
Corre lat ion Attacks on Stream Ciphers:
C o m p u t i n g L o w - W e i g h t Parity Checks

Based on Error -Correc t ing Codes

W T Penzhorn

Department of Electrical and Electronic Engineering
University of Pretoria, 0002 PRETORIA, South Africa

walter . p e n z h o r n @ e e . u p . a c . z a

A b s t r a c t . The fast correlation attack described by Meier and Staffel-
bach [6] on certain classes of stream ciphers, based on linear feedback
shift registers, requires that the number of taps of the characteristic
polynomial must be small - typically less than 10. The attack can be
extended to characteristic polynomials with an arbitrary number of taps
if it is possible to compute low-weight polynomial multiples of the feed-
back polynomial. In this paper we present an algorithm for the efficient
computation of low-weight parity checks. The algorithm, based on the
theory of cyclic block error-correcting codes, applies the ideas underlying
majorlty-logic decoding of maximal-length codes. A statistical analysis
shows that it is not realistic to consider weight-3 parity checks, and hence
it is necessary to compute weight-4 parity checks. The proposed algo-
rithm has a worst-case computational complexity of O(22k/s), which is
essentially independent of the number of taps of the characteristic poly-
nomial, and is suitable for linear feedback shift registers of approximately
100 bits.

1 Introduction

In secret-key cryptosystems, pseudonoise generators based on binary linear feed-
back shift-registers (LFSRs) are often used as running key generators. The re-
quired keystream z = (zj) is obtained by combining a fixed number of say, R,
LFSRs by means of a combining function f , which is chosen to be non-linear
in order to avoid cryptanalytic attacks using the Berlekamp-Massey algorithm
[5]. For encryption, the plaintext sequence m = (mj) is added modulo 2 to the
keystream sequence z = (zj) on a bit-by-bit basis to give the eiphertext sequence
c= (~j).

The characteristic polynomial of each LFSR of length ki, i = 1, 2 , . . . , R is
chosen to be primitive, and is assumed to be known to the analyst. Furthermore,
it is assumed that the secret key of the cryptosystem specifies the initial states
of each LFSR. The total number of keybits required to specify the initial states
of the stream cipher generator is ~ = 1 ki. In a brute force attack the 1-[~=l 2k~
possible states of the LFSRs will have to be examined, which is not feasible in
practical systems. However, Siegenthaler [10] has shown that ff there exists a
measure of correlation between the keystream sequence and the outputs of the

160

LFSRs, it is possible to determine the initial state of each LFSR independently,
thereby reducing the cryptanalytic attack to a divide-and-conquer attack, with
approximate complexity ~ = 1 2k'" Siegenthaler has successfully demonstrated
the correlation attack for a number of combining functions proposed in the lit-
erature, viz. Sriier [1]Geffe [3]Bless [9]. Siegenthaler's attack amounts to an ex-
haustive search through the state space of each individual LFSR, and is feasible
for values of k up to approximately 50.

Recently, it was shown by Meier and Staffelbach [6] that ff the number of
taps t of the characteristic polynomial is small it is possible to determine the
initial LFSR states by means of an iterative algorithm, having complexity much
less than an exhaustive search. The algorithm exploits the fact that the bits of a
sequence generated by a LFSR satisfy a number of linear relationships, referred
to as parity check equations, or simply parity checks.

The algorithm has asymptotic complexity O(k), when the number of taps
t is fixed. However, ff t grows linearly with LFSR length k, the algorithm has
complexity exponential in k. Consequently, the algorithm is only suitable for
LFSRs with relatively few taps, i.e. parity checks having low weight t < 10. This
is one of the most important factors which currently limits the effectiveness
of the algorithm. Several researchers have proposed extensions of the original
algorithm to overcome this limitation (see for example [2][7][11]).

In this paper we present a new method for the computation of low-weight
parity checks based on the theory of error-correcting codes. The sequence gener-
ated by a LFSR is equivalent to the codeword of a maximal-length block code.
By applying the ideas underlying majority-logic decoding of cyclic block codes
we develop an efficient algorithm for the computation of low-weight parity-check
equations, which can then be used in the Meier-Staffelbach algorithm. The nov-
elty of this algorithm is that its computational complexity is essentially indepen-
dent of the number of tap points of the characteristic polynomial of the LFSR
which is being analysed.

The proposed algorithm can be used for the computation of weight-3 and
weight-4 parity check equations. The proposed algorithm has an approximate
computational complexity of O(22k/8), and judicious selection of parameters
makes it feasible to compute low-weight parity checks for values of k up to
approximately 100.

