
A Constraint Oriented Proof
Methodology Based on Modal
Transition Systems
Kim G. Larsen*
Bernhard Steffen t
Cars ten Weise~

ABSTRACT We present a constraint-oriented state-based proof method-
ology for concurrent software systems which exploits compositionality and
abstraction for the reduction of the verification problem under investiga-
tion. Formal basis for this methodology are Modal Transition Systems al-
lowing loose state-based specifications, which can be refined by successively
adding constraints. Key concepts of our method are projective views, sep-
aration of proof obligations, Skolemization and abstraction. Central to the
method is the use of Parametrized Modal Transition Systems. The method
easily transfers to real-time systems, where the main problem are parame-
ters in timing constraints.

1 Introduction

The use of formal methods and in particular formal verification of concur-
rent systems, interactive or fully automatic, is still limited to very specific
problem classes. For state-based methods this is mainly due to the state
explosion problem: the state graph of a concurrent systems grows exponen-
tially with the number of its parallel components - and with the number
of clocks in the real-time case - , leading to an unmanageable size for most
practically relevant systems. Consequently, several techniques have been
developed to tackle this problem. Here we focus on the four main s t reams
and do not discuss the flood of very specific heuristics. Most elegant and am-
bitious are compositional methods (e.g. [ASW94, CLM89, GS9011), which
due to the nature of parallel compositions are unfortunately rarely appli-
cable. Partial order methods t ry to avoid the state explosion problem by

"University of A alborg, BRICS, kgl@iesd, auc. dk
?University of Passau, steffen@fmi .uni-passau.de
University of Technology Aachen, carsten@informat ik. r~rth-aachen.de

I In contrast to the first reference, the subsequent two papers address compositional
reduction of systems rather than compositional verification.

18 Kim G. Larsen, Bernhard Steffen, Carsten Weise

suppressing unnecessary interleavings of actions [GW91, Va193, GP93]. Al-
though extremely successful in special cases, these methods do not work in
general. In practice, Binary Decision Diagram-based codings of the state
graph are successfully applied to an interesting class of systems, see e.g.
[Br86, BCMDHg0, EFT91]. These codings of the state graph do not ex-
plode directly, but they may explode during verification, and it is not yet
fully clear when this happens. All these techniques can b e accompanied
by abstraction: depending on the particular property under investigation,
systems may be dramatically reduced by suppressing details that are irrele-
vant for verification, see e.g. [CC77, CGL92, GL93]. Summarizing, all these
methods cover very specific cases, and there is no hope for a uniform ap'
proach. Thus more application specific approaches are required, extending
the practicality of formal methods.

We present a constraint-oriented state-based proof methodology for con-
current software systems which exploits compositionaiity and abstraction
for the reduction of the verification problem under investigation. Formal
basis for this methodology are Modal Transition Systems (MTS) [LT88]
allowing loose state-based specifications, which can be refined by succes-
sively adding constraints. In particular, this allows extremely fine-granular
specifications, which are characteristic for our approach: each aspect of a
system component is specified by a number of independent constraints, one
for each parameter configuration. This leads to a usually infinite number of
extremely simple constraints which must all be satisfied by a correspond-
ing component implementation. Beside exploiting compositionality in the
standard (vertical) fashion, this extreme component decomposition also
supports a horizontally compositional approach, which does not only sew
arate proof obligations for subcomponents or subproperties but also for
the various parameter instantiations. This is the key for the success of the
following three step reduction, which may reduce even a verification prob-
lem for infinite state systems to a small number of automatically verifiable
problems about finite state systems:

�9 Separating the Proof Obligations. Sections 4 and 5 present a proof
principle justifying the separation and specialization of the various
proof obligations, which prepare the ground for the subsequent re-
duction steps.

�9 Skolemizat2on. The separation of the first step leaves us with problems
smaller in size but larger in number. Due to the nature of their origin,
these problems often fall into a small number of equivalence classes
requiring only one prototypical proof each.

�9 Abstraction. After the first two reduction steps there may still be
problems with infinite state graphs. However, the extreme special-
ization of the problem supports the power of abstract interpretation,
which finally may reduce all the proof obligations to finite ones.

A Constraint Oriented Proof Methodology 19

Our proof methodology is not complete, i.e., there is neither a guarantee
for the possibility of a finite state reduction nor a straightforward method
for finding the right amount of separation for the success of the succeeding
steps or the adequate abstraction for the final verification. Still, as should
be clear from the examples in the paper, there is a large class of problems
and systems, where the method can be applied quite straightforwardly. Of
course, the more complex the system structure the more involved will be
the required search of appropriate granularity and abstraction.

Whereas complex data dependencies may exclude any possibility of 'hori-
zontal' decomposition, our approach elegantly extends to real time systems,
even over a dense time domain. In fact, this extension does not affect the
possibility of a finite state reduction. For the real-time case, the basis are
Timed Modal Transition Systems (TMS) [CGL93], where (weak) refine-
ment is decidable. The TMS tool EeS~T.oN (see again [CGL93]) can be
used to find the refinements on demand.

However, in this paper parametrized timed modal transition systems are
used. Parameters may appear either in actions (so-called parametrized ac-
tions) or in timing constraints. Due to infinite parameter sets, specifications
may in general have an infinite number of actions. Our method however
aims at reducing this set of actions to a (small) finite one, such that auto-
matic analysis of the transition systems is possible. The method does not
apply to timing parameters, although we will demonstrate how to reduce
them in our particular examples. The main problem with timing parameters
is that existing tools cannot deal with both, parameters and refinement.

We demonstrate our methodology by two examples: an extremely simple
problem of pipelined buffers, and a specification and verification problem of
a Remote Procedure Call (RPC) posed by Broy and Lamport ([BL93]). The
method is explained step by step by applying it first to the simple example
and afterwards to the RPC problem in order to indicate that the methods
scales up. Both problems have untimed and timed versions including even
parameters in the timing constraints. The specific constellation, however,
allows us to capture these parameters.

