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Abst rac t .  By regarding a nonlinear filter keystream generator as a fi- 
nite input memory combiner, it is observed that a recent, important 
attack introduced by Anderson can be viewed as a conditional correla- 
tion attack. Necessary and sufficient conditions for the output sequence 
to be purely random given than the input sequence is such are pointed 
out and a new, so-cMled inversion attack is introduced, which may work 
for larger input memory sizes in comparison with the Anderson's attack. 
Large input memory size and use of full positive difference sets and cor- 
relation immune nonlinear filter functions are proposed as new design 
criteria to ensure the security against the considered attacks. 

1 I n t r o d u c t i o n  

A nonlinear filter generator is a keystream generator consisting of a single linear 
feedback shift register (LFSR) and a nonlinear function whose inputs are taken 
from some shift register stages to produce the output. Such a generator realizes 
a nonlinear feedforward transform of a LFSR sequence. It can be used as a 
keystream generator itself (for various proposals, see references in [1]) or as 
a building block in a more complex shift register based keystream generator. 
For simplicity, we will assume that the LFSR is binary and that the nonlinear 
filter function is boolean. If  the feedback polynomial is a primitive polynomial 
of degree r, then the LFSR sequence is a maximum-length sequence of period 
2" - 1 .  For a boolean function of algebraic order k, it is very likely that the linear 
complexity of the keystream sequence is not smaller than about (~) and that its 
period remains equal to 2 ~ - 1 (for more details, see [20, 21]). So, if r is relatively 
large and k is not small, then the standard cryptographic criteria (large period 
and high linear complexity) are easily satisfied. However, good statistics, as 
another standard cryptographic criterion, is not readily satisfied because of the 
necessarily correlated, rather than independent, inputs to the filter function. This 
problem, which, interestingly enough, has not been addressed in the literature 
so far, will be among those considered in this paper, see Section 2. 
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The secret key is assumed to control the initial state of the LFSR, and may 
also control its feedback polynomial and /or  the filter function as well, The ob- 
jective of cryptanalytic attacks is to determine the unknown initial state and 
the structure of a nonlinear filter generator, given a long enough segment of 
its keystream sequence. The basic attack [23] exploits the (unconditional) cor- 
relations between the filter function output  and linear functions of its inputs 
resulting in bitwise correlations between the keystream sequence and various 
linear feedforward transforms of the LFSR sequence. Such correlations always 
exist since the squares of the corresponding correlation coefficients sum up to 
one [16]. The attack can be used to reconstruct the initial state and the filter 
function of the same or equivalent generator that  produces the same keystream 
sequence, given a known feedback polynomial. It is successful if the number of 
nondegenerate inputs to the filter function is relatively small compared with the 
LFSR length r, but requires an exhaustive search through all possible initial 
states which is infeasible for large r. 

A considerable speed-up can be obtained by applying a modified fast cor- 
relation attack [3], but the computational complexity remains exponential in r 
because the attack employs the information set decoding rather than the itera- 
rive error-correction algorithm, both introduced in [15]. Note that  standard tech- 
niques for fast correlation attacks [15] (for references on other related algorithms, 
see [5]) may have problems as a consequence of simultaneous bitwise correlations 
between the keystream sequence and various linear feedforward transforms of the 
LFSR sequence. Namely, since all of these transforms satisfy the same linear re- 
currence as the original LFSR sequence, the attacks may fail to recover the initial 
states yielding significant correlations. This is especially the case if the maximum 
correlation coefficient is not well distinguished (e.g., if the filter function is close 
to a bent function [16]). The attacks work better if the filter function is known. 
The unknown feedback polynomial can be reconstructed regardless of the initial 
state and the filter function by taking the linear model approach [6, 7] according 
to which the keystream sequence satisfies the same linear recurrence as the LFSR 
sequence with probability different from one half. This probability depends on 
the correlation coefficients of the filter function to linear functions and on the 
weight (number of nonzero terms) of the feedback polynomial. Finally, it may be 
interesting to note that  the linear complexity stability approach to nonlinearly 
filtered LFSR sequences [2] is also related to unconditional correlations between 
the filter function and the linear functions. 

Anderson [1] was the first to point out in the open literature that there 
exist other correlations in nonlinear filter generators that  may be useful for 
improving the success of fast correlation attacks. They are based on the so- 
called augmented filter function and are effectively determined for a number of 
candidate filter functions in [1]. In order to briefly review the Anderson's attack, 
w e  now introduce some necessary notation. Let z -- ( z ( t ) ) ~ _ ,  be a binary 
maximum-length sequence of period 2 ~ - 1  ((z(t))~'~_, is the LFSR initial state), 
let f ( z l , z 2 , . . . ,  z,~) be  a boolean function of n,  n _~ r,  nondegenerate input 
variables, and let 7 -- (71)~1 be an increasing sequence of nonnegative integers 
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such that -y~ = 0 a n d  -y,, <_ r - 1. T h e n  the output s e q u e n c e  y = (y ( t ) )~"=o o f  a 
nonlinear filter generator is defined by 

y(t) = f ( x ( t - 7 1 ) , . . . , x ( t -  %~)), t > 0. (1) 

i t " t Let y~ = (y( ) ) i=t - ,~+l  and x~ = (x(,))i=t_m+ 1 denote blocks of m successive 
output  and input bits at time t, respectively. It is clear that y~  = F m ( x t  +~") 
where F,~ is an m-dimensional vectorial boolean function of m + "y,~ not neces- 
sarily nondegenerate variables which depends on the boolean function f and the 
tapping sequence -y only. 