2 R e v i e w o f t h e s t a t i s t i c a l m o d e l

Assume that a segment of T keystream digits is being observed by the cryptan-
alyst. From a practical viewpoint it is desirable that the value of T should be as
small as possible; i.e. T<< N = 2 k - 1. The LFSR sequence (aj) is correlated
with probability q > 0.5 to the keystream sequence, i.e.

P(zj = aj) = q > 0.5 j -- O, 1, 2 , . . . (1)

We make the simplifying assumption that zj depends only on the input aj and
the observation at time index j. The corruption of the LFSR sequence (aj) due

161

to the other LFSRs in the stream cipher and the addition of the plaintext may
be modelled by the addition of "error digits" ej, which we assume to be i.i.d.
variables, i.e. zj = aj + ej, j = 0, 1, 2, Hence

P (a j = z j) = P (e j = 0) = q j = 0, 1 , 2 , . . . (2)

which is assumed to be the same for all indices j . The ej may be expressed in
terms of the correlation coefficient ~,

P (e j = O) = q = �89 (3)

The problem of the cryptanalyst is to restore the unknown LFSR sequence (aj)
from the observed keystream sequence (zj). Meier and Staffelbach [6] first noted
that this can be done efficiently by exploiting the linear relationships known to
exist in a linear recurring sequence. The sequence (aj) is produced by a LFSR
with a primitive characteristic polynomial p(z) of degree k having t non-zero
terms,

p(x) = co + Cl~ + c2x 2 + ' " + ckx k (4)

with co = 1 and Cl, c~, . . .ck E {0, 1}. The output sequence (aj) is given by the
linear recursion relation

k

a j = c l a j _ l -4- c 2 a j _ 2 -4- �9 �9 �9 -4- c k a j - k = E C i a n - i

i = 1

j = k , k + l , k + 2 (5)

The number of taps t of the LFSR is equal to the number of non-zero coeffi-
cients {cl, c2 , . . . , ck} of the characteristic polynomial p(x). In the case of linear
recurring sequences over GF(2) the non-zero coefficients have values ci = 1.
Therefore, the linear relation described by (5) can be written as a parity check
equation consisting of the t + 1 nonzero terms of the LFSR sequence aj:

L=ao+al-4-a2A- . . .+at = 0 (6)

where the ai denote those sequence digits multiplied by the nonzero coefficients
ci. Following [6], we can replace the bits of the LFSR sequence with the bits of
the keystream sequence at the same index positions. Obviously, the parity check
equation will not necessarily be satisfied.

As was noted in [6][2] the number of taps t of the characteristic polynomial,
which determines the number of nonzero terms in a check equation L, strongly
influence the computational complexity of the algorithm. It is easily shown that
the probability of a parity check equation consisting of t + 1 non-zero terms is
satisfied, is given by:

P(ao + al + a2 + ' " + at = 0) = 1(1 + ~t+l) (7)

Therefore, in order to fully exploit the observed correlation between the LFSR
sequence (aj) and the keystream sequence (zj), it is of crucial importance to

162

find low-weight parity checks, having a small number of non-zero terms. The
purpose of this paper is to introduce a systematic procedure for obtaining low-
weight parity checks.

3 Computat ion of l o w - w e i g h t c h e c k s b a s e d o n

e r r o r - c o r r e c t i n g c o d i n g

We briefly recall some basic facts from the theory of algebraic error-correcting
coding. For proofs and more details, see for example [4].

Definition 1. A linear, binary (n, k) block code over GF(2) is a set of 2 k n-
tuples with components taken from GF(2) . The 2 k n-tuples are commonly re-
ferred to as codewords, or code vectors. A linear, binary block code is a subspace
of the vector space V~ of all n-tuples or binary vectors of length n.

A generator matrix G for an (n, k) linear block code C over GF(2) is a k x n
matrix whose rows are linearly independent and form the basis vectors for a
linear subspace V~ of the n-dimensional vector space V2 n. The 2 k codewords of
C are all linear combinations over GF(2) of the rows of G.

TheHamming weight w(a) ofa codeword a is equal to the number of nonzero
digits in the codeword. The Hamming distance d(a, b) between two codewords
a and b is equal to the number of coordinate positions in which they differ. For
a linear code C the minimum distance d between any two distinct codewords a
and b is given by

d = min{d(a, b): a, b E e, a # b}

= min{w(a)} (8)

For any k x n generator matrix G with k linearly independent rows, there exists
an (n - k) x n parity-check matrix H with n - k linearly independent rows of
length n. An n-tuple a is a codeword in the code generated by G if and only if
a - H = 0. This implies that G- H = 0.

