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ABSTRACT One of the central problems in the automatic analysis of dis- 
tributed or parallel systems is the combinatorial state explosion leading to 
models, which are exponential in the number of their parallel components. 
The only known cure for this problem are application specific techniques, 
which avoid the state explosion problem under special frame conditions. In 
this paper we present a new such technique, which is tailored to bitvector 
analyses, which are very common in data flow analysis. In fact, our method 
allows to adapt most of the practically relevant optimizations for sequen- 
tial programs, for a parallel setting with shared variables and arbitrary 
interference between parallel components. 

1 Motivation 

Parallel systems are of growing interest, as they are more and more sup- 
ported by modern hardware environments. However, it is very difficult to 
guarantee their reliability (cf. IMP]): the adaptation of the successful tech- 
niques for sequential systems seems inevitably be tied to the combinatorial 
explosion of the systems' state space leading to models, which are exponen- 
tial in the number of the parallel components. As a consequence, also clas- 
sical data  flow analysis for parallel programming languages was considered 
too expensive to be implemented in real programming environments. The 
only known cure for this problem are application specific techniques, which 
avoid the state explosion problem under usually very specific frame condi- 
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tions. For data flow analysis, this ranges from special heuristics (cf. [McD]) 
and approaches which require data independence of the parallel components 
(cf. [GS]) or exclude shared variables (cf. [LC]) over approaches tailored for 
specific analyses like mutual exclusion or data races (cf. [DC]) to approaches 
that are based on state space reductions (cf. [CH1, CH2, DBDS, GW, Va]). 
The latter allow general synchronization mechanisms, but still require the 
investigation of an appropriately reduced version of the global state space, 
which is often still unmanageable. 

In this paper we show how to construct for unidirectional bitvector analy- 
sis problems (which are most prominent in practice) algorithms for parallel 
programs with shared memory and interleaving semantics that 

1. optimally cover the phenomenon of interference 

2. are as eJ~icient as their sequential counterparts and 

3. easy to implement. 

The first property is a consequence of a Kam/Ullman-style ([KU]) Coin- 
cidence Theorem for bitvector analyses stating that the parallel meet over 
all paths (PMOP) solution, which specifies the desired properties, coin- 
cides with our parallel bitvector maximal fixed point (PMFPBv ) solution, 
which is the basis of our algorithm. This result is rather surprising, as it 
states that although the various interleavings of the executions of parallel 
components are semantically different, they need not be considered during 
bitvector analysis, which is the key observation of this paper. 

The second property is a simple consequence of the fact that our algo- 
rithms behave like standard bitvector algorithms. In particular, they do 
not require the consideration of any kind of global state space. This is im- 
portant, as even the corresponding reduced state spaces would usually still 
be exponential in size. 

The third property is due to the fact, that only a minor modification of 
the sequential bitvector algorithm needs to be applied after a preprocess 
consisting of a single fixed point routine (cf. Section 3.3). 

Thus, using our methods all the well-known algorithms for unidirectional 
bitvector analysis problems can be adapted for parallel programs at almost 
no cost on the runtime and the implementation side. This is highly rele- 
vant in practice as this class of bitvector problems has a broad scope of 
applications ranging from simple analyses like liveness, availability, very 
business, reaching definitions, and definition-use chains (cf. [He]) to more 
sophisticated and powerful program optimizations like code motion (cf. 
[DS, DRZ, KRS1, KRS2]), partial dead code elimination (cf. [KRS3]), as- 
signment motion (cf. [KRS4]), and strength reduction (cf. [KRS5]). All 
these techniques, which only require unidirectional bitvector analyses, are 
now available for parallel programs. In Section 4 this is demonstrated by 
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presenting a code motion algorithm, which evolves from the busy code mo- 
tion transformation of [KRS2], and is unique in placing the computations 
of a parallel program computationally optimally. 

Structure of the Paper 

The next section will recall the sequential situation, while Section 3 devel- 
ops the corresponding notions for parallel programs. Subsequently, Section 
4 presents an application of our algorithm, and Section 5 contains the con- 
clusions. The Appendix contains the detailed generic algorithm. 

2 Sequential Programs 

In this section we summarize the sequential setting of data flow analysis. 