The next section recalls the basic theory of Modal Transition Systems,
which we use for system specification. Thereafter we describe the RPC
problem. The following sections explain our method in detail. Section 4
presents our notion of projective views and discusses the first reduction
step. The subsequent two sections are devoted to the second and third
reduction step, while Section 7 shows how to extend our method to real
time systems over a dense time domain. Finally, Section 8 summarizes our
conclusion and directions to future work.

20 Kirn G. Larsen, Bernhard Steffen, Carsten Weise

2 Modal Transition Systems

In this section we give a brief introduction to the existing theory of modal
transition systems. We assume familiarity with CCS. For more elaborate
introductions and proofs we refer the reader to [LT88, HL89, Larg0].

When specifying reactive systems by traditional Process Algebras like
e.g. cc.q rMilRCl] nn,~ fl~fin~ th~ .q~f. nf actinn tra.n.qi*.inn~ thA.t can ha per-
formed (or observed) in a given system state. In this approach, any valid
implementation must be able to perform the specified actions, which of-
ten constrains the set of possible implementations unnecessarily. One way
of improving this situation within the framework of operational specifica-
tion is to allow specifications where one can explicitly distinguish between
transitions that are admissible (or allowed) and those that are required.
This distinction allows a much more flexible specification and a much more
generous notion of implementation, and therefore improves the practicality
of the operational approach. Technically, this is made precise through the
following notion of modal transition systems:

Defini t ion 2.1. A modal transition system is a structure S = (E, A, --~o
,--4o) , where E is a set of states, A is a set of actions and -40, --~0_C
Z • A • Z are transition relations, satisfying the consistency condition
-~ oC ~ o. []

Intuitively, the requirement ~OC~O expresses that anything which is
required should also be allowed hence ensuring the consistency of modal
specifications. When the relations --+ [] and --~0 coincide, the above defini-
tion reduces to the traditional notion of labelled transition systems.

Syntactically, we represent modal transition systems by means of a slight-
ly extended version of CCS. The only change in the syntax is the introduc-
tion of two prefix constructs ao.P and a O.P with the following semantics:
ao.P - ~ P , ao.P -~ [] P and ao.P -~0 P. The semantics for the other
constructs follow the lines of CCS in the sense that each rule has a version
for --+ [] and --+0 respectively. We will call this version of CCS modal CCS.

As usual, we consider a design process as a sequence of refinement steps
reducing the number of possible implementations. Intuitively, our notion
of when a specification S refines another (weaker) specification T is based
on the following simple observation. Any behavioural aspect allowed by S
should also be allowed by T; and dually, any behavioural aspect which is
already guaranteed by the weaker specification T must also be guaranteed
by S. Using the derivation relations --~ [] and --~0 this may be formalized
by the following notion of refinement:

Defini t ion 2.2. A refinement T~ is a binary relation on ~ such that when-
ever S T~ T and a G A then the following holds:

1. Whenever S -~0 S~, then T 2-~ 0 T' for some T ~ with S ~ 7~T',

A Constraint Oriented Proof Methodology 21

2. Whenever T -5,o T', then S -5,o S' for some S' with S' R T ' .

S is said to be a refinement o fT in case (S, T) is contained in some refine-
ment R. We write S ,~ T in this case. []

Note that when applied to traditional labelled transition systems (where
-~=--+~=--%) this defines the well-known bisimulation equivalence
[Par81, MilS9]. - Using standard techniques, one straightforwardly estab-
lishes that < is a preorder preserving all modal CCS operators.

allows loose specifications. This important property can be best ex-
plained by looking at the 'weakest' specification L/constantly allowing any
action, but never requiring anything to happen. Operationally, U is com-
pletely defined by U 2+0 U for all actions a. It is easily verified that S ~/4
for any modal specification S.

Intuitively, S and T are independent if they are not contradictory, i.e.
any action required by one is not constraint by the other. The following
formal definition is due to the fact that for S and T to be independent all
'simultaneously' reachable processes S' and T' must be independent too:

Defini t ion 2.3. An independence relation 7Z is a binary relation on Z
such that whenever S 7~ T and a 6 A then the following holds:

1. Whenever S 2+ [] S', there is a unique T' such that T 2+0 T' and
S' IZ T',

2. Whenever T 2+o T', there is a unique S' such that S 2+<> S' and
S' R T',

3. Whenever S 2+<> S' and T 2+0 T' then S' 7~T'.

S and T are said to be independent in case (S, T) is contained in some
independence relation R. []

Note in particular that two specifications are independent if none of them
requires any actions. Independence is important, as it allows to define con-
junction on modal transition systems by:

S 2+ [] S' T 2+<> T' S 2+0 S' T 2+ [] T'

SAT -~D S'AT' SAT 2+[] S'AT'

S 2+<> S' T --5, 0 T'

SAT --5,0 S'AT'

Of course, S A T is always a well-defined modal specifications (i.e. any
required transition is also allowed), and in fact, for independent arguments
S and T it defines their logical conjunction:

22 Kirn G, Larsen, Bernhard Steffen, Carsten Weise

T h e o r e m 2.4. Let S and T be independent modal specifications. Then
S A T < S and S A T < T. Moreover, if R < S and R < T then R < S A T.

In order to compare specifications at different levels of abstraction, it is
important to abstract from transitions resulting from internal communica-
tion.

This co.. ~. be done ~ usual: For a ~ven modal transition system S =
(Z,AU {v}, -~D, --~0) we derive the modal transition system St = (E, AU
{e}, =~o,=%), where ~ D is the reflexive and transitive closure of Z-~D,
and where T ~ [] T', a ~ e, means that there exist T", T"' such that

T =~ [] T" -~ [] T" ' :~ [] T'

The relation 0<> is defined in a similar manner.
The notion of weak re/]nement can now be introduced as follows: S

weakly refines T in S, S ~ T, iff there exists a refinement relation on
8e containing S and T.

