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A b s t r a c t .  The fast correlation attack described by Meier and Staffel- 
bach [6] on certain classes of stream ciphers, based on linear feedback 
shift registers, requires that the number of taps of the characteristic 
polynomial must be small - typically less than 10. The attack can be 
extended to characteristic polynomials with an arbitrary number of taps 
if it is possible to compute low-weight polynomial multiples of the feed- 
back polynomial. In this paper we present an algorithm for the efficient 
computation of low-weight parity checks. The algorithm, based on the 
theory of cyclic block error-correcting codes, applies the ideas underlying 
majorlty-logic decoding of maximal-length codes. A statistical analysis 
shows that it is not realistic to consider weight-3 parity checks, and hence 
it is necessary to compute weight-4 parity checks. The proposed algo- 
rithm has a worst-case computational complexity of O(22k/s), which is 
essentially independent of the number of taps of the characteristic poly- 
nomial, and is suitable for linear feedback shift registers of approximately 
100 bits. 

1 Introduction 

In secret-key cryptosystems, pseudonoise generators based on binary linear feed- 
back shift-registers (LFSRs) are often used as running key generators. The re- 
quired keystream z = (zj) is obtained by combining a fixed number of say, R, 
LFSRs by means of a combining function f ,  which is chosen to be non-linear 
in order to avoid cryptanalytic attacks using the Berlekamp-Massey algorithm 
[5]. For encryption, the plaintext sequence m = (mj) is added modulo 2 to the 
keystream sequence z = (zj) on a bit-by-bit basis to give the eiphertext sequence 
c= (~j). 

The characteristic polynomial of each LFSR of length ki, i = 1, 2 , . . . ,  R is 
chosen to be primitive, and is assumed to be known to the analyst. Furthermore, 
it is assumed that the secret key of the cryptosystem specifies the initial states 
of each LFSR. The total number of keybits required to specify the initial states 
of the stream cipher generator is ~ = 1  ki. In a brute force attack the 1-[~=l 2k~ 
possible states of the LFSRs will have to be examined, which is not feasible in 
practical systems. However, Siegenthaler [10] has shown that  ff there exists a 
measure of correlation between the keystream sequence and the outputs of the 
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LFSRs, it is possible to determine the initial state of each LFSR independently, 
thereby reducing the cryptanalytic attack to a divide-and-conquer attack, with 
approximate complexity ~ = 1  2k'" Siegenthaler has successfully demonstrated 
the correlation attack for a number of combining functions proposed in the lit- 
erature, viz. Sriier [1]Geffe [3]Bless [9]. Siegenthaler's attack amounts to an ex- 
haustive search through the state space of each individual LFSR, and is feasible 
for values of k up to approximately 50. 

Recently, it was shown by Meier and Staffelbach [6] that ff the number of 
taps t of the characteristic polynomial is small it is possible to determine the 
initial LFSR states by means of an iterative algorithm, having complexity much 
less than an exhaustive search. The algorithm exploits the fact that the bits of a 
sequence generated by a LFSR satisfy a number of linear relationships, referred 
to as parity check equations, or simply parity checks. 

The algorithm has asymptotic complexity O(k), when the number of taps 
t is fixed. However, ff t grows linearly with LFSR length k, the algorithm has 
complexity exponential in k. Consequently, the algorithm is only suitable for 
LFSRs with relatively few taps, i.e. parity checks having low weight t < 10. This 
is one of the most important factors which currently limits the effectiveness 
of the algorithm. Several researchers have proposed extensions of the original 
algorithm to overcome this limitation (see for example [2][7][11]). 

In this paper we present a new method for the computation of low-weight 
parity checks based on the theory of error-correcting codes. The sequence gener- 
ated by a LFSR is equivalent to the codeword of a maximal-length block code. 
By applying the ideas underlying majority-logic decoding of cyclic block codes 
we develop an efficient algorithm for the computation of low-weight parity-check 
equations, which can then be used in the Meier-Staffelbach algorithm. The nov- 
elty of this algorithm is that its computational complexity is essentially indepen- 
dent of the number of tap points of the characteristic polynomial of the LFSR 
which is being analysed. 

The proposed algorithm can be used for the computation of weight-3 and 
weight-4 parity check equations. The proposed algorithm has an approximate 
computational complexity of O(22k/8), and judicious selection of parameters 
makes it feasible to compute low-weight parity checks for values of k up to 
approximately 100. 