2.1 Representation: Program Models 

In the sequential setting procedures are usually represented by directed flow 
graphs G -- (N, E, s, e) with node set N and edge set E, where the nodes 
n E N represent the statements, and the edges (n, m) E E the nondeter- 
ministic branching structure of the procedure under consideration, while s 
and e denote the unique start node and end node of G. Without loss of 
generality, it is assumed that s and e do not have any predecessors and 
successors, respectively. Figure 1 shows the flow graph of some procedure 
for illustration. 

However, similar to [St], we use here a different, transition system-like 
representation of a procedure, which we call a program model. Like a flow 
graph, also a program model is a directed graph T -- (N, E, s, e) with node 
set N, edge set E, and a unique start node s and end node e that are 
assumed to have no predecessors and successors, respectively. In contrast to 
a flow graph, however, the edges of T represent both the statements and the 
nondeterministic control flow of the underlying procedure, while the nodes 
only represent program points. This gives a program model the flavour 
of a transition system, and therefore, we will use the notions 'nodes' and 
'states', and 'edges' and 'transitions' of a program model T synonymously. 

Given a flow graph G the corresponding program model T results from 
the following simple transformation: For every node n of G do: 

�9 introduce a new node n ~, and an edge e from n to n ~, 

�9 label e with the assigment node n is labelled with in G, and remove 
the labelling of node n, 
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FIGURE 1. The Flow Graph G 

�9 replace every edge starting in n (except for the one inserted in the 
first step) by a corresponding edge starting in n ~. 

Figure 2 shows the result of this transformation for the flow graph of 
Figure 1. It is worth noting that  the two states of a program model cor- 
responding to a node n of the underlying flow graph explicitly represent 
the usual distinction between the entry point and the exit point of n. This 
simplifies the formal development of the theory, as the implicit t reatment  
of this distinction, which, unfortunately is usually necessary for the tradi- 
tional flow graph representation, is obsolete here. 

Given a program model T, then predT(n)-~4f { m I (m, n) E E } denotes 
the set of all immediate predecessors of a state n, and source(e) and 
dest(e) denote the source and the destination state of a transition e. 
A finite path in T is a sequence (el , . . . ,eq)  of transitions such that  
dest(ej) = source(ej+l) for j E { 1 , . . . , q -  1); it is a path from m to n, 
if source(el) = m and dest(eq) -= n. Moreover, PT[m, n] denotes the set of 
all finite paths from m to n, and r denotes the empty path containing no 
transition. Finally, without loss of generality we assume that  every state 
n E N lies on a path from s to e. 

2.2 Data  Flow Analys is  

Data flow analysis (DFA) is concerned with the static analysis of programs 
in order to support  the generation of efficient object code by "optimizing" 
compilers (cf. [He, M J]). For imperative languages, DFA provides informa- 
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FIGURE 2. The Program Model T of G 

tion about the program states that may occur at some given program points 
during execution. Theoretically well-founded are DFAs that are based on 
abstract interpretation (cf. [CC1, Ma D. The point of this approach is to 
replace the "full" semantics by a simpler more abstract version, which is 
tailored to deal with a specific problem. Usually, the abstract semantics 
is specified by a local semantic functional, which gives abstract meaning 
to every statement in terms of a transformation function on a complete 
lattice. Thus considering program models, the abstract semantics gives ab- 
stract meaning to every transition by means of a functional 

[ ] : E ~ ( C ~ C )  

where (C, •, E, 3_, T) denotes a complete lattice with least element _L and 
greatest element T, whose elements express the data flow information of 
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interest. 1 
Unlabelled transitions representing the empty statement sk ip  are associ- 

ated with the identity Idc on C. A local semantic functional [ ] can easily 
be extended to cover finite paths as well. For every path p =  ( e l , . . . ,  eq) E 
Pa[m, n], we define: 

Idc if p _= 
[ P ] =d/ [ (e2 , . . . ,  eq) ] o [ el ] otherwise 

The MOP-Solut ion of a DFA 

The solution of the meet over all paths (MOP) approach in the sense of Kam 
and Ullman [KU] defines the intuitively desired solution of a DFA. This 
approach directly mimics possible program executions in that  it "meets" 
(intersects) all information belonging to a program path reaching the pro- 
gram point under consideration. This directly reflects our desires, but is in 
general not effective. 