Weak refinement _ essentially enjoys the same pleasant properties as <:
it is a preorder preserved by all modal CCS operators except + [HL89] (in-
cluding restriction, relabelling and hiding). Moreover, for ordinary labelled
transition systems weak refinement reduces to the usual notion of weak
bisimulation (~).

In our examples, we will deal with weak refinement and (in general)
infinite action sets. In the context of weak refinement, forbidding internal
v-actions in a constraint is a severe and unnatural restriction. We therefore
consider only saturated versions of specifications, which always allow v-
steps by having v-may-loops at each of their states. Note that each process
S can easily be saturated by adding v-loops. Moreover, a process S and its
saturated version S + are mutual weak refinements of each other:

S ~ S + and S+ ~_ S

Thus they are substitutive in the context of parallel composition and hiding.
The restriction to saturated specifications, therefore, does not cause any
limitation in our setting.

The use of saturated transition systems has a major technical advantagei
the definitions of conjunction and independence work for weak refinement
in the same way as before for strong refinement. This is not true in the
general case, which requires tedious adaptations.

Thus let us assume in the following that all transitions systems are sat-
urated. This guarantees the validity of some important rules:

P ropos i t ion 2.5. Assume a (possible infinite) index set I, a subset J C I,
a set L of actions, two families of modal transition systems Si, Ti (i E I) and
a modal transition system T. Let the families Si, T~ be pairwise independent,
as well as the processes (S~ I T). Then the following laws for conjunctions
hold:

A Constraint Oriented Proof Methodology

1. Adding constraints refines a specification:

hs, _ A
i E l JEJ

~. Conjunction is preserved by refinement:

23

vi e r(s, < T,) ~plies A s, < A T,
iE1 i E l

3. Conjunction distributes over parallel composition:

(A &)lit ~_ A(S~I1T) and
iE I i E l

A(SdlT) -< (A s011T
iE1 iE I

4- Conjunction distributes over restriction:

iE l i E l ~EI iE1

The proofs for all these claims are straightforward. As an example, we give
a proof for the left hand side of the third part.

Starting from (A~ez si) t T it is immediate for any j E I that

iEI

holds. As this is independent of j , we directly find that (AiEI Si) I T is a
refinement of the conjunction A~eI(S~ [T). []

In our examples, certain patterns of modal transition systems will be found
frequently. Assuming an action set Act and subsets a,/~ and 7, Fig. 1
depicts two of these patterns, which will be used in our examples. We use
the following "abbreviations" for these transition systems:

AG~ -~ a (1.1)

for the left hand side transition system and

AG,o~ ([a] AG~ ~ ~) (1.2)

for the right hand side system.

24 Kim G. Larsen, Bernhard Steffen, Carsten Weise

13 \ a r" k ~ Act \ a

U __" Act \(a u 13 u y) f

[Act \ (a u I~) I I a

FIGURE 1. Typical Patterns of Modal Transition Systems

The intuition behind these transition system is "as long as only actions
from/~ are taken, no actions from a may be allowed "~ and "after an action
from a has been taken, no actions from ~ are allowed as long as we only
traverse actions from 7"- The given "abbreviations" are in fact formulae
of a parameterized version of CTL. As we cannot discuss the relationship
between CTL and modal transition systems here, the interested reader
is referred to [CES83] for standard CTL and to [Ste93] to learn about an
extension of CTL which is powerful enough to capture the considered modal
transition systems.

3 The Remote Procedure Call Problem

We demonstrate our method by applying it to a specification problem given
by Broy and Lamport. Due to space limitations we can only present part
of the problem.

The original problem consists of a memory component and an R P C mech-
anism. The memory component accepts read and writes from several pro-
cesses, and returns the requested values (none in case of write) or raises an
exception. The only exception here is memory]allure, i.e. the memory could
not read from/write to the hardware. A component in which exceptions do
never occur is called a reliable memory.

The processes are connected to the memory component via an RPC (Re-
mote Procedure Call) mechanism. The RPC mechanism simply forwards
calls from the processes to the memory, and returns from the memory to
the processes. The RPC should be transparent to the user, i,e. the composi-
tion of the memory component and the RPC should be an implementation
of the memory. This is what we will call the untimed R P C problem.

In the real-time case, the time to forward calls and returns by the RPC
should be no more than J. Further an exception should be raised if a call
to the RPC does not return within 26 + e seconds. We will prove that if all

2 Actions outside/3 can be regarded as ways to escape the 'universal' proof obligation,

A Constraint Oriented Proof Methodology 25

calls to a reliable memory return within r seconds, then the composition
of the RPC and the reliable memory is an implementat ion of the reliable
memory. This is the timed RPC problem.

The following is an informal specification of the memory component M,
concentrating on write calls only. We assume sets p r o c I d of process iden-
tifiers, memLocs of memory locations and memVals of memory values, with
typical elements id, l oc and v a l resp. We will often use Z as an abbrevia-
tion for the product of the three sets, i.e. Z := p r o c I d • memLocs • memVals,
with typical element z E Z.