2 R e v i e w  o f  t h e  s t a t i s t i c a l  m o d e l  

Assume that a segment of T keystream digits is being observed by the cryptan- 
alyst. From a practical viewpoint it is desirable that the value of T should be as 
small as possible; i.e. T<< N = 2 k - 1. The LFSR sequence (aj) is correlated 
with probability q > 0.5 to the keystream sequence, i.e. 

P(zj = aj) = q > 0.5 j -- O, 1, 2 , . . .  (1) 

We make the simplifying assumption that zj depends only on the input aj and 
the observation at time index j. The corruption of the LFSR sequence (aj) due 
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to the other LFSRs in the stream cipher and the addition of the plaintext may 
be modelled by the addition of "error digits" ej, which we assume to be i.i.d. 
variables, i.e. zj = aj + ej, j = 0, 1, 2, . . . .  Hence 

P ( a j  = z j )  = P ( e j  = 0) = q j = 0, 1 , 2 , . . .  (2) 

which is assumed to be the same for all indices j .  The ej may be expressed in 
terms of the correlation coefficient ~, 

P ( e j  = O) = q = �89  (3) 

The problem of the cryptanalyst is to restore the unknown LFSR sequence (aj)  
from the observed keystream sequence (zj). Meier and Staffelbach [6] first noted 
that this can be done efficiently by exploiting the linear relationships known to 
exist in a linear recurring sequence. The sequence (aj) is produced by a LFSR 
with a primitive characteristic polynomial p(z) of degree k having t non-zero 
terms, 

p(x)  = co + Cl~ + c2x 2 + ' "  + ckx k (4) 

with co = 1 and Cl, c~, . . .ck E {0, 1}. The output sequence (aj) is given by the 
linear recursion relation 

k 

a j  = c l a j _ l  -4- c 2 a j _ 2  -4- �9 �9 �9 -4- c k a j - k  = E C i a n - i  

i = 1  

j = k , k + l , k + 2  . . . .  (5) 

The number of taps t of the LFSR is equal to the number of non-zero coeffi- 
cients {cl, c2 , . . . ,  ck} of the characteristic polynomial p(x). In the case of linear 
recurring sequences over GF(2)  the non-zero coefficients have values ci = 1. 
Therefore, the linear relation described by (5) can be written as a parity check 
equation consisting of the t + 1 nonzero terms of the LFSR sequence aj: 

L=ao+al-4-a2A- . . .+at  = 0 (6)  

where the ai denote those sequence digits multiplied by the nonzero coefficients 
ci. Following [6], we can replace the bits of the LFSR sequence with the bits of 
the keystream sequence at the same index positions. Obviously, the parity check 
equation will not necessarily be satisfied. 

As was noted in [6][2] the number of taps t of the characteristic polynomial, 
which determines the number of nonzero terms in a check equation L, strongly 
influence the computational complexity of the algorithm. It is easily shown that  
the probability of a parity check equation consisting of t + 1 non-zero terms is 
satisfied, is given by: 

P(ao + al + a2 + ' "  + at = 0) = 1(1 + ~t+l) (7) 

Therefore, in order to fully exploit the observed correlation between the LFSR 
sequence (aj) and the keystream sequence (zj), it is of crucial importance to 
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find low-weight parity checks, having a small number of non-zero terms. The 
purpose of this paper is to introduce a systematic procedure for obtaining low- 
weight parity checks. 

3 Computat ion of l o w - w e i g h t  c h e c k s  b a s e d  o n  

e r r o r - c o r r e c t i n g  c o d i n g  

We briefly recall some basic facts from the theory of algebraic error-correcting 
coding. For proofs and more details, see for example [4]. 

Definition 1. A linear, binary (n, k) block code over GF(2)  is a set of 2 k n- 
tuples with components taken from GF(2) .  The 2 k n-tuples are commonly re- 
ferred to as codewords, or code vectors. A linear, binary block code is a subspace 
of the vector space V~ of all n-tuples or binary vectors of length n. 

A generator matrix G for an (n, k) linear block code C over GF(2)  is a k x n 
matrix whose rows are linearly independent and form the basis vectors for a 
linear subspace V~ of the n-dimensional vector space V2 n. The 2 k codewords of 
C are all linear combinations over GF(2)  of the rows of G. 