T h e  MOP-Solution: 

kin E N VCO E C. MOP(T,[ ])(n)(co) = F-] { ~p](Co)IP E PT[s,n] } 

The MFP-Solut ion  of a DFA 

The point of the maximal fixed point (MFP) approach in the sense of 
Kam and Ullman [KU] is to iteratively approximate the greatest solution 
of a system of equations which specifies the consistency between conditions 
expressed in terms of data  flow information of C: 

E q u a t i o n  S y s t e m  2.1 

info(n)  = { Co if n = s 
[7 { [ (m, n) ](info(m))[ m E predT(n) } otherwise 

Denoting the greatest solution of Equation System 2.1 with respect to the 
start information Co E C by infoc0, the solution of the MFP-approach is 
defined by: 

T h e  MFP-Solution: Vn E N Vco E C. MFP(T,[ D(n)(CO)=infoco(n) 

For monotonic functionals, 2 this leads to a suboptimal but algorithmic 
description (cf. [KU]). The question of optimality of the MFP-solution 

1In the following C will always denote a complete lattice. 
2A function f : C --+ C is called monotonic iff Vc, c' E C. c __. d implies f(c) __. f(d). 
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was elegantly answered by the Coincidence Theorem of Kildall [Kil, Ki2], 
and Kam and Ullman [KU], which we reformulate here for program models: 

T h e o r e m  2.2 ( T h e  (Sequent ia l )  C o i n c i d e n c e  T h e o r e m )  
Given a program model T = (N, E, s, e), the MFP-solution and the MOP- 
solution coincide, i.e. V n  E N. MOP(T,[ | ) (n)=MFP(T,[  ])(n), whenever 
all the semantic functions [ e l, e G E,  are distributive, v 

T h e  F u n c t i o n a l  C h a r a c t e r i z a t i o n  o f  the  M F P - S o l u t i o n  

From interprocedural DFA, it is well-known that the MFP-solution can 
alternatively be defined by means of a functional approach [SP]. Here, one 
iteratively approximates the greatest solution of a system of equations spec- 
ifying consistency between functions | n | ,  n E N. Intuitively, a function 
| n | transforms data flow information that is assumed to be valid at the 
start node of the program into the data flow information being valid at n. 

D e f i n i t i o n  2.3 (The F u n c t i o n a l  A p p r o a c h )  
The functional | ] : N --} (C --} C) is defined as the greatest solution of the 
equation system given by: 

f Idc if n = s  in |  ['1{ [ (m, n) ] o | m ] I m �9 predT (n)} otherwise 

The following equivalence result is important [KS]: 

T h e o r e m  2.4 Vn e g Vco e C. MFP(T,[ ])(n)(co)= | n ](Co) 

The functional characterization of the MFP-solution will be the (intuitive) 
key for computing the parallel version of the maximal fixed point solution. 
As we are only dealing with Boolean values later on, the functional form 
can be dealt with without performance penalty. 

3 Parallel Programs 

As usual, we consider a parallel imperative programming language with 
an interleaving semantics. Formally, this means that we view parallel pro- 
grams semantically as 'abbreviations' for nondeterministic programs, which 
result from a product construction between parallel components (cf. [CC2, 

3A function f : C --+C is called distributive iff VC' C_ C. f ( ~ C  r) = ~ {f(c) I c E 
Ct}. It is well-known that distributivity is a stronger requirement than monotonicity 
in the following sense: A function f : C--#C is monotonic iff VC' C_C. f(~C') E 
[-] {/(~) I c e c'}. 



Parallelism for Free: B i tvec tor  Analyses =~ No State Explosion! 271 

CH1, CH2]). In fact, the size of the nondeterministic 'product '  program may 
grow exponentially in the number of parallel components of the correspond- 
ing parallel program. This immediately clarifies the dilemma of da ta  flow 
analysis for parallel programs: even though it can be reduced to standard 
data  flow analysis on the corresponding nondeterministic program, this ap- 
proach is unacceptable in practice for complexity reasons. Fortunately, as 
we will see in Section 3.3, unidirectional bitvector analyses, which are most 
relevant in practice, can be performed as efficiently on parallel programs 
as on sequential programs. 

