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ABSTRACT We present a constraint-oriented state-based proof method- 
ology for concurrent software systems which exploits compositionality and 
abstraction for the reduction of the verification problem under investiga- 
tion. Formal basis for this methodology are Modal Transition Systems al- 
lowing loose state-based specifications, which can be refined by successively 
adding constraints. Key concepts of our method are projective views, sep- 
aration of proof obligations, Skolemization and abstraction. Central to the 
method is the use of Parametrized Modal Transition Systems. The method 
easily transfers to real-time systems, where the main problem are parame- 
ters in timing constraints. 

1 Introduction 

The use of formal methods and in particular formal verification of concur- 
rent systems, interactive or fully automatic,  is still limited to very specific 
problem classes. For state-based methods this is mainly due to the state 
explosion problem: the state graph of a concurrent systems grows exponen- 
tially with the number  of its parallel components - and with the number  
of clocks in the real-time case - ,  leading to an unmanageable size for most  
practically relevant systems. Consequently, several techniques have been 
developed to tackle this problem. Here we focus on the four main s t reams 
and do not discuss the flood of very specific heuristics. Most elegant and am- 
bitious are compositional methods (e.g. [ASW94, CLM89, GS9011), which 
due to the nature  of parallel compositions are unfortunately rarely appli- 
cable. Partial order methods t ry  to avoid the state explosion problem by 
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suppressing unnecessary interleavings of actions [GW91, Va193, GP93]. Al- 
though extremely successful in special cases, these methods do not work in 
general. In practice, Binary Decision Diagram-based codings of the state 
graph are successfully applied to an interesting class of systems, see e.g. 
[Br86, BCMDHg0, EFT91]. These codings of the state graph do not ex- 
plode directly, but they may explode during verification, and it is not yet 
fully clear when this happens. All these techniques can b e  accompanied 
by abstraction: depending on the particular property under investigation, 
systems may be dramatically reduced by suppressing details that are irrele- 
vant for verification, see e.g. [CC77, CGL92, GL93]. Summarizing, all these 
methods cover very specific cases, and there is no hope for a uniform ap' 
proach. Thus more application specific approaches are required, extending 
the practicality of formal methods. 

We present a constraint-oriented state-based proof methodology for con- 
current software systems which exploits compositionaiity and abstraction 
for the reduction of the verification problem under investigation. Formal 
basis for this methodology are Modal Transition Systems (MTS) [LT88] 
allowing loose state-based specifications, which can be refined by succes- 
sively adding constraints. In particular, this allows extremely fine-granular 
specifications, which are characteristic for our approach: each aspect of a 
system component is specified by a number of independent constraints, one 
for each parameter configuration. This leads to a usually infinite number of 
extremely simple constraints which must all be satisfied by a correspond- 
ing component implementation. Beside exploiting compositionality in the 
standard (vertical) fashion, this extreme component decomposition also 
supports a horizontally compositional approach, which does not only sew 
arate proof obligations for subcomponents or subproperties but also for 
the various parameter instantiations. This is the key for the success of the 
following three step reduction, which may reduce even a verification prob- 
lem for infinite state systems to a small number of automatically verifiable 
problems about finite state systems: 

�9 Separating the Proof Obligations. Sections 4 and 5 present a proof 
principle justifying the separation and specialization of the various 
proof obligations, which prepare the ground for the subsequent re- 
duction steps. 

�9 Skolemizat2on. The separation of the first step leaves us with problems 
smaller in size but larger in number. Due to the nature of their origin, 
these problems often fall into a small number of equivalence classes 
requiring only one prototypical proof each. 

�9 Abstraction. After the first two reduction steps there may still be 
problems with infinite state graphs. However, the extreme special- 
ization of the problem supports the power of abstract interpretation, 
which finally may reduce all the proof obligations to finite ones. 
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Our proof methodology is not complete, i.e., there is neither a guarantee 
for the possibility of a finite state reduction nor a straightforward method 
for finding the right amount of separation for the success of the succeeding 
steps or the adequate abstraction for the final verification. Still, as should 
be clear from the examples in the paper, there is a large class of problems 
and systems, where the method can be applied quite straightforwardly. Of 
course, the more complex the system structure the more involved will be 
the required search of appropriate granularity and abstraction. 

Whereas complex data dependencies may exclude any possibility of 'hori- 
zontal' decomposition, our approach elegantly extends to real time systems, 
even over a dense time domain. In fact, this extension does not affect the 
possibility of a finite state reduction. For the real-time case, the basis are 
Timed Modal Transition Systems (TMS) [CGL93], where (weak) refine- 
ment is decidable. The TMS tool EeS~T.oN (see again [CGL93]) can be 
used to find the refinements on demand. 

However, in this paper parametrized timed modal transition systems are 
used. Parameters may appear either in actions (so-called parametrized ac- 
tions) or in timing constraints. Due to infinite parameter sets, specifications 
may in general have an infinite number of actions. Our method however 
aims at reducing this set of actions to a (small) finite one, such that auto- 
matic analysis of the transition systems is possible. The method does not 
apply to timing parameters, although we will demonstrate how to reduce 
them in our particular examples. The main problem with timing parameters 
is that existing tools cannot deal with both, parameters and refinement. 