In the examples considered in [1], it is assumed that  ~ is a sequence of 
consecutive integers ('Yn = n - 1), and output  blocks of n consecutive bits 
are considered. The function F,~ is called the augmented filter function. Hence 
y'~ = F,~(z2t'~-l). The main idea in [1] is to study the statistical dependence of 
the input block zt 2'~-1 upon the known output block y~ by analyzing the t ru th  
table of F,~. In particular, one may consider the correlation coefficient (to the 
zero boolean function) of various linear functions of the input zt 2'~-1 given a 
known output y~. It turns out that  some of these correlation coefficients can 
be much larger than what one could expect from the (unconditional) correla- 
tion coefficients of the filter function f ,  and some of them can even be equal 
to +1. These new conditional correlations can be used to dramatically improve 
the success of fast correlation attacks on the unknown LFSR sequence given the 
feedback polynomial and the filter function f with the tapping sequence 7- Note 
that  standard fast correlation techniques directly incorporate uneven initial noise 
probabilities resulting from conditional correlations. Of course, the correlation 
coefficients equal to =El can directly be used for algebraic reconstruction of the 
unknown LFSR initial state by solving the corresponding linear equations. Re- 
garding the computational complexity of the basic attack, for each assumed out 
of 227-+1 possible input linear functions, the amount of computation needed to 
determine the conditional correlation coefficients is proportional to 227"+1. This 
also holds if 7 is not a sequence of consecutive integers, but then other possibil- 
ities might be explored, see Section 3. The examples analyzed in [1] include a 
second-order correlation immune function of five variables, a bent and an almost 
bent function of six variables, and a de Bruijn function of six variables, and all 
of them exhibit considerable information leakage through the augmented filter 
function. To minimize the leakage, further investigation into the properties of 
boolean functions is recommended in [1]. In Section 3, however, we will show 
that  it is the choice of the tapping sequence -y, defining the input stages to 
the filter function f ,  that  is in fact more important  than the choice of f itself, 
with respect to the conditional correlation weakness demonstrated in [1]. The 
proposed solution is based on positive difference sets and correlation immune 
boolean functions [22]. 

In order to shed some more light on the Anderson's attack and to make 
a basis for another, more efficient attack on nonlinear filter generators, we now 
emphasize that  every nonlinear filter generator is a finite input memory combiner 
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with one input  and one output. Its memory size is clearly M -- 7n - 7 1  = 7,~ 
and is upper-bounded by r - 1. Interestingly enough, although implicit in [20], 
this rather fundamental and apparent fact has not been explicitly pointed out 
as such in the literature. We will show in Section 2 that it leads to a new, so- 
called inversion attack which may work for four times as large a size of the input 
memory as what is generally required for success of the Anderson's attack. On the 
other hand, it then turns out that  the augmented filter function [1] can be viewed 
as a special case of the function introduced in [4] for a general combiner with 
M bits of memory which represents M + 1 successive output  bits as a vectorial 
boolean function of the corresponding M + 1 successive inputs and the preceding 
internal state. It is proved in [4] that  it takes at most M +  1 successive output bits 
to observe the statistical dependence between the output and the corresponding 
input. In particular, it is shown that  the dependence can be studied through 
the (unconditional) termwise correlation between linear functions (feedforward 
transforms) of the input and output.  The fact that  linear functions of the input 
when conditioned on the output  may have large correlation coefficients to the 
zero function was first demonstrated in [17] for the summation generator with 
two inputs (see [21]), which is a particular combiner with one bit of memory. 
Similar conditional correlation weakness of the stop-and-go cascade generator 
(see [10]) consisting of two stages was established in [18], and was later extended 
to an arbitrary number of stages in [19]. 

The proposed design criteria for nonlinear filter generators are summarized 
in Section 4. The proofs of mathematical results are given in the Appendix. 

2 I n v e r s i o n  A t t a c k  

Since the output  sequence of a nonlinear filter generator is produced at the same 
speed as the input one, the inputs to the filter function are necessarily correlated, 
regardless of the choice of the tapping sequence. As a consequence, even if we 
assume that  the input sequence is purely random, that  is, a sequence of balanced 
(uniformly distributed) and independent bits (binary random variables) and that 
the filter function is balanced (produces balanced output given a balanced input), 
the output  sequence is not necessarily such. The first problem we are concerned 
with here is finding the conditions for the output  sequence to be purely random 
given that the input sequence is such. This is a natural design criterion for 
general combiners with memory proposed in I4, 81. 