TheHamming weight w(a) ofa  codeword a is equal to the number of nonzero 
digits in the codeword. The Hamming distance d(a, b) between two codewords 
a and b is equal to the number of coordinate positions in which they differ. For 
a linear code C the minimum distance d between any two distinct codewords a 
and b is given by 

d = min{d(a, b):  a, b E e, a # b} 

= min{w(a)} (8) 

For any k x n generator matrix G with k linearly independent rows, there exists 
an (n - k) x n parity-check matrix H with n - k linearly independent rows of 
length n. An n-tuple a is a codeword in the code generated by G if and only if 
a -  H = 0. This implies that  G- H = 0. 

If a = (a0, a i , . . . ,  an - i )  and b = (b0, b l , . . . ,  b,~-i) are binary vectors, their 
scalar product is given by: 

a . b = aobo -4- aibl + . . .  -4- an-ib,~-i  (9) 

If C is an (n, k) linear binary code, its dual or orthogonal code C* is the set of 
vectors for which the scalar product is zero with respect to all the eodewords in 
C, i.e. 

C* = { a [ a . b = 0 f o r a l l b E C }  (10) 

If C has generator matrix G and parity check matrix H,  then C* has generator 
matrix H,  and parity check matrix G. Thus C* is an (n, n - k) code, and C* is 
in the orthogonal subspace or nullspace of C. Hence the dual code C* consists of 
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2 '~-k binary vectors taken from the vector space V~ -k  which is the null space of 

Each vector in V~ can be represented as a polynomial in x of degree less 
than or equal to n - 1. The components of the vector form the coefficients of the 
polynomial, i.e. a codeword a = (a0, al ,  �9 �9 a,~-l) corresponds to the polynomial  

a(~) = a0 + al= + . . .  + a,~_l~ '~-1. 
A (n, k) block code is called cyclic if, whenever a = (a0, a l , . . . ,  a, ,-1) is in 

C then, then a '  = ( an - I ,  ao, a l , . . . ,  a,~-2) is also in C. In polynomial represen- 
tat ion a cyclic shift corresponds to a,~-i + a0z + a l z  2 + --- + a~-2z  '~-1 which 
is equivalent to xa(z) (modz  '~ + 1). Thus the codewords in C correspond to all 
the polynomials of degree less than n in the polynomial ring (modx'* + 1). 

Every nontrivial cyclic (n, k) code C contains one codeword g(~) of degree 
n - k, called the generator polynomial. The cyclic code C has the following 
generator matrix: 

G = 

g(=) 

(11) 

All the other eodewords in C are obtained by multiplying g(x) by q(x), where 
q(x) is any polynomial of degree k - 1 or less. For any codeword a(z)  in C holds: 

a(x) = q(x)g(x) =_ 0 (mod g(x)) (12) 

The generator polynomial g(z) has the property that  it divides z '~ + 1, i.e. 
g(x)h(~) = x '~ + 1. The polynomial h(x) has degree k, and is commonly referred 
to as the parity-check polynomial�9 Each codeword a(~) generated by g(x) satisfies 

a(x)h(x) -z 0 (mod x '~ + 1). (13) 

Let C be an (n, k) cyclic code with generator polynomial g(x). Then its dual code 
C* is also cyclic and is generated by the polynomial g*(:c) = z k h ( ~ - l ) ,  where 

z " + l  
h ( x ) -  g(x) (14) 

4 M a x i m u m - l e n g t h  c o d e s  

For our purposes it is important  to note that  a sequence of length 2 k -  1 produced 
by a LFSR of length k, with characteristic polynomial p(x), can be viewed as a 
codeword of the maximum-length block code. For any integer k > 3 there exists 
a nontrivial maximum-length block error-correcting code C with the following 
parameters:  

- Block length: n = 2 k - 1 
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- Number of information digits: k 

The maximum-length code C is a cyclic block code, described in terms of a 
primitive polynomial p(z)  of degree k. The generator polynomial for this code 
is given by g(x) = ~ " +  1/p*(~), where p*(x) is the reciprocal of the parity 
polynomial p(x), i.e. p*(x)  = xkp(x-1).  Note that  p*(x) is also a primitive 
polynomial of degree k. 

The code C consists of the all-zero vector and 2 k - 1 code vectors of weight 
2 k-1. Due to its Cyclic nature, the 2 k - 1 non-zero code words of C are shifted 
versions of the generator polynomial g(x) .  

From the viewpoint of  stream cipher eryptanalysis it is important  to note 
that the 2 k - 1 nonzero codewords o f  C may  be interpreted as the 2 k - 1 output 
sequences which can be generated by a L F S R  of  length k. In this sense, the k-bit 
information vector which is encoded by C may be interpreted as the secret key 
which is to be used to initialise the states of the LFSR, and thereby to determine 
the output  sequence which is generated by the LFSR. 