The events occurring in the memory component are described by param-
eterized actions, taking arguments from p r o c I d , memLocs and memVals.
The actions of M are:

mWr(id, loc , va l) :

w r i t e (i d , loc , v a l) :

nfftetWr(id) :

mFail(id) :

write-call from process id of value v a l to
location 1oc
atomic write of value v a l to location l o c
initiated by process id
send return from a write-request to
process id
signal memory failure to process id

The I /O-behaviour of the memory component M is given in Fig. 2.

mWr(id, Ioc, val) _,
~1 Memory I Intemal id in Procld Ioc in MemLoc

* ~ Component write(id, Ioc, val) val in MemVal
mRetWr(id)
mFail(id)

FIGURE 2. I/O-Behaviour of Memory Component

The specification of the (reliable) memory component is a conjunction
of the following properties:

P0 The memory component engages in actions only when it is called

P1 Each write operation (successful or not) performs a sequence of zero
or more atomic writes of the correct value to the correct location
at some t ime between the call and return. For a successful write
operation, there must be at least one atomic write.

P2 A memory failure is never raised.

Clearly, the memory component M is specified by the conjunction of P0
and P1, while the reliable memory MR is the conjunction of the M and
P2. Note tha t for fixed id the last property can be easily specified by

26 Kim G. Larsen, Bernhard Stei~en, Carsten Weise

�9 .u..[~.~ !oc, va!)

rRetWr'(id)
r-'F-a~'l(i d)

mWr(id, loc, val)

A G , ~ t -- { mFail(id) }

The R P C R simply hands calls and returns (including the memory failure
exception) through. These are the actions of the RPC:

: remote .wri_'_te of value v a l to location l o c issued
by process id

: re turn from remote write issued by process id
: RPC returns an exception from a call issued by

process id
: send a write of value v a l to location l o c

initiated by process id
mRetWr(id) : return from a write initiated by process id
mFail(id) : memory component raised a memory failure

The I/O-behaviour of the combined components can be depicted as in
Fig. 3:

rWr(id, Ioc,val) mWr(id, Ioc, val)

- , C o m p o n e n t , C o m p o n e n t I writer, d, ~ , v ~
d ~ W r (' ~ mRetWr(id)
rFail(kl) mFail(id)

FIGURE 3. Combination of RPC and Memory

In the next sections, we will explain our method directly using a much
simpler example. At the end of each section we show how our method
transfers to the RPC problem. We star t with the untimed case.

4 Projective Views

In the following, we present, motivate and clarify our proof methodology by
means of a minimal example, which is just sufficient to explain the various
phenomena.

Consider the parallel system in Fig. 4. Here two parameterized, dispos-
able component media (supposed to transmit natural numbers) A and B
are composed in parallel yielding a pipeline. Informally, the component A
is supposed to input a natural number on port a, then output this number
on port b after which it will terminate. The behaviour of B is similar. Using
modal transition systems, the parallel system may be expressed as follows:

.4 B

A Constraint Oriented Proof Methodology 27

" "

FIGURE 4. A Pipe Line of Two Disposable Media

The behaviour of A and B are given by the two infinite-width transit ion
systems of Fig. 5. However, rather than using these direct specifications of A

A B

o o o o O �9

FIGURE 5. Behaviour of A and B.

and B we specify the two components behaviour using projective views An
and Bn; one view for each possible natural number n. The projective view
An specifies the constraints on the behaviour of the component A when
focusing on transmission of the value n; this constraint can be expressed
as the modal transition system An given in Fig. 6(where we use solid lines
for must- and dotted lines for may-transit ion).

a#n."

All"" an bn
D

FIGURE 6. Projective View An

Here a~n denotes all labels of the form am where m ~ n; also L{ denotes
the universal modal transition system constantly allowing all actions. Note
tha t this 'n - th view' imposes no constraint on the behaviour of A when
t ransport ing values different from n. The complete specification of the com-
ponent A is the conjunction of all projective views 3 An. In fact it is easy
to establish the following facts:

A~_AA . and AAn<~A (1.3)
n n

aNote that all the projective views of A are pairwise independent,

28 Kim G. Larsen, Bernhard Steffen, Carsten Weise

where A refers to the (infinite) transition system of Fig. 5. Obviously, we
may obtain similar projective views Bn for component B.

Let us now consider the problem of verifying that the overall system

(AIB) \{b} is observationally equivalent to the system C ar l~g .~x (i.e. a

slightly different disposable media). As A, B and C are standard transitions
systems, i.e., everything allowed is also required, this problem is equivalent
to showing

Thus (1.3), together with the observation that also C may be expressed as
a conjunction of an infinite number of constraints Cn, leaves us with the
following refinement problem:

(Aa., AB.)\{b} Ao. (,.4)
n n n

4.1 Application to the RPC problem

We give modal transition systems for the specification of properties P0, P1
and P2 of the memory component. Therefore we split P1 into two proper-
ties Pla, Plb meaning

Pla A write-call from process id cannot return unless an atomic write is
performed.

Plb As long as a write-call from process • has not returned, no atomic
write to a wrong location or of a false value occurs

The labels in the following specifications are sets of actions (called ab-
stracted actions). A single action is a shorthand for the set containing this
and only this action. For the other sets, we use the usual set-theoretic
connectives, and a dot-notation, where a parametrized action with dots as
parameters means "the set of all actions where the dotted position is re-
placed by all legal values for the parameter", e.g. for a fixed id E p rocId ,
mWr(id,., .) is the set {mWr(id, loc, val) I loc e memLocs, val E memVals}.

The properties Pla and P1b are easily expressed by the following abbre-
viations of modal transition systems:

Our specification assumes that calls from different processes are handled
concurrently. As calls from different processes do not interfere, no actions
parametrized with an identifier other than id is constrained in the speci-
fications of calls from process id. This is modelled by allowing all actions

A Constraint Oriented Proof Methodology 29

with an identifier different from the fixed id in any state. Instead of adding
to each s tate a loop where all these actions are allowed, we draw boxes
meaning "a state with a loop for all non- id actions". By this the con-
junction of the specifications for all processes is the same as their parallel
composition.

The modal transition systems which specify the propert ies for a fixed
value id are given in Fig. 7.

PO(id,loc, val) P1 a(id,loc,val) Plb(id, Ioc, val) P2(id,loc,val)

rnRetWr(id)

mWrlid,.,.)
|
!
!