Assume a probabilistie model in which the input sequence z = ( z ( t ) ) ~ _ ,  is 
regarded as a sequence of balanced and independent bits (for simplicity, we keep 
the same notation for random variables and their values). Clearly, the output 
sequence y -- (y( t ) )~0 is a sequence of balanced bits if and only if the filter 
function f is balanced. In general, y is a sequence of balanced and independent 
bits if and only if the vectorial boolean function F,~, associated with m successive 
output bits, is balanced for each m > 1. More precisely, because of the finite 
input memory, we have the following stronger characterization. 



177 

Zernrna 1. For a nonlinear filter generator with input memory size M, the out- 
put sequence is purely random given that the input sequence is such if and only 
if FM+I is balanced. 

This is not yet a characterization in terms of the filter function f and the tapping 
sequence 7. 

Theorem 2. For a nonlinear filter generator with the filter function jf and in- 
dependent of the tapping sequence 7, the output sequence is purely random given 
that the input sequence is such if (and only if} f ( z l , . . . ,  z,~) is balanced for each 
value of (z2,. . . ,  zn), that is, if 

= + (2)  

or  i f  f ( Z l ,  . . .  , zn) is balanced/or each value of ( Z l , . . .  , Z n _ l )  , that is, i f  

z , )  : + g ( z l ,  . . . ,  (3) 

We have only proved the sufficiency of the conditions. To prove their conjectured 
necessity ( 'and only if'), a subtle underlying combinatorial problem remains to be 
solved. One may be tempted to guess that the linearity in any of the intermediate 
variables may also be sufficient, but counterexamples are easily found. Of course, 
if one assumes that  the initial memory state (x(t))[~_M is fixed rather than 
random, then by considering the first output bit it trivially follows that  in order 
for y to be purely random, f must be balanced for any fixed value of (z2, . . . ,  z,~). 
However, this assumption might be considered too strong, since the initial state 
affects only the first M output bits. 

We are now ready to formulate the inversion attack. The objective of the 
attack is to reconstruct the LFSR initial state from a segment of the keystream 
sequence, given the LFSR feedback polynomial of degree r,  the filter function f ,  
and the tapping sequence 7. Assume that  the filter function has the form as in 
(2). Then (1) can be put into the following form 

x(t) = y(t) + g ( z ( t -  7 2 ) , - . . , ~ ( t -  7n)), t >_ 0, (4) 

which means that  a nonlinear filter generator as a combiner with one input 
and one output is invertible if the initial memory state is known. The forward 
inversion attack then goes as follows. The backward inversion attack is based on 
(3) and is essentially the same as the forward one, but  works backwards in time. 

1. Assume (not previously checked) M bits (~(t))~=l_M of the unknown initial 
memory state. 

2. By using (4), generate a segment (~(t))~ - M - 1  of the input sequence from a 
known segment r - M - I  (y(t))t= o of the keystream sequence. 

3. By using the LFSR linear recursion, generate a sequence (~(t))tlV_~l_M from 
the first r bits (x(t));__-_MM 1. 

4. By using (1), compute (y(t))tN=~l M f r o m  ~r-t (~(t))t=,_2M and compare with the 
observed tytt~N-1 If they are the same, then accept the assumed initial ~ lit=r-M" 
memory state and stop. Otherwise, go to step 1. 
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One may also compute the first part of the initial LFSR state, (z(t))~-__~_~ -I, by the 
backward LFSR linear recursion. It takes 2 M-I trials on average to find a correct 
initial memory state. One may as well examine all 2 M initial memory states. In 
that case, the algorithm yields all the LFSR sequences that produce the given 
keystream sequence of length N. The found candidate initial states could then 
be examined on a longer sequence as well, which may reduce their number. If the 
determined LFSR sequence is not unique, then any such sequence is a satisfactory 
solution (equivalent LFSR initial states yielding the same keystream sequence), 
but for most filter functions this situation is very unlikely. More precisely, under 
a reasonable assumption that different LFSR initial states give rise to bitwise 
uncorrelated periodic keystream sequences, the expected number of false alarms 
for candidate initial states does not exceed 2 -~ if the length of the keystream 
sequence is only N = r + c. 

What is interesting about the inversion attack besides its simplicity is its 
computational complexity of the order of 2 M which is exponential in the input 
memory size, M, rather than the LFSR memory size, r. So, to ensure the re- 
sistance against the inversion attack Air should be large and preferably close to 
its maximum possible value r - 1 which is, as a design criterion, overlooked in 
the literature. However, in some cases depending on the tapping sequence % the 
input memory size can effectively be reduced. For example, consider an equidis- 
tant tapping sequence 7 =- (i~)~_--o t where ~ is a positive integer. Then instead 
of considering the input and output sequences themselves, we should consider 
their uniform decimations by ~ which effectively reduces the input memory size 

times. More precisely, we consider the decimations of 5 successive phase shifts, 
so that  we can reconstruct the original LFSR sequence by interleaving. Note that  
a uniformly decimated LFSR sequence satisfies a feedback polynomial which can 
be determined by known algebraic techniques (e.g., see [9]). It can as well be 
computed by the Berlekamp-Massey algorithm [13] knowing that  its degree is 
not bigger than the degree of the original feedback polynomial. If the original 
feedback polynomial is primitive, then the feedback polynomial of the decimated 
sequence is an irreducible polynomial of degree dividing r (in our case J is rela- 
tively small, so that  the degrees are equal). 