The following section establishes the notational background for the for- 
mal development and the proofs. 

3.1 R e p r e s e n t a t i o n :  Para l l e l  P r o g r a m  M o d e l s  

Syntactically, we express parallelism by means of a pax statement whose 
components are assumed to be executed in parallel on a shared memory. As 
usual, we assume that  there are neither jumps leading into a component of a 
pax statement from outside nor vice versa. This already introduces the phe- 
nomena of interference and synchronization, and allows us to concentrate 
on the central features of our approach which, however, is not limited to this 
setting. For example, a replicator statement in order to allow a dynamical 
process creation can be integrated along the lines of [CH2, Vol, Vo2]. 

Following [SHW] and [GS], the standard representation of a parallel pro- 
gram is a nondeterministic parallel flow graph G* = ( N * , E* , s*, e*) with 
node set N* and edge set E* as illustrated in Figure 3. This figure shows 
the flow graph of Figure 1, where some of the branch instructions have been 
replaced by parallel statements. 4 The components of a parallel statement 
are encapsulated by a ParBegin and a ParEnd node, which are represented 
by ellipses. For clarity we additionally separate the parallel components by 
two parallels. 

In anology to Section 2, we represent parallel programs as parallel pro- 
gram models, which are a straightforward extension of program models 
to the parallel setting. Except for subgraphs representing par  statements a 
parallel program model is a program model in the sense of Section 2, and in 
fact, all the standard notation can be transferred. Also the transformation 
from flow graphs to program models is the same, except that  PaxBegin and 
PaxEnd nodes are not duplicated. Figure 4 displays the parallel program 
model of the parallel flow graph of Figure 3. 

A par  statement and each of its components are also considered parallel 
program models. The graph Tpar representing a complete par  statement 
arises from linking its component graphs by means of a ParBegin and a 

4Of course, this replacement is not assumed to be semantics preserving. 
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FIGURE 3. The Parallel Flow Graph G* 

ParEnd node which have the start nodes and the end nodes of the com- 
ponent graphs as their only successors and predecessors, respectively. The 
ParBegin node and the ParEnd node are the unique start node and end 
node of Tpar. They form the entry and the exit to program regions whose 
subgraph components are assumed to be executed in parallel making the 
synchronization points in the program explicit. As in a parallel flow graph, 
we represent the states corresponding to a ParBeg• node or a ParEnd 
node of a parallel flow graph by ellipses and additionally separate the cor- 
responding component graphs by two parallels as shown in Figure 4. 

Moreover, TT:,(T*) and T~naX(T *) denote the set of all subgraphs and 
of all maximal subgraphs of T* representing a p a r  statement, i,e.,5 

T~na=(T*)=dJ { T  6 T~(T*)[VT' �9 Tp(T*). T c T' =~ T = T'}  

Additionally, 7~(T'),  T '  �9 Tp(T*), denotes the set of component program 
models of T ' ,  and 7~(T*) is an abbreviation for [J { 7~(T') IT '  �9 Tp(T*) }. 
It is worth noting that  every graph T �9 Tp(T*) and all of its component 
program models T '  �9 7~(T) are single-entry/single-exit regions of T*. 
Moreover, for technical reasons (see Section 'Interleaving Predecessors') we 
assume that  the unique transitions ending in the start  state or starting in 
the end state of a graph T �9 7~(T*) are edges of T. 

5For parallel program models T and T I we define: T C_ T I if and only if N C_ N I 
and E C_ E I. 
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FIGURE 4. The Parallel Program Model T* of G* 

Additionally, we need the functions States, Trans, start, and end, which 
map a parallel program model to its state set, its transition set, its start  
state, and its end state, respectively. Moreover, we need the polymorphic 
functions ppm and cpm, where ppm is defined for the states of graphs of 
T~(T*) and for the graphs of We(T*), and epm is defined for the states and 
the transitions of T*. ppm maps its argument x to the smallest parallel 
program model of Tp(T*) containing x, i.e., 

