be
true about the software behavior over time rather than merely what holds at the
current step. The specification framework sketched here can be extended easily
to accommodate invariants or other property-oriented assertions.

The requirements analysis process used on the Shuttle program was originally
put in place in the 1970s, and consists largely of manual, best-effort scrutiny
whose effectiveness depends on the diligence of the analyst. Consider how for-
malizing requirements would help overcome several often-cited deficiencies of
this process:

1. There is no methodology to guide the analysis.
Formal methods offer rigorous modeling and analysis techniques that bring
increased precision and error detection to the realm of requirements.

2. There are no completion criteria.
Writing formal specifications and conducting proofs are deliberate acts to
which one can attach meaningful completion criteria.

3. There is no structured way for RAs to document the results of their analysis.

177

Formal specifications are tangible products tha t can be mainta ined and con-
sulted as analysis and development proceed. When provided as outputs of
the analysis process, formalized requirements can be used as evidence of thor-
oughness and coverage, as definitive explanations of how CRs achieve their
objectives, and as permanent artifacts useful for answering future questions
tha t may arise.

Acknowledgements

The author is grateful for the cooperation and support of the requirements
analysts and other staff members at Loral Space Informat ion Systems: Larry
Roberts, Mike Beims, and, in earlier phases of this work, David Hamil ton and
Dan Bowman. Their enthusiasm for the project made the work much more mean-
ingful. Thanks are also due to John Kelly (JPL), John Rushby and Judy Crow
(SRI), and Rick Butler (LaRC). This work was supported in par t by the National
Aeronautics and Space Adminis t ra t ion under Contract No. NAS1-19341.

References

1. A. Arnold, M-C. Gaudel, and B. Marre. An Experiment on the Validation of a
Specification by Heterogeneous Formal Means: The Transit Node. In 5th IFIP
Working Conference on Dependable Computing for Critical Applications (DCCA-
5), Champaign-Urbana, IL, 1995.

2. Ricky W. Butler, James L. Ca]dwell, Victor A. Carrefio, C. Michael Holloway,
Paul S. Miner, and Ben L. Di Vito. NASA Langley's Research and Technology
Transfer Program in Formal Methods. In Tenth Annual Conference on Computer
Assurance (COMPASS 95), pages 135-149, Galthersburg, MD, June 1995.

3. Dan Craigen, Susan Gerhart, and Ted Ralston. An international survey of in-
dustria] applications of formal methods; Volume 1: Purpose, approach, analysis
and conclusions; Volume 2: Case studies. Technical Report NIST GCR 93/626,
National Institute of Standards and Technology, Ga]thersburg, MD, April 1993.

4. Judy Crow. Finite-State Analysis of Space Shuttle Contingency Guidance Re-
quirements. Technical Report SRI-CSL-95-17, Computer Science Laboratory, SRI
International, Menlo Park, CA, December 1995. Also forthcoming as a NASA
Contractor Report for Task NAS1-20334.

5. Ben L. Di Vito and Larry Roberts. Using Formal Methods to Assist in the Re-
quirements Analysis of the Space Shuttle GPS Change Request. Contractor report,
NASA Langley Research Center, Hampton, VA, 1996. To appear.

6. David Hamilton, Rick Covington, and John Kelly. Experiences in Applying Forma]
Methods to the Analysis of Software and System Requirements. In WIFT '95:
Workshop on Industrial-Strength Formal Specification Techniques, pages 30-43,
Boca Raton, FL, 1995. IEEE Computer Society.

7. David Hamilton, Rick Covington, and Alice Lee. Experience Report on Require-
ments Reliability Engineering Using Formal Methods. In ISSRE '95: Interna-
tional Conference on Software Reliability Engineering, Toulouse, France, 1995.
IEEE Computer Society.

178

8. K. L. Heninger. Specifying Software Requirements for Complex Systems: New
Techniques and Their Application. IEEE Transactions on Software Engineering,
SE-6(1):2-13, January 1980.

9. Robyn R. Lutz azad Yoko Ampo. Experience Report: Using Formal Methods for
Requirements Analysis of Critical Spacecraft Software. In 19th Annual Software
Engineering Workshop, pages 231-248. NASA GSFC, 1994. Greenbelt, MD.

10. Multi-Center NASA Team from Jet Propulsion Laboratory, Johnson Space Center,
and Langley Research Center. Formal Methods Demonstration Project for Space
Applications - Phase I Case Study: Space Shuttle Orbit DAP Jet Select, December
1993. NASA Code Q Final Report (Unnumbered).

11. National Aeronautics and Space Administration, Office of Safety and Mission As-
surance, Washington, DC. Formal Methods Specification and Verification Guide-
book for Software and Computer Systems, Volume I: Planning and Technology
Insertion, July 1995. NASA-GB-002-95.

12. National Research Council Committee for Review of Oversight Mechanisms for
Space Shuttle Flight Software Processes, National Academy Press, Washington,
DC. An Assessment of Space Shuttle Flight Software Development Practices, 1993.

13. Sam Owre, John Rushby, Natarajan Shankar, and Friedrich von Henke. Formal
Verification for Fault-Tolerant Architectures: Prolegomena to the Design of PVS.
IEEE Transactions on Software Engineering, 21(2):107-125, February 1995.

14. John Rushby. Formal Methods and the Certification of Critical Systems. Techni-
cal Report SRI-CSL-93-7, Computer Science Laboratory, SRI International, Menlo
Park, CA, December 1993. Also issued under the title Formal Methods and Dig-
ital Systems Validation for Airborne Systems as NASA Contractor Report 4551,
December 1993.

15. A. John van Schouwen. The A-7 Requirements Model: Re-Examination for Real-
Time Systems and an Application to Monitoring Systems. Technical Report
90-276, Department of Computing and Information Science, Queen's University,
Kingston, Ontario, Canada, May 1990.