The dual  code of the maximum-length code C is a (2 k - 1, 2 k - k - 1) cyclic 
block code C*, generated by the parity polynomial p(x). It is easily shown that  
this dual code C*, which is the null space of the maximum-length code, is a 
Ham ming  code. It is a well-known fact that a Hamming code contains vectors of 
weight 3. 

5 Orthogonal parity check sums for the maximum-length 
code 

Our goal is to develop an efficient method for computing low-weight parity check 
equations which can be utilised in the Meier-Stalfelbach algorithm. This method 
utilises the principles underlying majority-decoding of cyclic block codes. 

Consider an ( n, k) maximum-length code C with parity check matrix H.  The 
row space of H is an (n, n - k )  Hamming, denoted by C*, which is the null space 
of C. Note that  for any code vector a E C and code vector h E C*, the scalar 
product of a and h is zero, that is, 

h . a = hoao + h l a l  + ' "  + h,~-la,~-I = 0 (15) 

Equation (15) is called a parity check equation. Clearly, there are 2 n-k such 
parity check equations. 
Now, suppose that  a code vector a E C is transmitted over a binary symmet- 
ric channel. Due to channel noise, the transmitted vector is corrupted. De- 
note the additive binary noise vector as e = (e0, e l , . . . , e n - 1 )  and let z = 
(zo, Z l , . . . ,  z,~-l) be the received vector. Then 

Z .-~ a -~- e .  

For any vector b E C* we can form the following parity-check equation: 

(16) 

L = h .  z = hozo + h l z l  + . . .  + h n - ~ z n - z  (17) 
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I f  the received vector z is a code vector in C, L must  be 7,ero; however, if z is 
not  a valid code vector then L may not be zero. Combining (16) and (17) and 
using the fact tha t  h .  a = 0, we obtain the following relationship between the 
check sum L and the error digits in e: 

L = h . z - = h . ( a + e ) = h . e = h o e o + h l e l + . . . h , ~ _ l e , ~ _ l  (18) 

D e f i n i t i o n  2. A set of  par i ty  check equations is said to be orthogonal on the 
i- th digit if z i appears  in each equation, but  no zJ appears  more than  once in 
the set. 

Now, consider the following set of  distinct, or thogonal  code polynomials:  

S = {h(x)  = x i + xJ + x n-1  I 0 i < j - 1} (19) 

where the h~(z) are taken f rom C*, the (2 4 - 1, 2 4 - k - 1) H a m m i n g  code in 
the null space of  C. No two polynomials  in `9 have any c o m m o n  terms except 
the term z =-1.  Otherwise, the sum of these two polynomials  would be a code 
polynomial  of  only two terms in the Hamming  code. This is impossible since the 
min imum weight of  a Ha m m i ng  code is 3. Therefore, the set S contains polyno- 
mials or thogonal  on the highest-order digit position z '~-1. For each polynomial  
h(x)  C ,9 holds: 

h(x) = z i + zc j + z = - I  ~ 0 m o d p ( x )  (2o) 

To compute  these h(x),  we start  with a polynomial  z '~-I  + zJ for O < j < n - 1, 
and  then determine z i such tha t  x n-1 + z j + x i is divisible by p(x). This can 
be carried out as follows. Divide z '~-1 + zJ by p(z)  step by step, using long 
division until a single term z ~ appears  at the end of  a certain step. Then  h(z)  = 
z '~-1 + zJ + z ~ is a polynomial  or thogonal  on digit position z '~-1. Clearly, if we 
s tar t  with z '~-1 + m i, we would obtain  the same polynomial  h(z) .  Thus,  we can 
find (n - 1)/2 = 2 4-1 - 1 polynomials  or thogonal  on digit position z '~-1. 