We demonstrate our methodology by two examples: an extremely simple 
problem of pipelined buffers, and a specification and verification problem of 
a Remote Procedure Call (RPC) posed by Broy and Lamport ([BL93]). The 
method is explained step by step by applying it first to the simple example 
and afterwards to the RPC problem in order to indicate that the methods 
scales up. Both problems have untimed and timed versions including even 
parameters in the timing constraints. The specific constellation, however, 
allows us to capture these parameters. 

The next section recalls the basic theory of Modal Transition Systems, 
which we use for system specification. Thereafter we describe the RPC 
problem. The following sections explain our method in detail. Section 4 
presents our notion of projective views and discusses the first reduction 
step. The subsequent two sections are devoted to the second and third 
reduction step, while Section 7 shows how to extend our method to real 
time systems over a dense time domain. Finally, Section 8 summarizes our 
conclusion and directions to future work. 
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2 Modal Transition Systems 

In this section we give a brief introduction to the existing theory of modal 
transition systems. We assume familiarity with CCS. For more elaborate 
introductions and proofs we refer the reader to [LT88, HL89, Larg0]. 

When specifying reactive systems by traditional Process Algebras like 
e.g. cc.q rMilRCl] nn,~ fl~fin~ th~ .q~f. nf actinn tra.n.qi*.inn~ thA.t can ha per- 
formed (or observed) in a given system state. In this approach, any valid 
implementation must be able to perform the specified actions, which of- 
ten constrains the set of possible implementations unnecessarily. One way 
of improving this situation within the framework of operational specifica- 
tion is to allow specifications where one can explicitly distinguish between 
transitions that are admissible (or allowed) and those that are required. 
This distinction allows a much more flexible specification and a much more 
generous notion of implementation, and therefore improves the practicality 
of the operational approach. Technically, this is made precise through the 
following notion of modal transition systems: 

Defini t ion  2.1. A modal transition system is a structure S = (E, A, --~o 
,--4o) , where E is a set of states, A is a set of actions and -40, --~0_C 
Z • A • Z are transition relations, satisfying the consistency condition 
-~ oC ~ o. [] 

Intuitively, the requirement ~OC~O expresses that anything which is 
required should also be allowed hence ensuring the consistency of modal 
specifications. When the relations --+ [] and --~0 coincide, the above defini- 
tion reduces to the traditional notion of labelled transition systems. 

Syntactically, we represent modal transition systems by means of a slight- 
ly extended version of CCS. The only change in the syntax is the introduc- 
tion of two prefix constructs ao.P and a O.P with the following semantics: 
ao.P - ~  P ,  ao.P -~ [] P and ao.P -~0 P. The semantics for the other 
constructs follow the lines of CCS in the sense that each rule has a version 
for --+ [] and --+0 respectively. We will call this version of CCS modal CCS. 

As usual, we consider a design process as a sequence of refinement steps 
reducing the number of possible implementations. Intuitively, our notion 
of when a specification S refines another (weaker) specification T is based 
on the following simple observation. Any behavioural aspect allowed by S 
should also be allowed by T; and dually, any behavioural aspect which is 
already guaranteed by the weaker specification T must also be guaranteed 
by S. Using the derivation relations --~ [] and --~0 this may be formalized 
by the following notion of refinement: 

Defini t ion 2.2. A refinement T~ is a binary relation on ~ such that when- 
ever S T~ T and a G A then the following holds: 

1. Whenever S -~0 S~, then T 2-~ 0 T'  for some T ~ with S ~ 7~T', 
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2. Whenever T -5,o T', then S -5,o S' for some S' with S' R T ' .  

S is said to be a refinement o fT  in case (S, T) is contained in some refine- 
ment R. We write S ,~ T in this case. [] 

Note that when applied to traditional labelled transition systems (where 
-~=--+~=--%) this defines the well-known bisimulation equivalence 
[Par81, MilS9]. - Using standard techniques, one straightforwardly estab- 
lishes that < is a preorder preserving all modal CCS operators. 

allows loose specifications. This important property can be best ex- 
plained by looking at the 'weakest' specification L/constantly allowing any 
action, but never requiring anything to happen. Operationally, U is com- 
pletely defined by U 2+0 U for all actions a. It is easily verified that S ~/4 
for any modal specification S. 

Intuitively, S and T are independent if they are not contradictory, i.e. 
any action required by one is not constraint by the other. The following 
formal definition is due to the fact that for S and T to be independent all 
'simultaneously' reachable processes S' and T' must be independent too: 

Defini t ion 2.3. An independence relation 7Z is a binary relation on Z 
such that whenever S 7~ T and a 6 A then the following holds: 

1. Whenever S 2+ [] S', there is a unique T' such that T 2+0 T' and 
S' IZ T', 

2. Whenever T 2+o T', there is a unique S' such that S 2+<> S' and 
S' R T', 

3. Whenever S 2+<> S' and T 2+0 T' then S' 7~T'. 

S and T are said to be independent in case (S, T) is contained in some 
independence relation R. [] 

Note in particular that two specifications are independent if none of them 
requires any actions. Independence is important, as it allows to define con- 
junction on modal transition systems by: 

S 2+ [] S' T 2+<> T' S 2+0 S' T 2+ [] T' 

SAT -~D S'AT' SAT 2+[] S'AT' 

S 2+<> S' T --5, 0 T' 

SAT --5,0 S'AT' 

Of course, S A T is always a well-defined modal specifications (i.e. any 
required transition is also allowed), and in fact, for independent arguments 
S and T it defines their logical conjunction: 
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T h e o r e m  2.4. Let S and T be independent modal specifications. Then 
S A T < S and S A T < T. Moreover, if R < S and R < T then R < S A T. 