More generally and perhaps less obviously, the same trick works if 7 consists 
of integer multiples of the same positive integer J. In particular, if 7 consists of 
even integers only, then the input memory size is halved. This is an interesting 
trapdoor to nonlinear filter generators with the LFSR size around sixty, as is the 
case in many existing proposals. For example, it is suggested in [14] that r can be 
around sixty, that  the filter functions can be derived from de Bruijn functions of 
the form (3), that  one should not use input taps from adjacent LFSR stages, and 
that  the input taps should be uniformly distributed over the LFSR length (the 
choice of equidistant taps satisfies all the requirements, but the corresponding 
nonlinear filter is easily inverted). It should be noted that  the same effective 
reduction of the input memory size also applies to the Anderson's attack whose 
computational complexity is in general of the order of 2 4M if a systematic search 
is performed. 
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What  if one chooses a balanced filter function f that  does not satisfy the 
conditions from Theorem 2? This means that  there exists a fraction p+ of values 
of the input variables (zz, . . . ,  zn) where f is equal to zero or one (equally likely) 
regardless of zt and, similarly, a fraction p_ of values of the input variables 
( z t , . . . ,  zn- t )  where f is equal to zero or one (equally likely) regardless of z n .  In 
this case one should first find the minimum of p+ and p_ and then accordingly 
apply a generalized inversion attack in the forward or backward direction. In the 
generalized inversion attack the objective is to find all possible input sequences 
of length r - M given a segment of the keystream sequence of the same length, 
for each assumed initial memory state. The input sequence is now not unique 
in general. We also employ the basic feedforward equation (1) which, depending 
on the current memory state, may have a unique solution for x(t), may have no 
solution for z(t),  or may have two solutions for ~(t) (hoth zero and one). One 
can in principle store all possible solutions for an input sequence in a binary tree 
structure of depth r - M. It is even conceivable that  the solution may still be 
unique (inversion with a positive delay), especially if the conditions from Theo- 
rem 2 are not necessary and f is picked according to Lemma 1. The (generalized) 
inversion attack thus exploits the dependence between the input and the output  
sequence to the maximum possible extent. To analyze the number of solutions of 
a given length, it may be possible to apply the theory of random branching pro- 
cesses, but that is out of the scope of this paper. In any case, one should bear in 
mind that  if the filter function does not fulfill the conjectured necessary require- 
ments from Theorem 2, then the keystream sequence has a statistical weakness 
which, according to Lemma 1, takes at most M + 1 successive output  bits to 
emerge. Also, for any given input memory size M, the bigger the complexity of 
the generalized inversion attack, the easier the statistical weakness is to detect. 

Another point to be discussed is the case of nonlinear filter generators with 
multiple outputs produced from a single input at the same speed, as is proposed 
in [14] and [24]. Let k be the number of outputs and let M denote the input 
memory size of the associated combiner with a single input and with k outputs. 
Note that  M is equal to the difference between the maximum and the minimum 
integers in all the k tapping sequences. As is clear from the information-theoretic 
standpoint, if k > 1, then a purely random binary input sequence can not yield 
a purely random k-dimensional binary output  sequence at the same speed. So, 
even if individual binary output  sequences are purely random, they can not be 
mutually independent. More precisely, it follows that  no [ M / ( k  - 1)J + 1 suc- 
cessive k-dimensional output  blocks can be uniformly distributed. The inversion 
attack can be executed on any individual output,  whereas the generalized inver- 
sion attack can work on individual or combined outputs. 