. . . .

$,
! |
�9 R

wr(id,.,.)

Act \ mWr(id,.,.)
I t

wrOd,.,.l_L, !

,,
mWr(id,.,.)

I

. . . .

! ,
�9 :

mWrl!d,.,.)
umFnil(id)

Act \ mWr(id,loc,val)
R ' ' ' ' t

!

mF=lOa) : ' " " -" --!
J

! |

mWr(id,loc,val)
,' Act \ mFail(id)

mWr(id,.,.)w~ :
wdte(id,loc,vai)

FIGURE 7. MTS for properties P0, Pla, Plb and P2

The transition systems for Pla , P l b and P2 are the expansions of the
"abbreviated" transit ion systems (cf. Fig. 1), while the transit ion system
for P0 was defined directly. Note that only P l b really depends on l o c and
va l , and tha t the properties PO, P la , P l b and P2 are the conjunctions of
the above modal specifications over all z E Z.

Let M (z) be the conjunction PO(z) A P la (z) A Plb(z) , and MR(z) =
M(z) A P2(z) . The memory component M is the conjunction of M(z) over
all z E Z.

Let hc t be the set of all actions. For two sets R C hc t (return set) and
T C Act (tolerance set), a state s and actions a] , . . . , am E Act. Then we
use the following macro state for the specification of the RPC:

Here the edges leaving the "macro state" can be either may- or must-
transition.

30 Kim G. Larsen, Bernhard Steffen, Carsten Weise

For a given transition system with start state so and an auxiliary state
s ~ not already in the transition system, this is meant to expand to

, , R r'-iA R

" +,i
TX{al am.}: , ~ : - -

i.e. state s tolerates any action from T. If the behaviour of a tolerated action
is already specified by an outgoing edge, nothing new happens. Otherwise,
the system goes to the auxiliary state s *, where it accepts any action until
a return action (from R) occurs. Return actions take the system back to
the start state.
There are two main projective views of the RPC. In the first view, a write
is handed through and a return received from the memory. In the second
view, instead of a return a memory failure is received. These two views
R l (id , loc , va l) and R2(id, loc , va l) are given in the following picture:

R1 (id, Ioc, val)

rWr(id,loc,val) .~--~ mWr('d,loc,val)

R2(id, Ioc, val)

~ ~ rWrC~,loc,val) ~ mWr('~,loc,vall
i rFail(id) I mRet(id)

mRetWr(id)=l~]_ ~

mFail(id) =~
The sets in the macro states are defined as follows:

r C a l l (i d) := rWr(id,. , .)
fRet (id) := r R--Re-EN-r(i d) U r--F-a~(• d)
mRet(id) := mRetWr(id) UmFail(id)

While i t is natural to use must-transitions in this spedfication, the lack
of must-transitions in the memory component allows us to weaken these
must transitions to may transitions without affecting the correctness of a
successful proof. This guarantees the weU-definedness of conjunction, as all
our specifications are now independent.

Let R(z) := Rz(z) A R2(z). The untimed specification of the RPC R is
the conjunction of R(z) over all z.

A Constraint Oriented Proof Methodology 31

Let f be a relabelling mapping all actions of the RPC to the appropri-
ate actions of the memory component, and A := rWr(.,., .) U rRetWr(.) U
rFai l (.) and H := wr• .). Then the untimed verification problem is

(RIM]H) \A[f] ~ M/H (1.5)

where the internal actions of the memory (i.e. the atomic writes) are hidden.

5 Sufficient Proof Condition

As a conjunction is a refinement of every of its components (cf. Prop. 2.5),
the proof of (1.4) can be reduced to the verification of

iEN iEN

for each natural j . Note that this is even a necessary condition for our
claim.

This reduction alone would not gain much. Here however it turns out
that it is sufficient to verify

VjEN. (A j lB j) \ {b } ~ Cj (1.6)

which is intuitively clear as transmitting j through the pipeline only de-
pends on transmitting j through its components.

The fact that (1.6) is sufficient follows from a general proof principle be-
hind the reduction. The idea is that there is a typical pattern of refinement
we need to establish. This pattern consists of a large conjunction A Cj
on the right side, and a parallel composition of large conjunctions on the
left side (with possible restriction). To establish such a weak refinement,
it is sufficient to establish the refinement for each conjunct Cj. However,
concentrating on a specific component Cj, a lot of the details of the im-
plementation on the left side can (hopefully) be disregarded, thus it will
be sufficient to restrict the proof to subsets of the conjuncts in the parallel
components of the left hand side. These subsets will generally depend on
j .

This is formalized by the following sufficient proof condition:

T h e o r e m 5.1. Assume index sets 11,... Ik,I, and modal transition sys-
tems A~,C~(s E {1 k},i EIt, j E I). If there are subsets Itd C h for
each t E {1 , . . . , k} and j E I, such that

VjEI . (A A ~ I " I h A~)\L ~_ c~ (1.7)
iEIl,j iElt,j

32

then

holds as well.

Kim G. Larsen, Bernhard Steffen, Carsten Weise

(A A~] ...] A A~)\L ~ A Cj (1.8)
JEll iEI~ j E I

Proof. Starting from the assumption (1.7) for an arbitrary j , we can shift
all conjunctions from the inside of the formula out by using distributivity
of conjunction over parallel composition and restriction:

A (A A l...I
il EI I , j ,... ,i~ EI~,j JEll d

Conjuncting (1.9) over all j E I gives us

A (A~, 1... IA,~)\L ~_
�9 w �9 o ~1 EI1,.. . ,*~ EI~,

A A~)\L
ie*~,j (1.9)

Aci
j E I

for subsets I t C_ It. As adding constraints refines a specification, the fol-
lowing is a refinement of the left hand side:

A (A~, [... [A~)\L
Q EI1 ,.., ,i~,El~

Using the distributivity of conjunction over parallel composition and re-
striction once more, this can further be refined to

(A I A A)\L
iE l l iEl~.