In order to compare specifications at different levels of abstraction, it is 
important to abstract from transitions resulting from internal communica- 
tion. 

This co.. ~. be done ~ usual: For a ~ven modal transition system S = 
(Z,AU {v}, -~D, --~0) we derive the modal transition system St = (E, AU 
{e}, =~o,=%), where ~ D  is the reflexive and transitive closure of Z-~D, 
and where T ~ [] T', a ~ e, means that there exist T", T"' such that 

T =~ [] T" -~ [] T" '  :~ [] T' 

The relation 0<> is defined in a similar manner. 
The notion of weak re/]nement can now be introduced as follows: S 

weakly refines T in S, S ~ T, iff there exists a refinement relation on 
8e containing S and T. 

Weak refinement _ essentially enjoys the same pleasant properties as <: 
it is a preorder preserved by all modal CCS operators except + [HL89] (in- 
cluding restriction, relabelling and hiding). Moreover, for ordinary labelled 
transition systems weak refinement reduces to the usual notion of weak 
bisimulation (~). 

In our examples, we will deal with weak refinement and (in general) 
infinite action sets. In the context of weak refinement, forbidding internal 
v-actions in a constraint is a severe and unnatural restriction. We therefore 
consider only saturated versions of specifications, which always allow v- 
steps by having v-may-loops at each of their states. Note that each process 
S can easily be saturated by adding v-loops. Moreover, a process S and its 
saturated version S + are mutual weak refinements of each other: 

S ~ S + and S+ ~_ S 

Thus they are substitutive in the context of parallel composition and hiding. 
The restriction to saturated specifications, therefore, does not cause any 
limitation in our setting. 

The use of saturated transition systems has a major technical advantagei 
the definitions of conjunction and independence work for weak refinement 
in the same way as before for strong refinement. This is not true in the 
general case, which requires tedious adaptations. 

Thus let us assume in the following that all transitions systems are sat- 
urated. This guarantees the validity of some important rules: 

P ropos i t ion  2.5. Assume a (possible infinite) index set I,  a subset J C I, 
a set L of actions, two families of modal transition systems Si, Ti (i E I) and 
a modal transition system T. Let the families Si, T~ be pairwise independent, 
as well as the processes (S~ I T).  Then the following laws for conjunctions 
hold: 
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1. Adding constraints refines a specification: 

hs, _ A 
i E l  JEJ  

~. Conjunction is preserved by refinement: 

23 

vi e r(s, < T,) ~plies A s, < A T, 
iE1 i E l  

3. Conjunction distributes over parallel composition: 

(A &)lit ~_ A(S~I1T) and 
iE I  i E l  

A(SdlT) -< (A s011T 
iE1 iE I 

4- Conjunction distributes over restriction: 

iE l  i E l  ~EI iE1 

The proofs for all these claims are straightforward. As an example, we give 
a proof for the left hand side of the third part. 

Starting from (A~ez si) t T it is immediate for any j E I that 

iEI  

holds. As this is independent of j ,  we directly find that (AiEI Si) I T is a 
refinement of the conjunction A~eI(S~ [ T). [] 

In our examples, certain patterns of modal transition systems will be found 
frequently. Assuming an action set Act and subsets a,/~ and 7, Fig. 1 
depicts two of these patterns, which will be used in our examples. We use 
the following "abbreviations" for these transition systems: 

AG~ -~ a (1.1) 

for the left hand side transition system and 

AG,o~ ([a] AG~ ~ ~ ) (1.2) 

for the right hand side system. 
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13 \ a r" k ~  Act \ a 

U __" Act \(a u 13 u y ) f  

[ Act \ (a  u I~) I I a 

FIGURE 1. Typical Patterns of Modal Transition Systems 

The intuition behind these transition system is "as long as only actions 
from/~ are taken, no actions from a may be allowed "~ and "after an action 
from a has been taken, no actions from ~ are allowed as long as we only 
traverse actions from 7"- The given "abbreviations" are in fact formulae 
of a parameterized version of CTL. As we cannot discuss the relationship 
between CTL and modal transition systems here, the interested reader 
is referred to [CES83] for standard CTL and to [Ste93] to learn about an 
extension of CTL which is powerful enough to capture the considered modal 
transition systems. 

3 The Remote Procedure Call Problem 

We demonstrate our method by applying it to a specification problem given 
by Broy and Lamport.  Due to space limitations we can only present part  
of the problem. 

The original problem consists of a memory component and an R P C  mech- 
anism. The memory component accepts read and writes from several pro- 
cesses, and returns the requested values (none in case of write) or raises an 
exception. The only exception here is memory ]allure, i.e. the memory could 
not read from/write  to the hardware. A component in which exceptions do 
never occur is called a reliable memory. 

The processes are connected to the memory component via an RPC (Re- 
mote Procedure Call) mechanism. The RPC mechanism simply forwards 
calls from the processes to the memory, and returns from the memory to 
the processes. The RPC should be transparent to the user, i,e. the composi- 
tion of the memory component and the RPC should be an implementation 
of the memory. This is what we will call the untimed R P C  problem. 