["]{T' e Tp(T*)Ix e States(T') ) if x e States(TT~(T*)) 
ppm(x)=dl N{T,  ETp(T.)[xC_T,  } if x e We(T*) 

Similarly, the polymorphic function cpm maps its argument x, which is 
a state or a transition of T* to the smallest parallel component model 
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containing x, if it lies in a graph T �9 7~(T*), and to T* itself otherwise, 
i.e., 6 

cpm(x)=4 f { TN.{ T ' �9 Tc(T*) Ix �9 T' } otherwiseif x e 7~(T*) 

a program are either unrelated or properly nested. 
Additionally, we introduce the following abbreviations for the sets of 

start nodes (i.e., ParBegin nodes) and end nodes (i.e., ParEnd nodes) of 
graphs of Tp (T*): 

N~=dl { start(T) IT E T~,(T*) } and N~=4f { end(T) IT �9 TT~(T*) } 

Finally, given a parallel program model T, we define an associated se- 
quential program model Taeq, which results from T by replacing all states 
belonging to a component parallel model of some graph T' E T~ naz (T) 
together with all transitions starting or ending in such a state by a tran- 
sition leading from start(T') to end(T'). Note that Tseq is a sequential 
program model in the sense of Section 2. This is illustrated in Figure 5, 
which shows the sequentialized version of the parallel program model en- 
capsulated by the nodes 16 and 27 of Figure 4. 

Tll~t 

2~(.__) 

FIGURE 5. A Sequentialized Program Model 

Interleaving Predecessors 

Given a sequential program model T, the set of transitions that might 
precede a transition e at run-time is precisely given by the set of static 

6x e To(T*) is an abbreviation for z e States(To(T*)) U Trans(Tc(T*)). 
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predecessors, the incoming transitions of source(e). For parallel program 
models, however, the interleaving of parallel components must also be taken 
into account: here each transition occurring in a component of some par  
statement can dynamically also be preceded by any transition of another 
component of this pa r  statement. 

We denote this kind of predecessors as interleaving predecessors. This 
notion can easily be defined by means of the function ParRel mapping a 
graph of 7~ (T*) to the set of its parallel relatives, i.e., the set of component 
graphs which are executed in parallel, i.e., 

ParRel: Tc(T*) --+ 7)(7~ (T*)) 

is defined by 

ParRel(T)=df 

Tc(ppm(T))\T U { OParRel(ppm(T)) otherwiseif ppm(T) E T~nax(T ") 

where :P denotes the power set operator. 
Based on this function, the set of interleaving predecessors of a transition 

e E E* is given by the function ItlvgPredT. : E* --~7~(E *) defined by: 

Trans(ParRel(cpm(e))) if e E Trans(Tp(T*)) 
ItlvgPred T* (e) =dy 0 otherwise 

For illustration consider the transition e -- (21, 21 ~) of Figure 6. While e o  

is the only transition, which statically precedes this transition, its execution 
may be interleaved with all transitions of the shadowed components. 

Program Paths of Parallel Program Models 

As mentioned already, the interleaving semantics reduces parallel programs 
to (much larger) nondeterministic sequential programs representing all the 
possible interleavings explicitly (cf. [HU]). Paths in these nondeterministic 
'product programs' model the possible executions of a parallel program 
model. We therefore define that  an edge sequence of a parallel program 
model is a parallel path iff it is a path in the corresponding nondeterministic 
sequential product program, and we denote the set of all parallel paths from 
m to n by PPT.[m,n]. 7 

7In [KSV1] an alternative and technically much more complicated definition was given 
for parallel flow graphs. 
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FIGURE 6. Parallel Relatives and Interleaving Predecessors 

3.2 Data Flow Analysis of Parallel Programs 

As before, a DFA for a parallel program model is completely specified by 
a local semantic functional [ ] : E* -~ (C--+ C), which can straightforward 
be extended to cover finite parallel paths as well. Thus, given a state n of 
a parallel program model T*, the parallel version of the 'desired' MOP- 
solution is given by: 

The  PMOP-Solution: 