Finally, the transitivity of ~ allows us to combine the last three lines in
order to establish our claim. []

Of course, in general the power of this proof principle strongly depends on
a good choice of the It,j, which was trivial in our example.

5.1 Application to the RPC Problem
With the same argumentation, to prove (1.5) it is sufficient to show

VzEZ. (R(z) IM(z)/H)\A[f] <J M(z)/H (1.10)

A Constraint Oriented Proof Methodology 33

6 Skolemization and Abstraction

So far we have reduced the overall verification problem of (1.4) to that of
(1.6). At first sight this doesn't seem much of a reduction as (1.6) requires
a refinement proof to be established for each natural number. Fortunately,
these proofs are not really sensitive to the actual value of the natural num-
ber n. Letting k be an arbitrary natural number (or a Skolem constant) it
suffices to prove:

(A k l B k) \ { b } ~_ Ck (1.11)

in order to infer (1.6). Thus we are now left with the problem of establishing
a single refinement. But still, though finite state the specifications Ak and
Bk both have infinitely many transitions (as ar is an inifinite label set).

However we can find an equivalence relation on the actions of the com-
ponents which is of finite index, but still fine enough to establish the proof
goal. Replacing a system with a new one gained by collapsing w.r.t, an
equivalence relation is called abstraction.

In the following, Is]- is the equivalence class of s under =.
If the equivalence relation is understood from the context, we write Is].
In general, an equivalence relation on states and transitions is needed,

but for the examples here an equivalence relation on transitions suffices:

De f in i t i on 6.1. Let P be a TMS over an alphabet Act with transition
relations --~ o, -'~0. Each equivalence relation =_ on Act induces a collapsed
TMS P - over the alphabet Act- := {[a]la e Act} and transition relations
--+ ~ , --~ ~ defined by

a

P ---~ O P ~ P -~ 0 P'

[_~ t t [_~ to pS P o P P

An equivalence relation =- on Act /s compatible with P iff for all a' E [a]
and all reachable states p, pl of P:

a' pt
P--~OP' iff p a - ~ O p ' and p 2 ~ o p ' iff p - - ~ r

Compatible equivalence relations satisfy the following three properties:

Propos i t ion 6.2. Let P and Q be two TMS's and - an equivalance rela-
tion on their common alphabet compatible with P and Q. Then the following
holds:

1. P - ~_ Q - implies P ~_ Q,

2. if [r] = {r} then = is compatible with P [Q,

34

.

Kim G. Larsen, Bernhard Steffen, Carsten Weise

if [v] = {v} and for L C Act and every a E Act either [a] N L = [a]
or [a] 0 L = {~4, then =_ is compatible with P \ L.

Proof. 1. P-- ~_ Q - implies the existence of a weak refinement relation
between the states of P--- and Q- . As no states are collapsed, we can use
the same relation to establish P _ O exploiting its compatitiblity:

If O requires an a-step, then Q - requires an [a]-step by definition. As P -
is a weak refinement of O--, it requires an [a]-step as well. Thus by definition
P requires an al-step for some a I 6 [a]. Compatibility now guarantees an
a~-step for every a' E [a], in particular for a itself.

The part for may-transitions follows analogously.
2. Assume P [Q -~ [] P' [Q'. Then we must show that for all a ~ E [a] we

have P [Q - ~ o P' [Q' as well.
If a -- r , then [a] = {a}, so a' = a. Thus the proposition is true.
If a r r , then w.l.o.g. P -%, [] P ' and Q = Q', and the compatibility of

t~t I

= with P guarantees P ~ [] P ' , and therefore P I Q - ~ [] p t I Q'.
The proof for -~0 follows the same lines.

3. Assuming P \ L _2~ [] p , \ L, it suffices to show P \ L 2~ [] p , \ L for
al l a I e [a].

If a = 7-, then by the same argument as above a ~ = a, and the proposition
holds.

If a # r , then a ~ L and P 2+ [] p, . Thus the compatibility yields P -?~ []
a t

P' , and therefore P \ L --4 ca P ' \ L, as the condition in 3. guarantees a' r L.
The part for 2% follows along the same lines. []

This Proposition allows us to reduce verification problems for infinite sys-
tems to problems for finite systems, as soon as an appropriate equivalence
relation can be found.

For our example, let us consider the equivalence relation _-:-:-:- defined by
xk - xk and xl = xj whenever i , j ~ k, where x ranges over {a, b, c}.
Further v builds an equivalence class of its own.

Obviously, - is compatible with Ak, Bk and Ck. As further all conditions

of Prop. 6.2 are met, = is also compatible with (Ak- I Bk-) \ {b}. Thus the

verification of (1.4) can further be reduced to the refinement proof between
the finite -=--abstracted versions of Ak, Bk and Ck

(Ak ~ l B , ~) \ { b } ~ Ck ~ (1.12)

which can easily be done by means of the automatic verification tool Ep-
SILON.

4i.e. L is union of some equivalence classes

A Constraint Oriented Proof Methodology 35

6.1 Application to the RPC Problem

Instead of proving (1.10) for all z, a proof for a prototypical z is sufficient
here. Most of the abstraction is already carried out by using abs t rac ted
actions. Note however that the abstracted act ions are in general not the re-
quired equivalence classes. For the R.PC problem e.g. w r i t e (z) is an equiv-
alence class of its own, and the set ~ c i t e (i d , . , .) \ w r i t e (z) is another
equivalence classes. This specific parti t ioning of the atomic write actions
reflects the fact tha t we must distinguish between a write of the correct
value to the correct location and all other writes from the same process.