3 P o s i t i v e  D i f f e r e n c e  S e t s  a n d  C o r r e l a t i o n  I m m u n i t y  

The analysis from the previous section has revealed the following design crite- 
ria for nonlinear filter generators. To guarantee good statistical properties of 
the keystream sequence, the filter function ] should satisfy the conditions from 
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Theorem 2. To render the inversion attack, with computational complexity of 
the order of 2 M, infeasible, one should choose a tapping sequence 7 such that  
the input memory size M is large and preferably close to its maximum possible 
value r - 1, where r is the LFSR length. In addition, to ensure that  the uniform 
decimation technique can not reduce the input memory size, the greatest com- 
mon divisor of the elements of ~/should be equal to one, where the first element 
of~/is without loss of generality assumed to be equal to zero. On the other hand, 
when based on the vectorial boolean function FM+I, associated with M + 1 suc- 
cessive output  bits, the Anderson's conditional correlation attack may generally 
require the computational complexity of the order of 2 4M. So, one might be 
tempted to conclude that  the above design criteria also ensure the resistance 
against the conditional correlation attack. This is the ease only if the number, 
n, of nondegenerate input variables to the filter function f is close to M + 1 
(and M is by assumption large). However, if n is much Smaller than M + 1, then 
one should be cautious. Namely, it is in principle possible that,  depending on f 
and ~, a considerable information leakage may be observed on a subfunetion of 
FM+I corresponding to a relatively small subset of the output  bits (not neces- 
sarily successive) so that  the number of input variables to be examined is much 
smaller than 2 M +  1. In fact, it is not even clear whether one should also consider 
the functions Fm for m > M + 1 or not. Note that  a very similar situation oc- 
curs if f does not satisfy the requirements from Theorem 2 so that  FM+I is not 
balanced: its subfunctions may not be balanced so that the statistical weakness 
becomes easier to detect. Our objective in this section is to study this problem 
more closely and to introduce additional design criteria regarding the choice of 
f and % 

To this end, we first introduce a few more definitions. Let /" = {'Yi : 1 < 
i ~ n} be the set of n nonnegative integers corresponding to an increasing 

~b nonnegative integer sequence 7 = (71)i=1, where 71 ---- 0 and 7n -- M ~ r - 1, 
and let / 'r  = {~/i @ ~" : 0 < i < n - 1}, ~" >_ O, denote a phase shift of F. Let 
I(~') = I/'r n/~] denote the cardinality of the intersection between /~ and /" 
which is called the intersection coefficient. It follows that I(~') -- O, ~" > M. Let 
/max - max {I(7-) : 1 ~ ~- _< M}. Further, a set /~ is called equidistant with 
distance ~ if its elements are equidistant, that  is, if for some positive integer J, 
/~ = {~/1 q- iJ : 1 < i < n}. A set /~ is called a full positive differenc e set if all 
the positive pairwise differences between its elements are distinct. These sets are 
used in the design of self-orthogonal eonvolutional codes, for example, see [11]. 

The value of l (~ ' )  is the number of input variables shared in common by f 
and its phase shift by r .  It is then intuitively clear that  the information leakage 
through FM+I is related to the values of the intersection coefficients: roughly 
speaking, the bigger the intersection coefficients, the greater the leakage. Ac- 
cordingly, it is desirable to minimize the maximum intersection coefficient. The 
basic properties of the intersection coefficients are established by the following 
three simple lemmas. The first lemma gives an interpretation of at(r) in terms 
of the positive pairwise differences of elements of P,  the second one shows that 
the total intersection coefficient is independent of P, and the third one speci- 
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ties the minimum and maximum values of Imax and the necessary and sufficient 
conditions for them to be achieved. 

I, e m m a  3. For any ~" >_ 1, the intersection coefficient 1(7") is equal to the number 
of pairs of elements of I '  at distance 7". 

I~ernma 5. For any F, the total intersection coefficient is given by 

M n ( n -  1) 

- 2 ( 5 )  
"r----1 

Z e m m a  5. The maximum intersection coefficient/max satisfies the bounds 

1 ~ /~ax ~ n - 1  (6) 

where the maximum and the minimum are achieved i f  and only if  F is an equidis- 
tant set and a full positive difference set, respectively. 

Consequently, a natural  choice for F is a full positive difference set. However, 
for any positive difference set /~ of n elements, the max imum difference M can 
not be smaller than n(n  - 1)/2. Since M ~ r - 1, it follows that  in this case n 
must be smaller than approximately x / ~ .  I f /1  is a full positive difference set and 
n is fixed, then /max remains equal to one regardless of M, but large values of M 
are preferable with respect to the inversion attack. Full positive difference sets 
can be obtained by a systematic search (a sort of integer linear programming,  
see [12]) or from lists already available in the literature, for example, see [11], 
[12]. 

The lower bound in (6) cannot be achieved i f r  < n(n  - 1)/2, which is equiva- 
lent to n being greater than approximately v / ~ .  The basic design principle would 
then be to choose F that  minimizes Ir , ,x given r and n. In view of Lemma 3, this 
is equivalent to minimizing the maximum number of pairs of elements of/~ at the 
same mutual  distance. Accordingly, for a positive integer A, call /~ a Ath-order 
positive difference set if A is the maximum number of pairs of its elements with 
the same mutual  difference (for A = 1, we get aful l  positive difference set). A nec- 
essary condition for such a set to exist is clearly that  n ( n -  1)/(2A) _ M < r - 1, 
where M denotes the maximum positive difference. Since our objective is to min- 
imize/max : A, we first pick A = I n ( n -  1)/(2(r  - 1))] and then find a Ath-order 
positive difference set F such that  n ( n -  1)/(2A) < M ~ r - 1. A Ath-order 
positive difference set can be constructed by a systematic search in a similar 
way as a full positive difference set. Examining the existence of such sets is out 
of the scope of this paper. 