Vn G N* Vco E C. PMOP(T.,[ ])(n)(co) = [--] { [p] (co) [p  E PPT.[s*,n]  } 

Note that  the corresponding nondeterministic product program would al- 
low us to straightforward adapt the sequential situation with all its results, 
However, the involved potentially exponential product construction is un- 
acceptable in practice. Fortunately, as we will see in the next section, for 
bitvector problems there exists an elegant and efficient way out. 
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3.3 Bitvector Analyses 

Unidirectional bitvector problems can be characterized by the simplicity of 
their local semantic functional 

[ ] : E * - ~  ( ~ - ~ B )  

which specifies the effect of a transition e on a particular component of the 
bitvector (cf. Section 4 for illustration). Here, B is the lattice of Boolean 
truth values ({if, tt}, [7, E) with ff E tt and the logical 'and' as meet 
operation N, or its dual counterpart with tt E ff and the logical 'or' as 
meet operation R. 

Despite their simplicity, unidirectional bitvector problems are highly rel- 
evant in practice because of their broad scope of applications ranging from 
simple analyses like liveness, availability, very business, reaching definitions, 
and definition-use chains to more sophisticated and powerful program op- 
timizations like code motion, partial dead code elimination, assignment 
motion, and strength reduction. 

We are now going to show how to optimize the effort for computing the 
PMOP-solution for bitvector problems. This requires the consideration of 
the semantic domain ~-B consisting of the monotonic Boolean functions 
B -+ B. Obviously we have: 

Proposition 3.1 

1. J:B simply consists of the constant functions Constu and Constff, 
together with the identity IdB on B. 

. J:B, together with the pointwise ordering between functions, forms 
a complete lattice with least element Constff and greatest element 
Consttt, which is closed under function composition. 

3. All functions of JoB are distributive. 

The key to the efficient computation of the 'interleaving effect' is based 
on the following simple observation, which pinpoints the specific nature 
of a domain of functions that only consists of constant functions and the 
identity on an arbitrary set M. 

L e m m a  3.2 (Main-Lemma)  
Let fi : ~B -+ :~B, 1 < i < q, q E IN', be functions from ~B to , ~ .  Then 
we have: 

3 k e  {1 , . . . ,q} .  f q o . . . o . f 2 o  f l--:fk A V j  E {k- t -1 , . . . ,q} .  f j=Id~ 
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Interference 
The relevance of this lemma for our application is that  it restricts the 
way of possible interference within a parallel program model: each possible 
interference is due to a single transition within a parallel component. Com- 
bining this observation with the fact that  for e ~ E ItlvgPredT.(e), there 
exists a p~rnll~l path, where e ~ is directly executed after e, we obtain that  
the potential of interference, which in general would be given in terms of 
paths, is fully characterized by the set ItlvgPredT. (e). In fact, consider- 
ing the computation of universal properties that  are described by maximal 
fixed points (the computation of minimal fixed points requires the dual ar- 
gument), the obvious existence of a path to dest(e) that  does not require 
the execution of any transition of ItlvgPred T* (e) implies that  the only ef- 
fect of interference is 'destruction'. This motivates the introduction of the 
predicate NotKilled, which we derive from a predicate Kills defined for 
graphs of 7c(T*), which is true for such a graph if it contains a transition 
e with ~ e ] = Const~. Note that  this predicate can easily be computed by 
a statical examination of T*. Based on Kills, we now define the desired: 

NotKilled (n) =dI 
( A('~Kills(T') [ T' e ParRel(cpm(n)) } 

if cpm(n) E 7"c(T*) 
tt otherwise 

Intuitively, NotKilled indicates that  no transition of a parallel relative 
destroys the property under consideration, i.e. [ e ~ ] ~ Constff for all e ~ E 
ItlvgPredT. (e), e E Trans(cpm(n)). Note that  only the constant function 
given by the precomputed value of this predicate is used in Definition 3.5 to 
model interference, and in fact, Theorem 3.6 guarantees that  this modelling 
is sufficient. Obviously, this predicate is easily and efficiently computable. 
Algorithm 1.1 computes it as a side result. 