Looking at the diagrams of Sect. 4.1 easily reveals tha t the resulting
transit ion systems are small and easily in the range of the EPSILON too1.

7 Specifications with Time

The above examples can be extended to deal with real time. For the spec-
ification we use Wang Yi's Timed CCS (see [Yi91]) together with modal
specifications. For details on these so called Timed Modal Specifications see
[CGL93]. This method can be used with any totally ordered t ime domain,
while in the following we will assume the positive real numbers.

The passing of time is modelled by a delay action e(d), where d is a
positive real number. The intuitive meaning of such a delay is tha t a t ime
amount of d passes until the end of this action. Normal actions are enabled
immediately, and can be taken at any time. As an example, the process
aox.r can execute aox at any time. Thereafter it must delay for at
least two t ime units before it can engage in box.

Further we assume maximal progress, i.e. a communication must be per-
formed as soon as possible. Put t ing aox.e(2).box in parallel with
-ff'~x.c(3).bnx would force the communication via channel a to take place
immediately, and the communication via channel b to happen after exactly
three t ime units.

For our specification, the macro all, u] is convenient, where a is an action
and l, u are real numbers with I < u. The intuition is that a process a[l, u].P
may enable a after l t ime units and must enable a after u t ime units. In
other words, communication via a may be possible after at least ! t ime
units, and will be possible at any time after u t ime units. 5 This macro is
defined as all, u].P = (z(l).ao + r

In our examples, the lower bound is always zero. The graphical presen-
tat ion we use for a[O,u].P is:

~Note that u is not a time-out, but a switching point between a may and a must
reuirement !

36 Kim G. Larsen, Bernhard Steffen, Carsten Weise ~ P a

Let d be a fixed real number. Then we specify a timed process A(d), which
reads port a and subsequently outputs its input onto port b within d time
units, by a[::lx.'bx[O, d]. Note that this is a timed version of process A. The
same construction gives timed versions B(d) and C(e 0 of B and C.

We are now going to establish that a 'pipeline' with two components
with delay d should not be slower than one component with delay 2d, i.e.

(A(d)]B(d)) \ {b} ~ C(2e 0

The same method as in the untimed case reduces the situation to

(Ak~(d) I Bk-(d)) \ {b} ~_ Ck~-(2d)

for a Skolem constant k and the equivalence relation of the previous section.
Now, given a specific value for d this proof can be carried out using the
EeS~r, ON tool, which treats real valued timer domains by means of the clock
region automaton technique (see lAD94] for details). This technique relies
on integer values for all explicit timer constants in the specification, which
can be achieved by multiplication with an appropriate constant in most
applications. As all timer constants are multiplied by the same constant,
this does not affect the principle behaviour of the system. In our example,
the obvious choice for this constant is l/d, leaving us with the following
refinement problem

(Ak~'(1) lBk--(1)) \ {b} _~ Ck-(2)

which can be solved using EPSILON.
Note that this proof indeed covers the statement for any d. Thus even in

the presence of real time, the original verification problem is reduced to a
very simple, automatically solvable problem.

7.1 Application to the RPC Problem
The following is a timed version of R1, where passing through the calls and
returns takes not more than J seconds:

A Constraint Oriented Proof Methodology 37

Rl(id, Ioc, val)

rWr(id, loo,vsl) �9 m'~'(id, loo, val) mR~t~Nr(id) r R ~

~mWr(Id,loG,val)

Note that actions without a timing constraint are enabled at any time. The
timed version of R2 is defined analogously (although unnecessary for the
reliable memory). Call the timed RPC R 6.

In the same way as the RPC we specify a demon which signals a failure if
a call to the RPC does not return within 2~ + E seconds. The actions of the
demon are the same as those of the RPC, only the prefix r is replaced by
a d. Timeout is modelled by a T-transition. The specification of the demon
D1 (z) is

D(id, Ioc, val) dRetWr(id)

dWr(id,loc, val) t_r- ~ rWr(id,loc,val)

'*'1 dC~ll(id) dFail(id)

To define a timed reliable memory, we only need to alter property P0 by
requiring the return to occur within ~ time. This is done by the following:

, , , 1

m---F'~0d}

We call the resulting timed specification of the reliable memory M~. The
timed verification problem then is

(D2'~+e I R61 M~/H) \a[f] "~ MR/H

Note that the memory on the right hand side is the "untimed" MR, where
we interprete all actions to be enabled all the time. Further the set A

38 Kim G. Larsen , Bernhard Steffen , Carsten Weise

and the relabelling f have to be adjusted. This problem can once again
be reduced by our method to a problem concerning transition systems of
small size, as we only need to look at a prototypical z.

However, having two parameters 6 and e in the timing constraints, the
standard multiplication trick is not sufficient to produce a parameterless
situation. Luckily, this particular example is equivalent to a one parame-
ter problem: computing R ~" I ~ k / ~ by nana one nnas a transiton system,
which can be regarded as parameterized in 2(f + e only. Now the previously
used multiplication trick is applicable opening the problem to automatic
verification by means of EPSH, ON.

8 Conclusion and Future Work

We have introduced a new constraint-oriented method for the (automated)
verification of concurrent systems. Key concepts of our 'divide and conquer'
method are projective views, separation of proof obligations, Skolemization
and abstraction, which together support a drastic reduction of the com-
plexity of the relevant subproblems. Of course, our proof methodology does
neither guarantee the possibility of a finite state reduction nor a straight-
forward method for finding the right amount of separation or the adequate
abstraction. Still, there is a large class of problems and systems, where the
method can be applied quite straightforwardly. Typical examples are sys-
tems with limited data dependence. Whereas involved data dependencies
may exclude any possibility of 'horizontal' decomposition, our approach
elegantly extends to real time systems, even over a dense time domain. In
fact, the resulting finite state problems can be automatically verified using
the EPSmON verification system. All this has been illustrated using a sim-
ple example of pipelined buffers. Our experience indicates that our method
scales up to practically relevant problems, as demonstrated by the problem
of the transparent RPC.