Example 1 

Consider the (15, 4) maximum-leng th  block code C, with k = 4 and block length 
n - 2 4 - 1 = 15, associated with the primitive polynomial  p (z)  = 1 + z + z 4. The  
par i ty  polynomial  for this code is given by h (z )  = p*(x) = 1 + z 3 + z 4, which 
is also primitive. The  dual  code C* for this code is a (15, 11) (cyclic) Hamming  
code, generated by the primitive polynomial  p(z)  = 1 + z + x 4. To obtain  a par i ty  
check of  weight 3 or thogonal  on z n -1  = z 14, divide z 1 4 +  z 13 by p(z)  = 1 + z + z 4 
with long division: 
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z 1 ~  z ~ + z 7 + z 5 + z  4 + z  s + z  ~- 
z 4 + z + 1 ) X 14  -~- X 18 

Z i4 -~- Z 11 + Z 10 

z 13 -F z II + z iO 

z 13 ~ x io .q_ x 9 

x II  + x 9 

z il + z 8 + z 7 

z 9 + z 8 q- z ~ 
z 9 + x 8 --I- z 5 

z 8 Jr- x 7 + z e -F x 5 

x 8 § x 5 + z 4 

X 7 Jr- X 6 ..}- X 4 

X 7 -[- X 4 + X 3 

x 6 -.I- z 3 

z ~ + z 8 + z 2 

( , t o p )  

As soon as the  single t e rm  r ema inde r  z 2 appears ,  the  division process  is s topped .  
This  gives the  following re la t ionship :  

z 2 q ' z  13"Fz 1 4 =  (z  ~ - F z  3 - F z  4 - F z  5 + z  ? - F z  8-q-z O + z l O ) ( 1 - F x - t - z  4) 

- 0 rood (1 + z + z 4) (21)  

Therefore,  hz (x )  = x 2 + z 13 + z14 is a pa r i t y  check po lynomia l  o r thogona l  on 
x 14. To ob ta in  ano the r  o r thogona l  po lynomia l ,  d iv ide  z 14 + z 12 by  p(z ) .  Then  
h2(z)  = z 5 + z 12 + z 14 is also a po lynomia l  o r thogona l  on z 14. The  remain ing  

o r t h o g o n a l  po lynomia l s  can be found  similarly.  The  2 4-1 - 1 = 7 po lynomia l s  
are  shown below: 

h i ( z )  = z 2 + $13 _jr_ X14 h 5 ( x  ) = x6 _~_ x 8 _~_ x14 

h 2 ( x )  : x 5 + z 12 -Jr- z 14 h e ( x )  : z 1 -}- z 7 -t- Z 14 

h3(x)  = x 10 + z 11 + x 14 hT(x) = 1 + z s + z i4 
h 4 ( x )  = x 4 + z 9 + x 14 

6 C o m p u t i n g  w e i g h t - 3  p o l y n o m i a l s  

The  c o m p u t a t i o n  of  weight-3 p a r i t y  checks o r thogona l  o n  x n - l ,  by means  of  
long division,  can be read i ly  app l ied  to  compu te  low-weight  checks required for 
the  Meier -Sta i fe lbach a lgor i thm.  However,  for the  Meier -Sta i fe lbach a lgor i thm 
it  is iaore  convenient  to  have pa r i t y  checks o r thogona l  on z ~ i n s t ead  of  z '~-1. By 
vi r tue  of  the  fact  t h a t  the  pa r i t y  equa t ions  h i (x )  are  codewords  of  a H a m m i n g  
code, which is a c y c l i c  code, every cyclic shift  of  a p a r i t y  check equat ions  produces  
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another  valid par i ty  check. For example, cyclically shifting h i (x) ,  and reducing 
m o d ( x  1~ + 1), gives: 

hl(:r)  = z 2 + x 18 + x14 

x h l ( z )  -- x 3 q- x 14 -1- z 0 

�9 : x '  + + (22) 

In a similar way, the set of  pari ty check polynomials  given in (5) which is or thog-  
onal  on ~14, may  be shifted cyclically to obta in  par i ty  checks or thogonal  on x 0. 
The  shifts were done so as to obtain polynomials  of  lowest degree. The  shifted, 
rearranged set is shown below: 

X 0 -[- X 1 A r- X 4 

x 0 q- x 2 q- x 8 

x ~ -b x a q- x 14 

X0 + X5 _4_ Qr 

x ~ + a: 6 + x la 

x 0 + x 7 -4- x 9 

X 0 -~- X 11 .~- X 12 (23) 

In general, we are interested in obtaining par i ty  checks or thogonal  on a n y  digit j 
of  the L F S R  sequence. The  checks in (23) give rise to the following set of  par i ty  
checks or thogonal  on digit j :  