If a = (a0, a i , . . . , an - i) and b = (b0, b l , . . . , b,~-i) are binary vectors, their
scalar product is given by:

a . b = aobo -4- aibl + . . . -4- an-ib,~-i (9)

If C is an (n, k) linear binary code, its dual or orthogonal code C* is the set of
vectors for which the scalar product is zero with respect to all the eodewords in
C, i.e.

C* = { a [a . b = 0 f o r a l l b E C } (10)

If C has generator matrix G and parity check matrix H, then C* has generator
matrix H, and parity check matrix G. Thus C* is an (n, n - k) code, and C* is
in the orthogonal subspace or nullspace of C. Hence the dual code C* consists of

163

2 '~-k binary vectors taken from the vector space V~ -k which is the null space of

Each vector in V~ can be represented as a polynomial in x of degree less
than or equal to n - 1. The components of the vector form the coefficients of the
polynomial, i.e. a codeword a = (a0, al , �9 �9 a,~-l) corresponds to the polynomial

a(~) = a0 + al= + . . . + a,~_l~ '~-1.
A (n, k) block code is called cyclic if, whenever a = (a0, a l , . . . , a, ,-1) is in

C then, then a ' = (an - I , ao, a l , . . . , a,~-2) is also in C. In polynomial represen-
tat ion a cyclic shift corresponds to a,~-i + a0z + a l z 2 + --- + a~-2z '~-1 which
is equivalent to xa(z) (modz '~ + 1). Thus the codewords in C correspond to all
the polynomials of degree less than n in the polynomial ring (modx'* + 1).

Every nontrivial cyclic (n, k) code C contains one codeword g(~) of degree
n - k, called the generator polynomial. The cyclic code C has the following
generator matrix:

G =

g(=)

(11)

All the other eodewords in C are obtained by multiplying g(x) by q(x), where
q(x) is any polynomial of degree k - 1 or less. For any codeword a(z) in C holds:

a(x) = q(x)g(x) =_ 0 (mod g(x)) (12)

The generator polynomial g(z) has the property that it divides z '~ + 1, i.e.
g(x)h(~) = x '~ + 1. The polynomial h(x) has degree k, and is commonly referred
to as the parity-check polynomial�9 Each codeword a(~) generated by g(x) satisfies

a(x)h(x) -z 0 (mod x '~ + 1). (13)

Let C be an (n, k) cyclic code with generator polynomial g(x). Then its dual code
C* is also cyclic and is generated by the polynomial g*(:c) = z k h (~ - l) , where

z " + l
h (x) - g(x) (14)

4 M a x i m u m - l e n g t h c o d e s

For our purposes it is important to note that a sequence of length 2 k - 1 produced
by a LFSR of length k, with characteristic polynomial p(x), can be viewed as a
codeword of the maximum-length block code. For any integer k > 3 there exists
a nontrivial maximum-length block error-correcting code C with the following
parameters:

- Block length: n = 2 k - 1

164

- Number of information digits: k

The maximum-length code C is a cyclic block code, described in terms of a
primitive polynomial p(z) of degree k. The generator polynomial for this code
is given by g(x) = ~ " + 1/p*(~), where p*(x) is the reciprocal of the parity
polynomial p(x), i.e. p*(x) = xkp(x-1). Note that p*(x) is also a primitive
polynomial of degree k.

The code C consists of the all-zero vector and 2 k - 1 code vectors of weight
2 k-1. Due to its Cyclic nature, the 2 k - 1 non-zero code words of C are shifted
versions of the generator polynomial g(x) .

From the viewpoint of stream cipher eryptanalysis it is important to note
that the 2 k - 1 nonzero codewords o f C may be interpreted as the 2 k - 1 output
sequences which can be generated by a L F S R of length k. In this sense, the k-bit
information vector which is encoded by C may be interpreted as the secret key
which is to be used to initialise the states of the LFSR, and thereby to determine
the output sequence which is generated by the LFSR.

The dual code of the maximum-length code C is a (2 k - 1, 2 k - k - 1) cyclic
block code C*, generated by the parity polynomial p(x). It is easily shown that
this dual code C*, which is the null space of the maximum-length code, is a
Ham ming code. It is a well-known fact that a Hamming code contains vectors of
weight 3.