In the real-time case, the time to forward calls and returns by the RPC 
should be no more than J. Further an exception should be raised if a call 
to the RPC does not return within 26 + e seconds. We will prove that  if all 

2 Actions outside/3 can be regarded as ways to escape the 'universal' proof obligation, 
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calls to a reliable memory  return within r seconds, then the composition 
of the RPC and the reliable memory  is an implementat ion of the reliable 
memory. This is the timed RPC problem. 

The following is an informal specification of the memory  component M,  
concentrating on write calls only. We assume sets p r o c I d  of process iden- 
tifiers, memLocs of memory  locations and memVals of memory  values, with 
typical elements id,  l oc  and v a l  resp. We will often use Z as an abbrevia- 
tion for the product  of the three sets, i.e. Z := p r o c I d  • memLocs • memVals, 
with typical element z E Z. 

The events occurring in the memory  component  are described by param- 
eterized actions, taking arguments from p r o c I d ,  memLocs and memVals. 
The actions of M are: 

mWr(id, loc ,  va l )  : 

w r i t e ( i d ,  loc ,  v a l )  : 

nfftetWr(id) : 

mFail(id) : 

write-call from process id  of value v a l  to 
location 1oc 
atomic write of value v a l  to location l o c  
initiated by process id  
send return from a write-request to 
process id  
signal memory  failure to process id  

The I /O-behaviour  of the memory component M is given in Fig. 2. 

mWr(id, Ioc, val) _, 
~1 Memory I Intemal id in Procld Ioc in MemLoc 

* ~  Component write(id, Ioc, val) val in MemVal 
mRetWr(id) 
mFail(id) 

FIGURE 2. I/O-Behaviour of Memory Component 

The specification of the (reliable) memory  component  is a conjunction 
of the following properties: 

P0  The memory  component  engages in actions only when it is called 

P1 Each write operation (successful or not) performs a sequence of zero 
or more atomic writes of the correct value to the correct location 
at  some t ime between the call and return. For a successful write 
operation, there must  be at least one atomic write. 

P2  A memory  failure is never raised. 

Clearly, the memory  component  M is specified by the conjunction of P0  
and P1,  while the reliable memory MR is the conjunction of the M and 
P2. Note tha t  for fixed id  the last property can be easily specified by 
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�9 .u..[~.~ !oc, va!) 

rRetWr'(id) 
r-'F-a~'l( i d) 

mWr(id, loc, val) 

A G , ~ t  -- { mFail(id) } 

The R P C  R simply hands calls and returns (including the memory  failure 
exception) through. These are the actions of the RPC: 

: remote .wri_'_te of value v a l  to location l o c  issued 
by process id  

: re turn from remote write issued by process id  
: RPC returns an exception from a call issued by 

process id  
: send a write of value v a l  to location l o c  

initiated by process id  
mRetWr(id) : return from a write initiated by process id 
mFail(id) : memory component raised a memory failure 

The I/O-behaviour of the combined components can be depicted as in 
Fig. 3: 

rWr(id, Ioc,val) mWr(id, Ioc, val) 

_- , C o m p o n e n t  ,_ C o m p o n e n t  I writer, d, ~ ,  v ~  
d ~ W r ( ' ~  mRetWr(id) 
rFail(kl) mFail(id) 

FIGURE 3. Combination of RPC and Memory 

In the next  sections, we will explain our method directly using a much 
simpler example. At the end of each section we show how our method 
transfers to the RPC problem. We star t  with the untimed case. 

4 Projective Views 

In the following, we present, motivate and clarify our proof methodology by 
means of a minimal example, which is just sufficient to explain the various 
phenomena. 

Consider the parallel system in Fig. 4. Here two parameterized, dispos- 
able component media (supposed to transmit natural numbers) A and B 
are composed in parallel yielding a pipeline. Informally, the component A 
is supposed to input a natural number on port a, then output this number 
on port b after which it will terminate. The behaviour of B is similar. Using 
modal transition systems, the parallel system may be expressed as follows: 

.4 B 
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" " 

FIGURE 4. A Pipe Line of Two Disposable Media 

The behaviour of A and B are given by the two infinite-width transit ion 
systems of Fig. 5. However, rather  than  using these direct specifications of A 

A B 

o o o  o O  �9 

FIGURE 5. Behaviour of A and B. 

and B we specify the two components behaviour using projective views An 
and Bn; one view for each possible natural  number  n. The projective view 
An specifies the constraints on the behaviour of the component  A when 
focusing on transmission of the value n; this constraint can be expressed 
as the modal transition system An given in Fig. 6(where we use solid lines 
for must-  and dotted lines for may-transit ion).  

a#n." ......... 

All"" an bn 
D 

FIGURE 6. Projective View An 

Here a~n denotes all labels of the form am where m ~ n; also L{ denotes 
the universal modal  transition system constantly allowing all actions. Note 
tha t  this 'n - th  view' imposes no constraint on the behaviour of A when 
t ransport ing values different from n. The complete specification of the com- 
ponent A is the conjunction of all projective views 3 An. In fact it is easy 
to establish the following facts: 

A~_AA . and AAn<~A (1.3) 
n n 

aNote that all the projective views of A are pairwise independent, 
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where A refers to the (infinite) transition system of Fig. 5. Obviously, we 
may obtain similar projective views Bn for component B. 