To summarize, given r and n, we first find F so that  /max is minimized: 
the solution is a full positive difference set or a Ath-order positive difference set 
with X minimum possible. In the next step, we would like to choose an appro- 
priate filter function f .  I t  is clear already that  the solution is among balanced 
correlation immune boolean functions [22]. Recall that  a balanced mth-order  
correlation immune boolean function remains balanced if any subset of m input 
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variables is fixed, and m is maximum possible. For example, if we pick a balanced 
)tth-order correlation immune boolean function, then we obtain the pairwise in- 
dependence in the keystream sequence: any two output bits constitute a balanced 
2-dimensional vectorial boolean function. However, this is not exactly what we 
want to achieve, especially if f is chosen to satisfy the conditions from Theorem 
2. Note that  in this case f is balanced and ruth-order correlation immune if and 
only i fg  is balanced and ( m -  1)th-order correlation immune. Our main goal is to 
study the statistical dependence between the input and the keystream sequence. 
For this purpose, we need a suitable mathematical formulation of the problem. 

Let X(t) = ( z ( t -  7~))~1 denote an ordered set of input bits (binary random 
variables) from the input sequence z used to produce an output bit y(t), for any 
t > 0. Then the filter equation (1) becomes y(t) = f (X(t)) .  More generally, let 
Tg-= (t~)ik__l denote an increasing sequence (ordered set) of k different nonneg- 
ative integers (times) and let y(T h) = (y(t~))L1 and X ( T  k) = U~=IX(t~ ) where 
X ( T  k) is ordered. Then y(T h) is a k-dimensional vectorial boolean function of 
X(Tk).  Further, let for any T kl and T k~, P(X(Tk')Iy(Tk3)) denote the condi- 
tional probability that  the random input corresponding to T k' takes a particular 
value X ( T  k~) given that  the random output corresponding to T k~ is equal to a 
particular value y(T k3) (for simplicity, we keep the same notation for random 
variables and their values). 

I~ernrna 6. Let 1" be a Ath-order positive difference set and let f be a balanced 
ruth-order correlation immune boolean function. Then for every 1 < k < Ira/X] + 
1 and every T k, y(T k) is a balanced function of X(Tk). 

LernmaT. Let 1" and f be as in Lemma 6. Then for every kl,k2 >_ 1, 2 < 
kl + k9. < [m/AJ + 1, and every disjoint T k' and T k~, y(T k~) is a balanced 
function of X ( T  k~) for any fixed X(Tk ' ) .  

Theorem8.  Let F, f ,  kl, k2, T k', and T k2 be as in Lemma 7. Then 

P ( X ( T  k') ly(T k' U T k2)) = P ( X ( T  k')ly(T re')) (7) 

where T k' U T k2 denotes the ordered union of T k' and T k2 . Furthermore, for 
every 1 < k < [m/)tJ + 1 and every T k = (tl)i=lk 

k 

P(X(Tk)[y(Tk)) = P(X(t l) ly( t l ))  H P(X(tl)ly(ti),X((tj)~-~)). (8) 
i = 2  

Theorem 8 shows that the statistical dependence between the input sequence 
and any Lm/AJ + 1 or less output bits is only due to the filter function, f ,  
itseff, not to the interaction between f and shifted versions of f .  So, for the 
conditional correlation attack to be effective (in other words, to provide more 
information about the input sequence than the unconditional correlation attack 
based on f ) ,  one has to observe at least [m/)~J + 2 output bits and to analyze the 
corresponding vectorial boolean function. The complexity of the attack depends 
on the number of nondegenerate input variables to this function. If we take the 
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minimum number, k = [m/)tJ + 2, of output  bits at positions determined by a 
set T k t k = ( i)i=l,  then the number of nondegenerate input variables to y(T k) as 
a vectorial boolean function of X ( T  k) is exactly the cardinality of the set X ( T  k) 
which is the union of individual sets X(t~), 1 < i < k. The cardinality of each 
of these sets is exactly equal to the number, n, of nondegenarate input variables 
to f ,  and since the set /~ is a )~th-order positive difference set, the cardinality 
of their pairwise intersections is at most )~ according to Lemma 3. Then by the 
well-known inclusion-exclusion principle, the cardinality of their union is at least 

K =  (Lm/AJ + [m/AJ + 1) . 2  (o) 

For each candidate linear function of the input, the complexity of the conditional 
correlation at tack is lower-bounded by 2 K, and to check all 2 K of them the 
complexity is at  least 22K . Of course, for large conditional correlation coefficients 
to appear  it typically takes more than im/Aj -4-2 output bits to examine, so that  
the complexity is in fact bigger. I f  m is large enough compared with A and n 
is relatively large, then K can easily be made large enough. I f  one chooses a 
full positive difference set F, then A = 1 and g = (m + 2)(n - (m + 1)/2). In 
particular, if m ~ n/2, then K is close to the minimum possible memory  size for 
a full positive difference set. However, if/~ is an equidistant set, then A -- n - 1 
and K = n +  1, since for a nonlinear f ,  m < n - 2 ,  see [22]. It  thus takes only two 
output  bits for the conditional correlations to emerge, but for large correlations it 
takes more. In an example from [1] involving a second-order correlation immune 
boolean function, n = 5 and m = 2, so that  K increases from 6 to 14 if F is a 
full positive difference rather than equidistant set. It  should be noted that  large 
conditional correlations have been found in [1] between 4 successive output  bits 
and 9 successive input bits for an equidistant set, and we may need more than 
4 output  bits and 14 input bits for a full positive difference set. 