5 Orthogonal parity check sums for the maximum-length
code

Our goal is to develop an efficient method for computing low-weight parity check
equations which can be utilised in the Meier-Stalfelbach algorithm. This method
utilises the principles underlying majority-decoding of cyclic block codes.

Consider an (n, k) maximum-length code C with parity check matrix H. The
row space of H is an (n, n - k) Hamming, denoted by C*, which is the null space
of C. Note that for any code vector a E C and code vector h E C*, the scalar
product of a and h is zero, that is,

h . a = hoao + h l a l + ' " + h,~-la,~-I = 0 (15)

Equation (15) is called a parity check equation. Clearly, there are 2 n-k such
parity check equations.
Now, suppose that a code vector a E C is transmitted over a binary symmet-
ric channel. Due to channel noise, the transmitted vector is corrupted. De-
note the additive binary noise vector as e = (e0, e l , . . . , e n - 1) and let z =
(zo, Z l , . . . , z,~-l) be the received vector. Then

Z .-~ a -~- e .

For any vector b E C* we can form the following parity-check equation:

(16)

L = h . z = hozo + h l z l + . . . + h n - ~ z n - z (17)

165

I f the received vector z is a code vector in C, L must be 7,ero; however, if z is
not a valid code vector then L may not be zero. Combining (16) and (17) and
using the fact tha t h . a = 0, we obtain the following relationship between the
check sum L and the error digits in e:

L = h . z - = h . (a + e) = h . e = h o e o + h l e l + . . . h , ~ _ l e , ~ _ l (18)

D e f i n i t i o n 2. A set of par i ty check equations is said to be orthogonal on the
i- th digit if z i appears in each equation, but no zJ appears more than once in
the set.

Now, consider the following set of distinct, or thogonal code polynomials:

S = {h(x) = x i + xJ + x n-1 I 0 i < j - 1} (19)

where the h~(z) are taken f rom C*, the (2 4 - 1, 2 4 - k - 1) H a m m i n g code in
the null space of C. No two polynomials in `9 have any c o m m o n terms except
the term z =-1. Otherwise, the sum of these two polynomials would be a code
polynomial of only two terms in the Hamming code. This is impossible since the
min imum weight of a Ha m m i ng code is 3. Therefore, the set S contains polyno-
mials or thogonal on the highest-order digit position z '~-1. For each polynomial
h(x) C ,9 holds:

h(x) = z i + zc j + z = - I ~ 0 m o d p (x) (2o)

To compute these h(x), we start with a polynomial z '~-I + zJ for O < j < n - 1,
and then determine z i such tha t x n-1 + z j + x i is divisible by p(x). This can
be carried out as follows. Divide z '~-1 + zJ by p(z) step by step, using long
division until a single term z ~ appears at the end of a certain step. Then h(z) =
z '~-1 + zJ + z ~ is a polynomial or thogonal on digit position z '~-1. Clearly, if we
s tar t with z '~-1 + m i, we would obtain the same polynomial h(z) . Thus, we can
find (n - 1)/2 = 2 4-1 - 1 polynomials or thogonal on digit position z '~-1.

Example 1

Consider the (15, 4) maximum-leng th block code C, with k = 4 and block length
n - 2 4 - 1 = 15, associated with the primitive polynomial p (z) = 1 + z + z 4. The
par i ty polynomial for this code is given by h (z) = p*(x) = 1 + z 3 + z 4, which
is also primitive. The dual code C* for this code is a (15, 11) (cyclic) Hamming
code, generated by the primitive polynomial p(z) = 1 + z + x 4. To obtain a par i ty
check of weight 3 or thogonal on z n -1 = z 14, divide z 1 4 + z 13 by p(z) = 1 + z + z 4
with long division:

166

z 1 ~ z ~ + z 7 + z 5 + z 4 + z s + z ~-
z 4 + z + 1) X 14 -~- X 18

Z i4 -~- Z 11 + Z 10

z 13 -F z II + z iO

z 13 ~ x io .q_ x 9

x II + x 9

z il + z 8 + z 7

z 9 + z 8 q- z ~
z 9 + x 8 --I- z 5

z 8 Jr- x 7 + z e -F x 5

x 8 § x 5 + z 4

X 7 Jr- X 6 ..}- X 4

X 7 -[- X 4 + X 3

x 6 -.I- z 3

z ~ + z 8 + z 2

(, t o p)