Synchronization 
Besides taking care of possible interference, we also need to take care of the 
synchronization required at nodes in N~: control may only leave a parallel 
statement after all parallel components terminated. The corresponding in- 
formation can be computed by a hierarchical algorithm that  only considers 
purely sequential program models. The underlying idea coincides with that  
o f  interprocedural analysis [KS]: we need to compute the effect of complete 
subgraphs or in this case of complete parallel components. This information 
is computed in an 'innermost' fashion and then propagated to the next sur- 
rounding parallel statement, s The following definition, which is illustrated 
in Section 4, describes the complete three-step procedure: 

SAlso in [SHW] parallel statements are investigated in an innnermost fashion. 



Parallelism for Free: Bitvector Analyses =~ No State Explosion! 279 

. Terminate, if T does not contain any parallel statement. Otherwise, 
select successively all maximal program models T ~ occurring in a 
graph of 7"7~(T) that do not contain any parallel statement, and de- 
termine the effect | T ~ ] of this (purely sequential) graph according 
to the equational system of Definition 2.3. 

2. Compute the effect ~ T" ]* of the innermost parallel statements T" 
of T by 

Constl r 
| T" ]* = Ids 

Constu 

if 3T '  e 7"c(T"). ~ end(T') ] = Constfy 
if VT'  e 7-c(T"). | end(T') ] = Idn 
otherwise 

3. Transform T by replacing all innermost parallel statements T" = 
(N", E", s", e") by ({s" ,e"},{(s" ,e")},s" ,e") ,  define the local se- 
mantics of (s",e") by ~[T" ]~*, and set the predicate Kills(s") to 
tt, if one of the start nodes of the parallel components of T" satisfies 
the predicate Kills, and to ff otherwise. Continue with step 1. 

This three-step algorithm is a straightforward hierarchical adaptation of 
the algorithm for computing the functional version of the MFP-solution for 
the sequential case. Only the second step realizing the synchronization at 
nodes in N~c needs some explanation, which is summarized in the following 
lemma. 

L e m m a  3.3 The PMOP-solution of a parallel program model T E TT~(T*) 
that only consists of purely sequential parallel components T1 , . . . ,Tk  is 
given by: 

Constz 
PMOP(T,[ ]) (end(T)) = Ids 

Consttt 

if 3 1 < i < k. ~ end(Ti) ] = Constg 
if V 1 < i < k. | end(Ti) ] = Ids 
otherwise 

Also the proof of this lemma is a consequence of Main Lemma 3.2. As a 
single transition is responsible for the entire effect of a path, the effect of 
each complete path through a parallel statement is already given by the 
projection of this path onto the parallel component containing the vital 
transition. Thus in order to model the effect (or PMOP-solution) of a 
parallel statement, it is sufficient to combine the effects of all paths local 
to the components, a fact, which is formalized in Lemma 3.3. 

Now the following theorem can be proved by means of a straightforward 
inductive extension of the functional version of the sequential Coincidence 
Theorem 2.2, which is tailored to cover complete paths, i.e. paths going 
from the start to the end of a parallel statement: 
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Theorem 3.4 (The Hierarchical Coincidence Theorem) 
Let T �9 TT~(T*) be a parallel program model, and ~ ] : E* -+ Yre 
semantic functional. Then we have: 

PMOP (T,~ ]) ( end(T) ) = ~ T ]" 

a local 

After this hierarchical preprocess the following modification of the equation 
system for sequential bitvector analyses leads to optimal results: 

Definition 3.5 The functional ~ ] : N* --+ ~B is defined as the greatest 
solution of the equation system given by: 9 

|nl= / 
Ide if n = s* 

ppm(n)  ~* o ~ s tart(ppm(n))  ~ N Const~otgiuea(n) 
if n e N ~  

~ {  ~ (m, n) ~ o ~ m ~ I m E predT. (n)} M COnStNotKilled(n) 
otherwise 

This allows us to define the PMFPBv-solution, a fixed point solution for 
the bitvector case, in the following fashion: 

The PMFPBv-So lu t ion :  

PMFPBv (T.,~ ]) : N* ~ H~ defined by 

V n E N* V b E B. PMFPBv(T.,~ ] ) (n)(b)= ~ n In(b) 

As in the sequential case the PMFPsv-solut ion is practically relevant, 
because it can efficiently be computed (see Algorithm 1.1 in Appendix 1). 
The following theorem now establishes that  it coincides with the desired 
PMOP-solution. 