XJ -~- X3q -1 q- XJ-[ -4 

x y + x j+2 + x j+8 
xJ -1- xJ+ 3 -.1- XJ§ 14 

x j q- xJ+ 1 q- xJ+ 5 
xJ q- xJ+ 6 + xJ +la 
x j -}- x j + 7  -b ~ i + 9  

x i + xi + l l  + xi +12 

x y-1 + x ~ + x j+a 
xY-2 q- x~ + x j+6 
xJ-3  _[_ x3 -4- XJq -11 

XJ-5 q- x~ q- xJ+ ~ 
x j - 6  --k x ~ -}- x j + 7  

x J - 7  q- x3 q- xJ+ 2 
x i - l l  + ~3 q_ x i +  1 

x j - 4  + x j - a  + x~ 
x j - 8  + x j - 6  + xz 

xJ-14 q_ xJ -11 + x ~ 

xJ -1~ + x j - 5  q- x3 
x J - l a  q_ xJ -7  + x 3 
x j - 9  q_ x J -2  q_ x~ 
xJ -12 + xJ - I  + xJ 

Following Meier and Staifelbach [6], fur ther  par i ty  check equations may  be ob- 
tained by i terated squaring of  the equations given in (23), for example: 

[x2ht(x)]  2 = [1 + x + X412= 1 + X 2 + X8 (24) 

In this way a given weight-3 pari ty cheek equat ion ean lead to several new par i ty  
checks, which are all or thogonal  on x ~ The  "toy example" we are considering 
here produces an unrealistically short sequence length of  24 - 1 = 15. As a 
result, i terated squaring of  the pari ty check equations in (23) does not  lead to 
m a n y  useful equations, since the available sequence length is exceeded in most  
cases. However, in a real-life si tuation values of  k in excess of  say, 100, may  
be encountered. This give rise to a sequence length of  2 k - 1, in which case 
i tera ted squaring will produce many  useful equations.  The  division a lgor i thm 
for comput ing  weight-3 pari ty cheeks is briefly outlined below: 
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Division Algorithm 

1. [Initialise] Choose a suitable value for the length of the subsequence T < 
2 k - 1 available for analysis, and a value t,,~| < T < 2 k - 1 for the maximum 
degree of the weight-3 parity checks. 

2. [Setup] Set j = t6naz -- 1. 
3. [Division] Use long division to divide z v'~'" + zJ by p(z) until a single-term 

remainder x i is obtained. The required parity check is z ~ + zJ + z v-~a-. 
4. [Exit] Set j = j - 1. If j > 0 return to Step 3. Else exit. 

The division algorithm can be implemented very efficiently, since the required 
arithmetic operations essentially amount to shift and mod-2 addition opera- 
tions. The algorithm may be further refined by observing that  as the index j 
is stepped through all possible values, two sets of equivalent equations will be 
obtained, since z ~ + x i + z v"~- = x i + z i + z v-*--. Hence, the algorithm may 
be optimised by omitting the division operation for values of j equivalent to 
previously obtained values of i. Note that  once a weight-3 parity check has been 
obtained, cyclic shifting produces a parity check orthogonal on any desired digit. 
Also, as illustrated above, iterated squaring will give other useful parity checks. 

As seen in the preceding section, the total number of weight-3 parity checks 
available in a maximum-length (n, k) code is 2 k - t -  1. The complexity of the long- 
division process to compute weight-3 checks from a sequence of length N = 2 k - 1 
is roughly O(22k). However, in a practical situation the cryptanalyst will only 
have access to a subsequence of length T << N.  In this case, the computational 
complexity of the division algorithm is approximately O(T2) .  

For practical application of the division algorithm to sequences generated by 
LFSRs of lengths of the order of 100, note that  the length T of the subsequence 
may be chosen independently of the maximum degree Vmaz of the parity checks 
in the set (23). The value of t'rna| determines the number of division steps which 
the division algorithm will perform in search for a single-term remainder. On the 
other hand, the value of T essentially determines the number of parity checks of 
the form x '~-t + x j which will be processed by the division algorithm. The re- 
sulting computational complexity of the division algorithm is roughly 0(2  T~'~ ' ) .  
Provided that  vma~ < T,  these two parameters can take on any suitable valued 
which will lead to practically feasible computation times. Hence it is of interest 
to obtain estimates for the values of t,,~ffi and T which will produce weight-3 
parity checks with high probability. 

The long division algorithm determines a value r such that the following 
congruence is satisfied: 

z ~ + x i + x" = 0 mod p(z) (25) 

Observation of the behaviour of the algorithm for small values of 2 k indicates 
that  the computed values r appear to be uniformly distributed across the interval 
(0, N)  where N = 2 k - 1 is the total length of the LFSR sequence. 