As soon as the single t e rm r ema inde r z 2 appears , the division process is s topped .
This gives the following re la t ionship :

z 2 q ' z 13"Fz 1 4 = (z ~ - F z 3 - F z 4 - F z 5 + z ? - F z 8-q-z O + z l O) (1 - F x - t - z 4)

- 0 rood (1 + z + z 4) (21)

Therefore, hz (x) = x 2 + z 13 + z14 is a pa r i t y check po lynomia l o r thogona l on
x 14. To ob ta in ano the r o r thogona l po lynomia l , d iv ide z 14 + z 12 by p(z) . Then
h2(z) = z 5 + z 12 + z 14 is also a po lynomia l o r thogona l on z 14. The remain ing

o r t h o g o n a l po lynomia l s can be found similarly. The 2 4-1 - 1 = 7 po lynomia l s
are shown below:

h i (z) = z 2 + $13 _jr_ X14 h 5 (x) = x6 _~_ x 8 _~_ x14

h 2 (x) : x 5 + z 12 -Jr- z 14 h e (x) : z 1 -}- z 7 -t- Z 14

h3(x) = x 10 + z 11 + x 14 hT(x) = 1 + z s + z i4
h 4 (x) = x 4 + z 9 + x 14

6 C o m p u t i n g w e i g h t - 3 p o l y n o m i a l s

The c o m p u t a t i o n of weight-3 p a r i t y checks o r thogona l o n x n - l , by means of
long division, can be read i ly app l ied to compu te low-weight checks required for
the Meier -Sta i fe lbach a lgor i thm. However, for the Meier -Sta i fe lbach a lgor i thm
it is iaore convenient to have pa r i t y checks o r thogona l on z ~ i n s t ead of z '~-1. By
vi r tue of the fact t h a t the pa r i t y equa t ions h i (x) are codewords of a H a m m i n g
code, which is a c y c l i c code, every cyclic shift of a p a r i t y check equat ions produces

167

another valid par i ty check. For example, cyclically shifting h i (x) , and reducing
m o d (x 1~ + 1), gives:

hl(:r) = z 2 + x 18 + x14

x h l (z) -- x 3 q- x 14 -1- z 0

�9 : x ' + + (22)

In a similar way, the set of pari ty check polynomials given in (5) which is or thog-
onal on ~14, may be shifted cyclically to obta in par i ty checks or thogonal on x 0.
The shifts were done so as to obtain polynomials of lowest degree. The shifted,
rearranged set is shown below:

X 0 -[- X 1 A r- X 4

x 0 q- x 2 q- x 8

x ~ -b x a q- x 14

X0 + X5 _4_ Qr

x ~ + a: 6 + x la

x 0 + x 7 -4- x 9

X 0 -~- X 11 .~- X 12 (23)

In general, we are interested in obtaining par i ty checks or thogonal on a n y digit j
of the L F S R sequence. The checks in (23) give rise to the following set of par i ty
checks or thogonal on digit j :

XJ -~- X3q -1 q- XJ-[-4

x y + x j+2 + x j+8
xJ -1- xJ+ 3 -.1- XJ§ 14

x j q- xJ+ 1 q- xJ+ 5
xJ q- xJ+ 6 + xJ +la
x j -}- x j + 7 -b ~ i + 9

x i + xi + l l + xi +12

x y-1 + x ~ + x j+a
xY-2 q- x~ + x j+6
xJ-3 _[_ x3 -4- XJq -11

XJ-5 q- x~ q- xJ+ ~
x j - 6 --k x ~ -}- x j + 7

x J - 7 q- x3 q- xJ+ 2
x i - l l + ~3 q_ x i + 1

x j - 4 + x j - a + x~
x j - 8 + x j - 6 + xz

xJ-14 q_ xJ -11 + x ~

xJ -1~ + x j - 5 q- x3
x J - l a q_ xJ -7 + x 3
x j - 9 q_ x J -2 q_ x~
xJ -12 + xJ - I + xJ

Following Meier and Staifelbach [6], fur ther par i ty check equations may be ob-
tained by i terated squaring of the equations given in (23), for example:

[x2ht(x)] 2 = [1 + x + X412= 1 + X 2 + X8 (24)

In this way a given weight-3 pari ty cheek equat ion ean lead to several new par i ty
checks, which are all or thogonal on x ~ The "toy example" we are considering
here produces an unrealistically short sequence length of 24 - 1 = 15. As a
result, i terated squaring of the pari ty check equations in (23) does not lead to
m a n y useful equations, since the available sequence length is exceeded in most
cases. However, in a real-life si tuation values of k in excess of say, 100, may
be encountered. This give rise to a sequence length of 2 k - 1, in which case
i tera ted squaring will produce many useful equations. The division a lgor i thm
for comput ing weight-3 pari ty cheeks is briefly outlined below:

168

Division Algorithm

1. [Initialise] Choose a suitable value for the length of the subsequence T <
2 k - 1 available for analysis, and a value t,,~| < T < 2 k - 1 for the maximum
degree of the weight-3 parity checks.