It  is interesting to analyze K as a function of A if the LFSR length r and 
the ratio n/m are both fixed, bearing in mind that  n can not be larger than 
approximately ~/2rA. It turns out that  K then decreases with A, though not 
significantly. This means that  the increase of n and m can not make up for 
the increase of A. On the other hand, in order to obtain small unconditional 
correlation coefficients of f ,  larger values of n may be preferable. 

Finally, similar results can be obtained for nonlinear filter generators with 
multiple outputs produced from a single input at the same speed (e.g., see [14] 
and [24]). Then, a good design criterion is using disjoint Ath-order positive differ- 
ence sets (the values of A can be different for different outputs),  that  is, Ath-order 
positive difference sets with mutually different positive pairwise differences (for 
A = 1, see [11]). In this case, the number of input variables shared in common 
by phase shifts of any two output  filter functions is at most one. Although the 
methods for finding such sets are essentially the same as for a single set, these 
sets are more difficult to find and the LFSR length r must be larger. 
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4 C o n c l u s i o n s  

It  is pointed out that  every nonlinear filter keystream generator is a finite input 
memory  combiner with one input and one output,  and a recent at tack intro- 
duced by Anderson is viewed as a conditional correlation attack. Necessary and 
sufficient conditions for a purely random input sequence to produce a purely 
random output  sequence are established and a so-called inversion at tack on non- 
linear filter generators is proposed. The new at tack may in general work for much 
larger input memory  sizes in comparison with the Anderson's attack. To ensure 
the security against the conditional correlation attack, the use of full positive 
difference sets and correlation immune filter functions is investigated. 

According to the performed analysis, the following design criteria for nonlin- 
ear filter generators are proposed: 

- To achieve large period and high linear complexity, the LFSR length r and 
the algebraic order k of the filter function f should be large enough so 
that  (~) is much bigger than the expected keystream sequence length in 
applications. 

- To guarantee good statistical properties, the filter function f should satisfy 
the conditions from Theorem 2. 

- To render the inversion at tack infeasible, 
�9 choose a tapping sequence ~/such that  the input memory  size M is large 

and preferably close to its maximum possible value r - 1 
�9 to ensure that  the uniform decimation technique can not reduce the 

input memory size, the greatest common divisor of elements of 7 should 
be equal to one (the first element of ~/is assumed to be zero). 

- To make the conditional correlation at tack ineffective, the complexity pa- 
rameter  K given by (9) should be large enough. To this end, 

�9 the number n of nondegenerate inputs to f should be sufficiently large 
�9 ~/should be chosen according to a full or a Ath-order positive difference 

set, with A as small as possible given r and n 
�9 the correlation immunity order m of f should be relatively large com- 

pared with A. 
- To prevent from fast correlation attacks, the nonzero correlation coefficients 

of f to linear functions (both unconditional and conditioned on its binary 
output)  should be relatively small and mutually close in magnitude. To ac- 
complish this, n should be large enough, and one can use a composition of 
a linear vectorial boolean function based on a linear error-correcting code 
with a specified minimum distance and a random balanced boolean function 
of less than n input variables (e.g., see [25], [27], [26]). 

- The number of nonzero terms in the LFSR feedback polynomial and in any of 
its r degree polynomial multiples should not be ~sma]l'. This is important  
both  for the resistance against fast correlation attacks and for reducing the 
linear statistical weakness [6, 7]. 

The design criteria are easily satisfied simultaneously. 
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A p p e n d i x  

Proof o/Lemma 1. The output  sequence y is purely random if and only if for 
each t > 0 the output  bit y(t) is balanced for any fixed value of the previous 
output  bi ts  (y(i))~Z~. Since y(t) depelnds only on the current input bit x(t) and 
the M preceding input bits (x( i))(- t_M, this is satisfied if and only if y(0) is 
balanced and for each 1 < t < M, y(t) is balanced for any fixed value of the 

i t-1 preceding output  bits (y())~=m~(O,t-M)' that  is, if and only if FM+I is balanced. 
[] 