Let us now consider the problem of verifying that  the overall system 

(AIB)  \{b} is observationally equivalent to the system C ar l~g .~x  (i.e. a 

slightly different disposable media). As A, B and C are standard transitions 
systems, i.e., everything allowed is also required, this problem is equivalent 
to showing 

Thus (1.3), together with the observation that  also C may be expressed as 
a conjunction of an infinite number of constraints Cn, leaves us with the 
following refinement problem: 

(Aa., AB.)\{b} Ao. (,.4) 
n n n 

4.1 Application to the RPC problem 

We give modal transition systems for the specification of properties P0,  P1 
and P2  of the memory component. Therefore we split P1 into two proper- 
ties Pla, Plb meaning 

Pla A write-call from process id  cannot return unless an atomic write is 
performed. 

Plb As long as a write-call from process • has not returned, no atomic 
write to a wrong location or of a false value occurs 

The labels in the following specifications are sets of actions (called ab- 
stracted actions). A single action is a shorthand for the set containing this 
and only this action. For the other sets, we use the usual set-theoretic 
connectives, and a dot-notation, where a parametrized action with dots as 
parameters means "the set of all actions where the dotted position is re- 
placed by all legal values for the parameter",  e.g. for a fixed id  E p rocId ,  
mWr(id,., .) is the set {mWr(id, loc, val) I loc e memLocs, val E memVals}. 

The properties Pla and P1b are easily expressed by the following abbre- 
viations of modal transition systems: 

Our specification assumes that  calls from different processes are handled 
concurrently. As calls from different processes do not interfere, no actions 
parametrized with an identifier other than id  is constrained in the speci- 
fications of calls from process id. This is modelled by allowing all actions 
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with an identifier different from the fixed id  in any state. Instead of adding 
to each s tate  a loop where all these actions are allowed, we draw boxes 
meaning "a state with a loop for all non- id  actions". By this the con- 
junction of the specifications for all processes is the same as their parallel 
composition. 

The modal  transition systems which specify the propert ies for a fixed 
value id  are given in Fig. 7. 

PO(id,loc, val) P1 a(id,loc,val) Plb(id, Ioc, val) P2(id,loc,val) 

rnRetWr(id) 

mWrlid,.,.) 
| 
! 
! 

. . . .  

$ , 
! | 
�9 . . . .  R 

wr(id,.,.) 

Act \ mWr(id,.,.) 
I . . . .  t 

wrOd,.,.l_L, ! 

,, 
mWr(id,.,.) 

I 

. . . .  

! , 
�9 . . . .  : 

mWrl!d,.,.) 
umFnil( id) 

Act \ mWr(id,loc,val) 
R ' ' ' ' t  

! 

mF=lOa) : ' " "  -" --! 
J 

! | 

mWr(id,loc,val) . . . . . .  
,' Act \ mFail(id) 

mWr(id,.,.)w~ . . . .  : 
wdte(id,loc,vai) 

FIGURE 7. MTS for properties P0, Pla, Plb and P2 

The transition systems for Pla ,  P l b  and P2  are the expansions of the 
"abbreviated" transit ion systems (cf. Fig. 1), while the transit ion system 
for P0  was defined directly. Note that  only P l b  really depends on l o c  and 
va l ,  and tha t  the properties PO, P la ,  P l b  and P2 are the conjunctions of 
the above modal specifications over all z E Z. 

Let M ( z )  be the conjunction PO(z) A P la ( z )  A Plb(z ) ,  and MR(z)  = 
M(z )  A P2(z) .  The memory  component M is the conjunction of M(z )  over 
all z E Z. 

Let hc t  be the set of all actions. For two sets R C hc t  (return set) and 
T C Act (tolerance set), a state s and actions a ] , . . .  , am E Act. Then we 
use the following macro state for the specification of the RPC: 

Here the edges leaving the "macro state" can be either may-  or must-  
transition. 
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For a given transition system with start  state so and an auxiliary state 
s ~ not already in the transition system, this is meant to expand to 

, ,  R r'-iA  R 

" +,i 
TX{al ..... am.}: , ~ : - -  

i.e. state s tolerates any action from T. If the behaviour of a tolerated action 
is already specified by an outgoing edge, nothing new happens. Otherwise, 
the system goes to the auxiliary state s *, where it accepts any action until 
a return action (from R) occurs. Return actions take the system back to 
the start  state. 
There are two main projective views of the RPC. In the first view, a write 
is handed through and a return received from the memory. In the second 
view, instead of a return a memory failure is received. These two views 
R l ( id ,  loc ,  va l )  and R2(id,  loc ,  va l )  are given in the following picture: 

R1 (id, Ioc, val) 

rWr(id,loc,val) .~--~ mWr('d,loc,val) 

R2(id, Ioc, val) 

~ ~  rWrC~,loc,val) ~ mWr('~,loc,vall 
i rFail(id) I mRet(id) 

mRetWr(id)=l~]_ ~ 

mFail(id) =~ 
The sets in the macro states are defined as follows: 

r C a l l  ( i d )  := rWr(id,. ,  .) 
fRet (id) := r R--Re-EN-r( i d) U r--F-a~( • d ) 
mRet(id) := mRetWr(id) UmFail(id) 

While i t  is natural to use must-transitions in this spedfication, the lack 
of must-transitions in the memory component allows us to weaken these 
must transitions to may transitions without affecting the correctness of a 
successful proof. This guarantees the weU-definedness of conjunction, as all 
our specifications are now independent. 