2. [Setup] Set j = t6naz -- 1.
3. [Division] Use long division to divide z v'~'" + zJ by p(z) until a single-term

remainder x i is obtained. The required parity check is z ~ + zJ + z v-~a-.
4. [Exit] Set j = j - 1. If j > 0 return to Step 3. Else exit.

The division algorithm can be implemented very efficiently, since the required
arithmetic operations essentially amount to shift and mod-2 addition opera-
tions. The algorithm may be further refined by observing that as the index j
is stepped through all possible values, two sets of equivalent equations will be
obtained, since z ~ + x i + z v"~- = x i + z i + z v-*--. Hence, the algorithm may
be optimised by omitting the division operation for values of j equivalent to
previously obtained values of i. Note that once a weight-3 parity check has been
obtained, cyclic shifting produces a parity check orthogonal on any desired digit.
Also, as illustrated above, iterated squaring will give other useful parity checks.

As seen in the preceding section, the total number of weight-3 parity checks
available in a maximum-length (n, k) code is 2 k - t - 1. The complexity of the long-
division process to compute weight-3 checks from a sequence of length N = 2 k - 1
is roughly O(22k). However, in a practical situation the cryptanalyst will only
have access to a subsequence of length T << N. In this case, the computational
complexity of the division algorithm is approximately O(T2) .

For practical application of the division algorithm to sequences generated by
LFSRs of lengths of the order of 100, note that the length T of the subsequence
may be chosen independently of the maximum degree Vmaz of the parity checks
in the set (23). The value of t'rna| determines the number of division steps which
the division algorithm will perform in search for a single-term remainder. On the
other hand, the value of T essentially determines the number of parity checks of
the form x '~-t + x j which will be processed by the division algorithm. The re-
sulting computational complexity of the division algorithm is roughly 0(2 T~'~ ') .
Provided that vma~ < T, these two parameters can take on any suitable valued
which will lead to practically feasible computation times. Hence it is of interest
to obtain estimates for the values of t,,~ffi and T which will produce weight-3
parity checks with high probability.

The long division algorithm determines a value r such that the following
congruence is satisfied:

z ~ + x i + x" = 0 mod p(z) (25)

Observation of the behaviour of the algorithm for small values of 2 k indicates
that the computed values r appear to be uniformly distributed across the interval
(0, N) where N = 2 k - 1 is the total length of the LFSR sequence.

Define a hit by the event that the computed value z" falls within the sub-
sequence available for cryptanalysis, i.e. r < T and define a miss by the event

169

r > T. Assume that the number of hits in a subsequence follows a Poisson
distribution with rate parameter ~ = T I N .

Let Vmax be the maximum degree of the weight-3 parity check polynomi-
als. The probability that r < ~raax, under the negative exponential distribution
assumption, is given by

P (r < ~m~x) = 1 -- e -T~m''/N (26)

For ~'max = O(2 k/4) and a probability greater than 1 - e -1 ~ 63% of finding a
weight-3 polynomial, the length of the subsequence required by the cryptanalyst
is T = 0(k3/4). A subsequence of this size would limit the technique to values
of k less than approximately 60. Hence, we conclude that for large values of k
the computation of weight-3 parity checks is not feasible. These observations
were confirmed by computation of weight-3 parity checks for small values of k
(k < 16).

However, this rather discouraging result should not prohibit us from apply-
ing the division algorithm to search for weight-3 parity-checks. Knowing that
an exhaustive search has computational complexity o (2 T v ' ~ ') , we may still
select small values for these two parameters which result in feasible computa-
tion times. Obviously, the probability of finding weight-3 parity checks will be
very low. However, once a weight-3 parity-check has been found, it is possible
to derive several new parity checks by cyclic shifting and iterated squaring, as
demonstrated in the previous section. Also, it should be kept in mind that the
computational complexity of the division algorithm is essentially independent of
the weight of the polynomial p(z).