Proof o/Theorem 2. We will prove the sufficiency of the conditions, whereas the 
necessity seems natural  but remains to be proved. In view of Lemma 1, it should 
be proved that  FM+I is balanced if either of the two conditions is satisfied. 
Assume that  f is balanced for each value of (z2,... ,  zu). It  then follows that  
f is balanced. The vectorial boolean function FM+I is balanced if and only 
if y(0) is balanced and for each 1 < t < M, y(t) is balanced for any fixed 

i t-1 value of the preceding output  bits (y())i=max(O,t-M)" The first output  bit y(0) 

is balanced because f is balanced. For each 1 < t < M, x(t) remains balanced 
when conditioned on the preceding output  bits, and so does y(t) due to the 
assumed property o f / ,  regardless of 7. The form (2) of f is a simple consequence 
of the fact that  the only two balanced boolean functions of a single variable are 
the identity and complement mappings. The sufficiency of the other condition is 
proved analogously, going backwards in time, starting from the last output  bit 
of FM+I. [] 

Proof o/Lemma 4. We start  from 

I r~ n r I = ~ [~ e r.] (10) 
i = I  

where [7~ E F~] is a boolean predicate evaluating to one or zero depending on 
whether 7i C F~ or not, respectively. Since for each 1 < i < n, 71 appears in 
exactly i -  1 out of M sets Fr, 1 < v < M, we have 

E I(~') = E [ 7 '  EFr ]  = ( i - l )  = 
r = l  i = 1  r = l  i = I  

n ( n -  1) (11) 
2 

Proof of Lemma 5. Since the element 71 appears  only in/~, we have that  I(r) <<_ 
n - 1, 1 < ~" < M, and hence the upper bound in (6) follows. The max imum is 
clearly achieved if the values of 7 in F are equidistant with distance 5 and ~- = 5. 
On the other hand, suppose that  I ( r )  = n - 1 for some r*. Since the values 71 
from f and 3~ + r* from F~-. are the only ones that  are not in common, we then 
have {7i + v *  : 1 < i < n -  1} = {71 : 2 < i < n}. Since v* > 0 and the sequence 
7 is increasing, this is equivalent to F being an equidistant set with distance 
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T h e  lower bound in (6) is a direct consequence of IrM n rl = 1. The bound 
is achieved if and only if I ( r )  < 1, for every 1 < ~" < M. By Lemma (3), this is 
true if and only if all the positive differences 71 - T  j ,  1 ~ j < i < n, are distinct, 
that  is, if and only if P is a full positive difference set. [] 

Proof of Lemma 6. If T k k = (t,),=l , then y(Tk) is a balanced function of X(T ~) 
if and only if y( t t )  is a balanced function of X( t t )  and for each 2 < j < k, 
y(tj) is a balanced function of X(tj) for any fixed value of y((t,)~_~). The first 
condition is satisfied since f is balanced. The second condition is satisfied if 
for each 2 <_ j <_ k, y(tj) is a balanced function of X(tj) for any fixed value of 
X((t,)~-:). This is itseff satisfied if the number of bits (binary random variables) 
shared in common by X(tj) and X((t,)~-:) is not greater than m, because f 
is an mth-order correlation immune function. This is in turn satisfied since the 
number of bits shared in common by X(tj)and each of X(t l) ,  1 < i < j - 1, is 
at most A, as a consequence of/~ being a )~th-order positive difference set, and 

A(j - 1) < ~Lm/~J _< m .  [] 

Proof of Lemma 7. In essentially the same way as in the proof of Lemma 6, it 
follows that y(T k:) is a balanced function of X(T k~) for any fixed X(T k~ ) if for 
each t E T ~2, the cardinality of the intersection between X(t)  and the union of 
X(T k') and X(T k2 \ t) is not greater than m. Since t • T k', as T k' and T k2 are 
disjoint, the rest of the proof is then similar as for Lemma 6. [] 

Proof of Theorem 8. Equation (7) results from the following equalities 

P(X(Tk~)Iy(Tk~ U Tk=)) = P(Y(Tk' U Tk~)IX(Tk')) P(X(Tk')) 
P(y(T k' U Tk~)) 

P(y(T k~ ) IX(T k~ )) P(Y(T k~ )IX(T k' ) ) P(X(T k' )) 
P(Y(T k' )) P(Y(T k~ ) ) 

P(y(T k' )]X(T k' ) ) P(X (T k' ) ) 
P(y(Tk')) 

= P(X(Tk')Iy(T kl)). (12) 

The first and the fourth equality in (12) hold by definition of conditional prob- 
ability, the second equality is a consequence of. P(y(Tk2)lX(Tk'),y(Tk~)) = 
P(y(Tk~)]X(Tk')) (y(T kl) is a function of X(Tkl)) and P(y(T k~ U Tk~)) -:- 
P(y(T k~ ))P(y(T h~)) (Lemma 6), while the third equality follows from P(y(Tk~)l 
X(T  k~)) = P(y(T k~)) (Lemma 7). 

Equation (8) is obtained by applying Lemma 7 to 

h 

P(X(Tk)Iy(Tk)) ---- P(X(tl)IY(Tk)) H P(X(t')IY(Tk)'X t ,-1 ( ( J ) j= l ) )  (13) 
i = 2  

which holds by definition of joint and conditional probabilities. [] 
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