Let  R(z) := Rz(z) A R2(z). The untimed specification of the RPC R is 
the conjunction of R(z) over all z. 
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Let f be a relabelling mapping all actions of the RPC to the appropri- 
ate actions of the memory component, and A := rWr(.,., .) U rRetWr(.) U 
rFai l ( . )  and H := wr• .). Then the untimed verification problem is 

(RIM]H) \A[ f  ] ~ M/H (1.5) 

where the internal actions of the memory (i.e. the atomic writes) are hidden. 

5 Sufficient Proof Condition 

As a conjunction is a refinement of every of its components (cf. Prop. 2.5), 
the proof of (1.4) can be reduced to the verification of 

iEN iEN 

for each natural j .  Note that this is even a necessary condition for our 
claim. 

This reduction alone would not gain much. Here however it turns out 
that it is sufficient to verify 

VjEN. (A j lB j ) \ {b  } ~ Cj (1.6) 

which is intuitively clear as transmitting j through the pipeline only de- 
pends on transmitting j through its components. 

The fact that (1.6) is sufficient follows from a general proof principle be- 
hind the reduction. The idea is that there is a typical pattern of refinement 
we need to establish. This pattern consists of a large conjunction A Cj 
on the right side, and a parallel composition of large conjunctions on the 
left side (with possible restriction). To establish such a weak refinement, 
it is sufficient to establish the refinement for each conjunct Cj. However, 
concentrating on a specific component Cj, a lot of the details of the im- 
plementation on the left side can (hopefully) be disregarded, thus it will 
be sufficient to restrict the proof to subsets of the conjuncts in the parallel 
components of the left hand side. These subsets will generally depend on 
j .  

This is formalized by the following sufficient proof condition: 

T h e o r e m  5.1. Assume index sets 11,... Ik,I, and modal transition sys- 
tems A~,C~(s E {1 . . . . .  k},i EIt, j E I). If there are subsets Itd C h for 
each t E {1 , . . . ,  k} and j E I, such that 

VjEI .  ( A A ~ I " I  h A~)\L ~_ c~ (1.7) 
iEIl,j iElt,j  
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( A A~ ] ... ] A A~ )\L ~ A Cj (1.8) 
JEll  iEI~ j E I  

Proof. Starting from the assumption (1.7) for an arbitrary j ,  we can shift 
all conjunctions from the inside of the formula out by using distributivity 
of conjunction over parallel composition and restriction: 

A ( A A l...I 
il EI I , j  ,... ,i~ EI~,j  JEll  d 

Conjuncting (1.9) over all j E I gives us 

A (A~, 1... IA,~)\L ~_ 
�9 w �9 o ~1 EI1,.. .  ,*~ EI~, 

A A~)\L 
ie*~,j (1.9) 

Aci 
j E I  

for subsets I t C_ It. As adding constraints refines a specification, the fol- 
lowing is a refinement of the left hand side: 

A (A~, [... [A~)\L 
Q EI1 ,.., ,i~,El~ 

Using the distributivity of conjunction over parallel composition and re- 
striction once more, this can further be refined to 

( A I A A )\L 
iE l l  iEl~. 

Finally, the transitivity of ~ allows us to combine the last three lines in 
order to establish our claim. [] 

Of course, in general the power of this proof principle strongly depends on 
a good choice of the It,j, which was trivial in our example. 

5.1 Application to the RPC Problem 
With the same argumentation, to prove (1.5) it is sufficient to show 

VzEZ. (R(z) IM(z)/H)\A[f ] <J M(z)/H (1.10) 
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6 Skolemization and Abstraction 

So far we have reduced the overall verification problem of (1.4) to that  of 
(1.6). At first sight this doesn't seem much of a reduction as (1.6) requires 
a refinement proof to be established for each natural number. Fortunately, 
these proofs are not really sensitive to the actual value of the natural num- 
ber n. Letting k be an arbitrary natural number (or a Skolem constant) it 
suffices to prove: 

( A k l B k ) \ { b }  ~_ Ck (1.11) 

in order to infer (1.6). Thus we are now left with the problem of establishing 
a single refinement. But still, though finite state the specifications Ak and 
Bk both have infinitely many transitions (as ar is an inifinite label set). 

However we can find an equivalence relation on the actions of the com- 
ponents which is of finite index, but still fine enough to establish the proof 
goal. Replacing a system with a new one gained by collapsing w.r.t, an 
equivalence relation is called abstraction. 

In the following, Is]- is the equivalence class of s under =. 
If the equivalence relation is understood from the context, we write Is]. 
In general, an equivalence relation on states and transitions is needed, 

but for the examples here an equivalence relation on transitions suffices: 

De f in i t i on  6.1. Let P be a TMS over an alphabet Act with transition 
relations --~ o, -'~0. Each equivalence relation =_ on Act induces a collapsed 
TMS P -  over the alphabet Act-  := {[a]la e Act} and transition relations 
--+ ~ ,  --~ ~ defined by 

a 

P ---~ O P ~ P -~ 0 P' 

[_~ t t [_~ to pS P o P  P 

An equivalence relation =- on Act /s compatible with P iff for all a' E [a] 
and all reachable states p, pl of P: 

a' pt 
P--~OP'  iff p a - ~ O p '  and p 2 ~ o p '  iff p - - ~ r  

Compatible equivalence relations satisfy the following three properties: 

Propos i t ion  6.2. Let P and Q be two TMS's and - an equivalance rela- 
tion on their common alphabet compatible with P and Q. Then the following 
holds: 

1. P -  ~_ Q -  implies P ~_ Q, 

2. if [r] = {r} then = is compatible with P [ Q, 
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if [v] = {v} and for L C Act and every a E Act either [a] N L = [a] 
or [a] 0 L = {~4, then =_ is compatible with P \ L. 