7 C o m p u t i n g w e i g h t - 4 p o l y n o m i a l s

The results of the previous section indicate that it is not computionally feasible
to obtain a sufficient number of weight-3 parity checks with high probability.
Hence we are forced to consider weight-4 polynomials. Fortunately, the division
algorithm can be easily adapted to compute weight-4 parity-checks. The only
difference is that a remainder consisting of two terms is required, instead of a
single term remainder, as in the case of weight-3 parity checks. The advantage is
that more than one weight-4 parity check will be found during the long division
process. Hence, the division process has to be continued after the first equation
is found. This is illustrated below.

E x a m p l e 2

Consider again the (15, 5) maximum-length code of the previous section, with
parity polynomial h(z) = p*(z) = 1 + z a + x 4. To obtain two parity check
equations of weight 4 orthogonal on x '~-1 = z 14, divide z 14 + x 12 by p(x) =
1 + z + x 4 with long division:

170

z 1 0 + zs + z r + z ~ + z ~ +

z 4 + �9 + 1) z 14 + z 12

x 14 @ x 11 4- x 10

a~ 12 -4- z 11 -4- z 10

X 12 Jr" X 9 -'l'- X 8

x 11 + x 1~ + z 9 + a: 8

X 11 @ X 8 --~ X 7

X 10 "4- X 9 -Jr X 7

z I~ + a: 7 + a: 6

z 9 -4- z 6
z 9 +,a~ 8 + a~ 5

z ~

z 5 + x 2 + a~

x v" + z (s t o p)

In this way we ob ta in two weight-4 equat ions :

X 6 " 4 - x 9 ~ - x 12 + Z 14 X W X 2 + z 12 + z 14

These two equat ions are o r thogona l on b o t h Z 14 and x 12, which has some conse-
quence for ma jo r i ty - log ic decoding. However, in the case of the Meier-Staffelbach
a lgo r i t hm this should be of l imi ted impor t ance , since i t e r a t ed squar ing of these
two equat ions will genera te fur ther equat ions , which can be selected so as to be
o r thogona l on ~14 viz. z ~

Similar to the case of weight-3 po lynomia ls , cyclic shif t ing produces pa r i ty
checks of m i n i m u m degree which are o r thogona l on z~

zo + zs + z6 + z8

z ~ + z v + z 4 + z 5 (27)

Final ly , the following set of pa r i t y checks o r thogona l on an a r b i t r a r y digi t xJ are
ob ta ined :

z j -4- x j+3 + z j+8 -4- z j+8
zJ - 3 + x j + x j+3 + xJ +5

z j - a -4- z j - 3 + xJ -4- x j+2
x j - s + z j - 5 -4- z j - 2 -4- z i

z j + ~r j+2 -I- z j+4 + z j+5
zJ -2 + x j + xJ +~ + xJ +8

zJ - 4 + x j - 2 + z j + zJ +1

X j - 5 -4- Z j - 3 -t'- Z j - 1 + X j

Note t h a t i t is also possible to genera te weight-4 pa r i t y checks by making use of
avai lable weight-3 pa r i t y checks, as follows. Consider two pa r i t y check equat ions
o r thogona l on x ~ wi th integers i, j and s, t such t h a t 0 < i < j and 0 < s < t:

+ , i + - o (rood

+ + = o (rood (28)

171

Assume tha t j > s. Then, multiplying (28) by z J - ' -- z ~ and adding it to (28)
a weight-4 equation is obtained:

z ~ + z i + z j - ~ + x t + j - ' = x ~ + z ~ + x ~ + z t+~ (29)

Else, if s > j , let ~' = s - j . Then

x0 + zt + z , - j + ~ i+ , - j = ~0 + ~t + z~' + ~i+~' (30)

Thus, in either case, if max{t + $, i + $'} < T, a useful weight-4 pari ty check
orthogonal on z0 has been found. We will make the assumption that if I~i] < T/2,
a usable relation results.

Assume that it is required to have m pari ty checks for the Meier-Staffelbach
algorithm. Let r be the number of a t tempts to compute m pari ty checks. Under
the assumption that the distance between the hits for weight-3 equations follows
a negative exponential distribution, the probability p that two successive hits
are within a distance T/2 as required for a weight-4 pari ty check, is p -- 1 -
e -,T/21v ~ rT/2N if rT << N. If r a t tempts are made, then the expected
number of usable pairs are pr = r2T/2N >_ m. A design with N = O(N 1/3)
gives r = O(Nt/3). A given value of r determines, for a fixed characteristic
polynomial, the length of the subsequence required for analysis.