Define a hit by the event that  the computed value z" falls within the sub- 
sequence available for cryptanalysis, i.e. r < T and define a miss by the event 
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r > T. Assume that  the number of hits in a subsequence follows a Poisson 
distribution with rate parameter ~ = T I N .  

Let Vmax be the maximum degree of the weight-3 parity check polynomi- 
als. The probability that r < ~raax, under the negative exponential distribution 
assumption, is given by 

P ( r  < ~m~x) = 1 -- e -T~m''/N (26) 

For ~'max = O(2 k/4) and a probability greater than 1 - e -1 ~ 63% of finding a 
weight-3 polynomial, the length of the subsequence required by the cryptanalyst 
is T = 0(k3/4).  A subsequence of this size would limit the technique to values 
of k less than approximately 60. Hence, we conclude that  for large values of k 
the computation of weight-3 parity checks is not feasible. These observations 
were confirmed by computation of weight-3 parity checks for small values of k 
(k < 16). 

However, this rather discouraging result should not prohibit us from apply- 
ing the division algorithm to search for weight-3 parity-checks. Knowing that 
an exhaustive search has computational complexity o ( 2 T v ' ~ ' ) ,  we may still 
select small values for these two parameters which result in feasible computa- 
tion times. Obviously, the probability of finding weight-3 parity checks will be 
very low. However, once a weight-3 parity-check has been found, it is possible 
to derive several new parity checks by cyclic shifting and iterated squaring, as 
demonstrated in the previous section. Also, it should be kept in mind that the 
computational complexity of the division algorithm is essentially independent of 
the weight of the polynomial p(z). 

7 C o m p u t i n g  w e i g h t - 4  p o l y n o m i a l s  

The results of the previous section indicate that  it is not computionally feasible 
to obtain a sufficient number of weight-3 parity checks with high probability. 
Hence we are forced to consider weight-4 polynomials. Fortunately, the division 
algorithm can be easily adapted to compute weight-4 parity-checks. The only 
difference is that  a remainder consisting of two terms is required, instead of a 
single term remainder, as in the case of weight-3 parity checks. The advantage is 
that more than one weight-4 parity check will be found during the long division 
process. Hence, the division process has to be continued after the first equation 
is found. This is illustrated below. 

E x a m p l e  2 

Consider again the (15, 5) maximum-length code of the previous section, with 
parity polynomial h(z) = p*(z) = 1 + z a + x 4. To obtain two parity check 
equations of weight 4 orthogonal on x '~-1 = z 14, divide z 14 + x 12 by p(x) = 
1 + z + x 4 with long division: 
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z 1 0 +  zs  + z r + z ~ + z ~ +  

z 4 + �9 + 1 ) z 14 + z 12 

x 14 @ x 11 4- x 10 

a~ 12 -4- z 11 -4- z 10 

X 12 Jr" X 9 -'l'- X 8 

x 11 + x 1~ + z 9 + a: 8 

X 11 @ X 8 --~ X 7 

X 10 "4- X 9 -Jr X 7 

z I~ + a: 7 + a: 6 

z 9 -4- z 6 
z 9 +,a~ 8 + a~ 5 

z ~ 

z 5 + x 2 + a~ 

x v" + z ( s t o p )  

In this  way we ob ta in  two weight-4 equat ions :  

X 6 " 4 - x  9 ~ - x  12 + Z  14 X W X  2 + z  12 + z  14 

These  two equat ions  are  o r thogona l  on b o t h  Z 14 and  x 12, which has  some conse- 
quence for  ma jo r i ty - log ic  decoding.  However,  in the  case of  the  Meier-Staffelbach 
a lgo r i t hm this  should  be of  l imi ted  impor t ance ,  since i t e r a t ed  squar ing of  these 
two equat ions  will genera te  fur ther  equat ions ,  which can be selected so as to be 
o r thogona l  on ~14 viz. z ~ 

Similar  to  the  case of  weight-3 po lynomia ls ,  cyclic shif t ing produces  pa r i ty  
checks of  m i n i m u m  degree which are  o r thogona l  on z~ 

zo + zs  + z6 + z8 

z ~ + z v + z 4 + z 5 (27) 