Proof. 1. P-- ~_ Q -  implies the existence of a weak refinement relation 
between the states of P--- and Q- .  As no states are collapsed, we can use 
the same relation to establish P _ O exploiting its compatitiblity: 

If O requires an a-step, then Q -  requires an [a]-step by definition. As P -  
is a weak refinement of O--, it requires an [a]-step as well. Thus by definition 
P requires an al-step for some a I 6 [a]. Compatibility now guarantees an 
a~-step for every a' E [a], in particular for a itself. 

The part  for may-transitions follows analogously. 
2. Assume P [ Q  -~ [] P' [Q'. Then we must show that  for all a ~ E [a] we 

have P [ Q - ~  o P' [ Q' as well. 
If a -- r ,  then [a] = {a}, so a' = a. Thus the proposition is true. 
If a r r ,  then w.l.o.g. P -%, [] P '  and Q = Q', and the compatibility of 

t~t I 

= with P guarantees P ~ [] P ' ,  and therefore P I Q - ~  [] p t  I Q'. 
The proof for -~0 follows the same lines. 

3. Assuming P \ L _2~ [] p ,  \ L, it suffices to show P \ L 2~  [] p ,  \ L for 
al l  a I e [a]. 

If a = 7-, then by the same argument as above a ~ = a, and the proposition 
holds. 

If a # r ,  then a ~ L and P 2+ [] p, .  Thus the compatibility yields P -?~ [] 
a t 

P' ,  and therefore P \  L --4 ca P ' \  L, as the condition in 3. guarantees a'  r L. 
The part  for 2% follows along the same lines. [] 

This Proposition allows us to reduce verification problems for infinite sys- 
tems to problems for finite systems, as soon as an appropriate equivalence 
relation can be found. 

For our example, let us consider the equivalence relation _-:-:-:- defined by 
xk - xk and xl = xj  whenever i , j  ~ k, where x ranges over {a, b, c}. 
Further v builds an equivalence class of its own. 

Obviously, - is compatible with Ak, Bk and Ck. As further all conditions 

of Prop. 6.2 are met, = is also compatible with ( Ak- I Bk-  ) \ {b}. Thus the 

verification of (1.4) can further be reduced to the refinement proof between 
the finite -=--abstracted versions of Ak, Bk and Ck 

(Ak ~ l B , ~ ) \ { b }  ~ Ck ~ (1.12) 

which can easily be done by means of the automatic verification tool Ep- 
SILON. 

4i.e. L is union of  some equivalence classes 
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6.1 Application to the RPC Problem 

Instead of proving (1.10) for all z, a proof for a prototypical z is sufficient 
here. Most of the abstraction is already carried out by using abs t rac ted 
actions. Note however that  the  abstracted act ions are in general not  the  re- 
quired equivalence classes. For the R.PC problem e.g. w r i t e ( z )  is an equiv- 
alence class of its own, and the set ~ c i t e ( i d , . ,  .) \ w r i t e ( z )  is another  
equivalence classes. This specific parti t ioning of the atomic write actions 
reflects the fact tha t  we must  distinguish between a write of the correct 
value to the correct location and all other writes from the same process. 

Looking at the diagrams of Sect. 4.1 easily reveals tha t  the resulting 
transit ion systems are small and easily in the range of the EPSILON too1. 

7 Specifications with Time 

The above examples can be extended to deal with real time. For the spec- 
ification we use Wang Yi's Timed CCS (see [Yi91]) together with modal  
specifications. For details on these so called Timed Modal Specifications see 
[CGL93]. This method can be used with any totally ordered t ime domain, 
while in the following we will assume the positive real numbers. 

The passing of time is modelled by a delay action e(d), where d is a 
positive real number.  The intuitive meaning of such a delay is tha t  a t ime 
amount  of d passes until the end of this action. Normal actions are enabled 
immediately, and can be taken at any time. As an example, the process 
aox.r can execute aox at any time. Thereafter  it must  delay for at 
least two t ime units before it can engage in box. 

Further we assume maximal progress, i.e. a communication must  be per- 
formed as soon as possible. Put t ing aox.e(2).box in parallel with 
-ff'~x.c(3).bnx would force the communication via channel a to take place 
immediately, and the communication via channel b to happen after exactly 
three t ime units. 

For our specification, the macro all, u] is convenient, where a is an action 
and l, u are real numbers with I < u. The intuition is that  a process a[l, u].P 
may enable a after l t ime units and must enable a after u t ime units. In 
other words, communication via a may  be possible after at least ! t ime 
units, and will be possible at any time after u t ime units. 5 This macro  is 
defined as all, u].P = (z(l).ao + r 

In our examples, the lower bound is always zero. The graphical presen- 
tat ion we use for a[O,u].P is: 

~Note that u is not a time-out, but a switching point between a may and a must 
reuirement ! 
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Let d be a fixed real number. Then we specify a timed process A(d), which 
reads port a and subsequently outputs its input onto port b within d time 
units, by a[::lx.'bx[O, d]. Note that this is a timed version of process A. The 
same construction gives timed versions B(d) and C(e 0 of B and C. 