Hence, if the cryptanalyst has access to a subsequence of ciphertext of length
N -- 2 k/3' with high probability a sufficient number of weight-4 pari ty checks
will be found by means of the division algorithm. In this case the computat ional
complexity of the division algorithm is approximately O(22k/3), and is essentially
independent of the number of taps of the characteristic polynomial. Hence, this
method is feasible for LFSRs lengths of approximately 100 bits.

8 D i s c u s s i o n

The computat ional complexity of Algorithm B suggested by Meier and Staffel-
bach [6] is largely due to their suggested use of "iterated squaring" for the com-
putat ion of low-weight parity checks. In this paper we show how this l imitation
may be overcome by introducing a new algorithm for the computat ion of low-
weight parity checks.

The algorithm is based on ideas for majority-logic decoding of block codes.
A statistical analysis shows that if the cryptanalyst has access to a small subse-
quence of the total keystream sequence, the probability of obtaining a sufficient
number of weight-3 pari ty checks is extremely low. Hence, one is compelled us to
consider weight-4 pari ty checks. The proposed division algorithm is able to com-
pute both weight-3 and weight-4 pari ty checks efficiently. I f the cryptanalyst
has access to a subsequence of ciphertext of length 2 k/3, with high probabili ty
the division algorithm will yield a sufficient number of weight-4 pari ty checks.
The worst-case computat ional complexity of the division algorithm for comput-
ing weight-4 pari ty checks is approximately O(22k/3), but may even be reduced

172

by judicious selection of various parameters. Thus, this method is feasible for
LFSR lengths of approximately 100 bits.

An important attribute of the algorithm is that its computational complexity
is essentially independent of the number of taps of the characteristic polynomial
of the LFSR sequence. Thus, this method makes it possible to compute low-
weight parity checks - and thus to apply the Meier-Staffelbach Algorithm B -
to stream ciphers with arbitrary-weight characteristic polynomials. Hence, the
security of a stream cipher system cannot be guaranteed by the use of char-
acteristic polynomials with a large number of taps. Consequently, if a stream
cipher comprises LFSRs of small length (/r < 100, say), utmost care should be
exercised by the designer to ensure that the correlation between ciphertext and
LFSR output is reduced to a minimum.

A c k n o w l e d g e m e n t

We would like to thank Professor J.L. Massey of the ETH in Ziirich, Switzerland,
for suggesting the use of majority-logic decoding techniques to compute low-
weight pari ty checks.

References

1. J. O. Brier, "On nonlinear combinations of linear shift register sequences", in
Proc. IEEE ISIT, les Arcs, France, June 21-25 1982.

2. C. Chepyzhov and B. Smeets, "On a fast correlation attack on stream ciphers",
in Advances in Cryptology - E U R O C R Y P T '91. 1991,
ypp. 176-185, Springer-Verlag.

3. P. R. Geffe, "How to protect data with ciphers that are really hard to break",
Electronics, pp. 99-101, January 1973. ~

4. S. Lin and D. Costello, Er ror control coding: Fundamen ta l s and appl ica-
tions, Prentice-Hall, 1983.

5. J. L. Massey, "Shift-register synthesis and BCH decoding", IEEE Trans. Infor-
mation Theory, vol. IT,15, pp. 122-127, 1969.

6. W. Meier and O. Staffelbach, "Fast correlation attacks on certain stream ciphers",
Journal of Cryptology, vol. 1, no. 3, pp, 159-176, 1989.

7. M. 3. Mihaljevic and J. Golic, "A comparison of cryptanalytic principles based on
iterative error-correction", in Advances in Cryptology - E U R O C R Y P T 'gl. 1991,
pp. 527-531, Springer-Verlag.

8. K. Nishimura and M. Sibuya, "Probability to meet in the middle", J. of Cryptol-
ogy, vol. 2, no. 1, pp. 13-22, 1990.

9. V.S. Pless, "Encryption schemes for computer confidentiality", IEEE Trans.
Computers, vol. C-26, pp. 1133-1136, November 1977.

10. T. Siegenthaler, "Decrypting a class of stream ciphers using ciphertext only",
IEEE Trans. Computers, vol. C-34, pp. 81-85, 1985.

11. K. Zeng and M. Huang, "On the linear syndrome method in cryptanalysis", in
Advance8 in Cryptology - CRYPTO '88. 1990, pp. 469-478, Springer-Verlag.