Final ly ,  the  following set of  pa r i t y  checks o r thogona l  on an  a r b i t r a r y  digi t  xJ are 
ob ta ined :  

z j -4- x j+3 + z j+8 -4- z j+8 
zJ - 3  + x j + x j+3  + xJ +5 

z j - a  -4- z j - 3  + xJ -4- x j+2 
x j - s  + z j - 5  -4- z j - 2  -4- z i  

z j + ~r j+2 -I- z j+4 + z j+5 
zJ -2  + x j + xJ +~ + xJ +8 

zJ - 4  + x j - 2  + z j + zJ +1 

X j - 5  -4- Z j - 3  -t'- Z j - 1  + X j 

Note  t h a t  i t  is also possible  to  genera te  weight-4 pa r i t y  checks by  making  use of  
avai lable  weight-3 pa r i t y  checks, as follows. Consider  two pa r i t y  check equat ions  
o r thogona l  on x ~ wi th  integers  i, j and  s, t such t h a t  0 < i < j and  0 < s < t: 

+ , i  + - o ( rood  

+ + = o (rood (28) 
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Assume tha t  j > s. Then, multiplying (28) by z J - '  -- z ~ and adding it to (28) 
a weight-4 equation is obtained: 

z ~ + z i + z j - ~  + x t + j - '  = x ~ + z ~ + x ~ + z t+~ (29) 

Else, if s > j ,  let ~' = s - j .  Then 

x0 + zt + z , - j  + ~ i+ , - j  = ~0 + ~t + z~' + ~i+~' (30) 

Thus, in either case, if max{t  + $, i + $'} < T, a useful weight-4 pari ty check 
orthogonal on z0 has been found. We will make the assumption that  if I~i] < T/2, 
a usable relation results. 

Assume that  it is required to have m pari ty checks for the Meier-Staffelbach 
algorithm. Let r be the number of a t tempts  to compute m pari ty checks. Under 
the assumption that  the distance between the hits for weight-3 equations follows 
a negative exponential distribution, the probability p that  two successive hits 
are within a distance T/2 as required for a weight-4 pari ty check, is p -- 1 - 
e -,T/21v ~ rT/2N if rT << N. If  r a t tempts  are made, then the expected 
number of usable pairs are pr  = r2T/2N >_ m. A design with N = O(N 1/3) 
gives r = O(Nt/3). A given value of r determines, for a fixed characteristic 
polynomial, the length of the subsequence required for analysis. 

Hence, if the cryptanalyst  has access to a subsequence of ciphertext of length 
N -- 2 k/3' with high probability a sufficient number of weight-4 pari ty checks 
will be found by means of the division algorithm. In this case the computat ional  
complexity of the division algorithm is approximately O(22k/3), and is essentially 
independent of the number of taps of the characteristic polynomial. Hence, this 
method is feasible for LFSRs lengths of approximately 100 bits. 

8 D i s c u s s i o n  

The computat ional  complexity of Algorithm B suggested by Meier and Staffel- 
bach [6] is largely due to their suggested use of "iterated squaring" for the com- 
putat ion of low-weight parity checks. In this paper  we show how this l imitation 
may be overcome by introducing a new algorithm for the computat ion of low- 
weight parity checks. 

The algorithm is based on ideas for majority-logic decoding of block codes. 
A statistical analysis shows that  if the cryptanalyst  has access to a small subse- 
quence of the total  keystream sequence, the probability of obtaining a sufficient 
number of weight-3 pari ty checks is extremely low. Hence, one is compelled us to 
consider weight-4 pari ty checks. The proposed division algorithm is able to com- 
pute both weight-3 and weight-4 pari ty checks efficiently. I f  the cryptanalyst  
has access to a subsequence of ciphertext of length 2 k/3, with high probabili ty 
the division algorithm will yield a sufficient number of weight-4 pari ty checks. 
The worst-case computat ional  complexity of the division algorithm for comput-  
ing weight-4 pari ty checks is approximately O(22k/3), but may even be reduced 
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by judicious selection of various parameters.  Thus, this method is feasible for 
LFSR lengths of approximately 100 bits. 

An important attribute of the algorithm is that its computational complexity 
is essentially independent of the number of taps of the characteristic polynomial 
of the LFSR sequence. Thus, this method makes it possible to compute low- 
weight parity checks - and thus to apply the Meier-Staffelbach Algorithm B - 
to stream ciphers with arbitrary-weight characteristic polynomials. Hence, the 
security of a stream cipher system cannot be guaranteed by the use of char- 
acteristic polynomials with a large number of taps. Consequently, if a stream 
cipher comprises LFSRs of small length (/r < 100, say), utmost care should be 
exercised by the designer to ensure that the correlation between ciphertext and 
LFSR output is reduced to a minimum. 
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