Beside further case studies and the search for good heuristics for proof
obligation separation and abstraction, we are investigating the limits of
tool support during the construction of constraint based specifications and
the application of the three reduction steps. Whereas support by graphi-
cal interfaces and interactive editors is obvious and partly implemented in
META-Frame, a management system for synthesis, analysis and verification
currently developed at the university of Passau, the limits of consistency
checking and tool supported search for adequate separation and abstraction
are still an interesting open research topic.

As pointed out, one major problem are parameters in the timing con-
straints. We are currently investigating methods - similar to the approach
presented for parametrized timed automata in [AHV93] - for checking
bisimulation and (weak) refinement for parametrized modal transition sys-
tems.

A Constraint Oriented Proof Methodology 39

9 REFERENCES

[ASW94] H. Andersen, C. Stirling, G. Winskel. A Compositional Proof
System for the Modal Mu-Calculus. in: Proc. LICS 1994.

[AD94] R. Alur, D.L. Dill. A Theory of Timed Automata. in: Theoretical
Computer Science Vol. 126, No. 2, April 1994, pp. 183-236.

[AHV93] R. Alur, T.A. Henzinger, M.Y. Vardi. Parametric real-time rea-
soning. Proc. 25th STOC, ACM Press 1993, pp. 592-601.

[BL93] M. Broy, L. Larnport. Specification Problem. Case study for the
Dagstuhl Seminar 9439, 1994.

[Br86] R. Bryant. Graph-Based Algorithms for Boolean Function Ma-
nipulation, in: IEEE Transactions on Computation, 35 (8). 1986.

[BCMDH90] 3. Burch, E. Clarke, K. McMiUan, D. Dill, L. Hwang. Sym-
bolic Model Checking: 1020 States and Beyond. in: Proc. LICS'90.

[BS90] J. Bradfield, C.Stiding. Local Model Checking for Finite State
Spaces. LFCS Report Series ECS-LFCS-90-115, June 1990

[CES83] E. Clarke, E.A. Emerson, A.P. Sistla. Automatic Verification of
Finite State Concurrent Systems using Temporal Logic Specifica-
tions: A Practical Approach. In Proc. 10th POPL'83

[CGL93] K. ~erans, .].C. Godesken, K.G. Larsen. Timed Modal Specifi-
cation - Theory and Tools. in: C. Courcoubetis (Ed.), Proc. 5th
CAV, 1993. LNCS 697, Springer Berlin 1993, pp. 253-267.

[CGL92] E. Clarke, O. Grumber, D. Long. Model Checking and Abstrac-
tion. in: Proc. XIX POPL'92.

[CLM89] E. Clarke, D. Long, K. McMillan. Compositional Model Check-
ing. in: Proc. LICS'89.

[CC77] P. Cousot, R. Cousot. Abstract Interpretation: A Unified Lat-
tice Model for Static Analysis of Programs by Construction or
Approximation of Fixpoints. in: Proc. POPL'77.

lEFT91] R. Enders, T. Filkorn, D. Taubner. Generating BDDs for Sym-
bolic Model Checking in CCS. in: Proceedings CAV'91, LNCS
575, 1991, pp. 203-213

[EL86] E. Emerson, J. Lei. Efficient model checking in fragments of the
propositional mu-calculus. In Proc. LICS'86, pp. 267-278.

[GW91] P. Godefroid, P. Wolper. Using Partial Orders for the Efficient
Verification of Deadlock Freedom and Safety Properties. in: Proc.
CAV'91, LNCS 575, pp. 332-342.

40 Kirn G. Larsen, Bernhard Steffen, Carsten Weise

[GP93]

[GL93]

[cs9o]

[Koz83]

[HL89]

[Lar90]

[LTa8]

[MilS9]

P. Godefroid, D. Pirottin. Refining Dependencies Improves
Partial-Order Verification Methods. in: Proceedings CAV'93,
LNCS 697, 1991, pp. 438-449.

S. Graf, C. Loiseaux. Program Verification using Compositional
Abstraction. in: Proceedings FASE/TAPSOFT'93.

S. Graf, B. Steffen. Using Interface Specifications for Composi-
tional Minimization of Finite State Systems. in: Proc. CAV'90.

D. Kozen. Results on the Propositional mu-Calculus. TCS 27,
333-354, 1983

H. Hiittel and K. Larsen. The use of static constructs in a modal
process logic. Proceedings of Logic at Botik'89. LNCS 363, 1989.

K.G. Larsen. Modal specifications. In: Automatic Verification
Methods for Finite State Systems LNCS 407, 1990.

K. Larsen and B. Thomsen. A modal process logic. In: Proceed-
ings LICS'88, 1988.

R. Milner. Communication and Concurrency. Prentice-Hall,
1989.

[Par81]

[Ste89]

[Ste93]

D. Park. Concurrency and automata on infinite sequences. In
P. Deussen (ed.), LNCS 104, pp. 167-183, 1981.

B. Steffen. Characteristic Formulae. In Proc. ICALP'89, LNCS
372, 1989

B. Steffen. Generating data flow analysis algorithms from modal
specifications, in: Science of Computer Programming 21, (1993),
115- 139.

[v 93] A. Valmari. On-The-Fly Verification with Stubborn Sets. in:
C. Courcoubetis (Ed.), Proc. 5th CAV, 1993. LNCS 697, pp. 397-
408.

[u W. Yi. CCS + Time = an Interleaving Model for Real-Time
Systems, Proc.18th Int. Coll. on Automata, Languages and Pro-
gramming (ICALP), Madrid, July 1991. LNCS 510, Springer
New York 1991, pp. 217-228.