We are now going to establish that a 'pipeline' with two components 
with delay d should not be slower than one component with delay 2d, i.e. 

(A(d)]B(d)) \ {b} ~ C(2e 0 

The same method as in the untimed case reduces the situation to 

(Ak~(d) I Bk-(d)) \ {b} ~_ Ck~-(2d) 

for a Skolem constant k and the equivalence relation of the previous section. 
Now, given a specific value for d this proof can be carried out using the 
EeS~r, ON tool, which treats real valued timer domains by means of the clock 
region automaton technique (see lAD94] for details). This technique relies 
on integer values for all explicit timer constants in the specification, which 
can be achieved by multiplication with an appropriate constant in most 
applications. As all timer constants are multiplied by the same constant, 
this does not affect the principle behaviour of the system. In our example, 
the obvious choice for this constant is l/d, leaving us with the following 
refinement problem 

(Ak~'(1) lBk--(1)) \ {b} _~ Ck-(2) 

which can be solved using EPSILON. 
Note that this proof indeed covers the statement for any d. Thus even in 

the presence of real time, the original verification problem is reduced to a 
very simple, automatically solvable problem. 

7.1 Application to the RPC Problem 
The following is a timed version of R1, where passing through the calls and 
returns takes not more than J seconds: 
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Rl(id, Ioc, val) 

rWr(id, loo,vsl) �9 m'~'(id, loo, val) mR~t~Nr(id) r R ~  

~mWr(Id,loG,val) 

Note that  actions without a timing constraint are enabled at any time. The 
timed version of R2 is defined analogously (although unnecessary for the 
reliable memory). Call the timed RPC R 6. 

In the same way as the RPC we specify a demon which signals a failure if 
a call to the RPC does not return within 2~ + E seconds. The actions of the 
demon are the same as those of the RPC, only the prefix r is replaced by 
a d. Timeout  is modelled by a T-transition. The specification of the demon 
D1 (z) is 

D(id, Ioc, val)  dRetWr(id) 

dWr(id,loc, val) t_r- ~ rWr(id,loc,val) 

'*'1 dC~ll(id) dFail(id) 

To define a timed reliable memory, we only need to alter property P0 by 
requiring the return to occur within ~ time. This is done by the following: 

, , . . . .  , 1 

m---F'~0d} 

We call the resulting timed specification of the reliable memory M~. The  
timed verification problem then is 

( D2'~+e I R61 M~/H ) \a[f] "~ MR/H 

Note that  the memory on the right hand side is the "untimed" MR, where 
we interprete all actions to be enabled all the time. Further the set A 



38 Kim G. Larsen , Bernhard Steffen , Carsten Weise 

and the relabelling f have to be adjusted. This problem can once again 
be reduced by our method to a problem concerning transition systems of 
small size, as we only need to look at a prototypical z. 

However, having two parameters 6 and e in the timing constraints, the 
standard multiplication trick is not sufficient to produce a parameterless 
situation. Luckily, this particular example is equivalent to a one parame- 
ter problem: computing R ~" . . . . . . . . . . . . .  I ~ k / ~  by nana one nnas a transiton system, 
which can be regarded as parameterized in 2(f + e only. Now the previously 
used multiplication trick is applicable opening the problem to automatic 
verification by means of EPSH, ON. 

8 Conclusion and Future Work 

We have introduced a new constraint-oriented method for the (automated) 
verification of concurrent systems. Key concepts of our 'divide and conquer' 
method are projective views, separation of proof obligations, Skolemization 
and abstraction, which together support a drastic reduction of the com- 
plexity of the relevant subproblems. Of course, our proof methodology does 
neither guarantee the possibility of a finite state reduction nor a straight- 
forward method for finding the right amount of separation or the adequate 
abstraction. Still, there is a large class of problems and systems, where the 
method can be applied quite straightforwardly. Typical examples are sys- 
tems with limited data dependence. Whereas involved data dependencies 
may exclude any possibility of 'horizontal' decomposition, our approach 
elegantly extends to real time systems, even over a dense time domain. In 
fact, the resulting finite state problems can be automatically verified using 
the EPSmON verification system. All this has been illustrated using a sim- 
ple example of pipelined buffers. Our experience indicates that our method 
scales up to practically relevant problems, as demonstrated by the problem 
of the transparent RPC. 

Beside further case studies and the search for good heuristics for proof 
obligation separation and abstraction, we are investigating the limits of 
tool support during the construction of constraint based specifications and 
the application of the three reduction steps. Whereas support by graphi- 
cal interfaces and interactive editors is obvious and partly implemented in 
META-Frame, a management system for synthesis, analysis and verification 
currently developed at the university of Passau, the limits of consistency 
checking and tool supported search for adequate separation and abstraction 
are still an interesting open research topic. 

As pointed out, one major problem are parameters in the timing con- 
straints. We are currently investigating methods - similar to the approach 
presented for parametrized timed automata in [AHV93] - for checking 
bisimulation and (weak) refinement for parametrized modal transition sys- 
tems. 
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