Theorem 3.6 (The Parallel Bitvector Coincidence Theorem) 
Let T* = (N*,E* ,  s*, e*) be a parallel program model, and ~ ] : E* --+ Y:~ 
a local semantic functional. Then we have that the PMOP-solution and the 
PMFPBy-solution coincide, i.e., 

V n E N*. PMOP(T.,[ ]) (n) = PMFPBv(T.  ,l ]) (n) 

9Noteth&t HI ~ is the straightforward extension ofthe functional defined in Definition 
2.3, Thus the overloading of notation is harmless, as no reference to the sequential version 
is made in this definition. 
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Intuitively, the (sequential) Coincidence Theorem 2.2 can be read as that 
unidirectional distributive data flow analysis problems allow to model the 
confluence of control flow by merging the corresponding data flow informa- 
tions during the iterative computation of the MFP-solution without losing 
accuracy. The intuition behind the Parallel Bitvector Coincidence Theo- 
rem 3.6 is the same, only the correspondence between control flow and 
program representation is more complicated due to the interleaving and 
synchronization effects. 

4 Application: Code Motion 

In this section we demonstrate the practicality of our framework by sketch- 
ing a code motion algorithm, which is unique in placing the computations of 
a parallel program computationaUy optimally. The power of this algorithm, 
which evolves as the straightforward extension of its sequential counterpart, 
the busy code motion transformation of [KRS2], is illustrated by means of 
the example of Figure 3, where our algorithm achieves the optimization 
result of Figure 7. It eliminates the partially redundant computations of 
a + b at the nodes 3, 10, 12, 14, 20, 21, 29 by moving them to the nodes 
2, 11 and 18, but it does not touch the partially redundant computations 
of a + b at the nodes 7 and 9, which cannot safely be eliminated. 

6 

7 10 

8 11 

FIGURE 7. The Result of the BCMpp-Transformation 
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Intuitively, code motion improves the run-time efficiency of a program by 
avoiding unnecessary recomputations of values at run-time. This is achieved 
by replacing the original computations of a program by temporaries that  
are initialized at certain program points. For sequential programs it is well- 
known that  placing the computations as early as possible in a program, 
while maintaining its semantics, leads to computationally optimal results 
(cf. [KRS1, KRS2]). This carries over to the parallel setting. 

As in the sequential case the as-early-as-possible placement of compu- 
tations requires the computation of the set of program points where a 
computation is up-safe and down-safe, i.e., where it has been computed 
on every program path reaching the program point under consideration, 
and where it will be computed on every program continuation reaching the 
program's end node. 1~ For the ease of presentation we assume here that  
parallel statements of the argument program are free of 'recursive' assign- 
ments, i.e., assignments whose left hand side variable occurs in its right 
hand side term. 11 The DFA-problems for up,safety and down-safety are 
then specified by the local semantic functionals [ ]u8 and [ Ida, where 
Comp and Transp a r e  two local predicates, which are true for a transition 
e with respect to a computation t, if t occurs in the right hand side term 
of the statement of e, and if no operand of t is modified by it, respectively. 

Consttt 
e |~8=~ IdB 

Const z 

if Transp(e) ^ Comp(e) 
if Transp(e) A -~Comp(e) 
otherwise 

I Consttt if Comp(e) 
[ e ]ds=d] IdB if "~Comp(e) A Transp(e) 

Constff otherwise 

It is worth noting that  these are the very same functionals as in the 
sequential case because the effect of interference is completely taken care 
of by the corresponding versions of the predicate NotKilled, which are 
automatically derived from the definitions of the local semantic functionals. 

Moreover, the functionals can directly be fed into the generic Algorithm 
1.1 for computing the PMFP-solutions of down-safety and up-safety, as 
illustrated in Figure 8. As in the sequential case, down-safe start  states 
are 'earliest', as well as other down-safe but  not not up-safe states that  

1~ and down-safety are also known as availability and anticipability (very 
business), respectively. 

11Recursive assignments can also be handled but require a slightly refined treatment. 
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either possess an 'unsafe' predecessor (see node 2) or an incoming transition 
modifying an operand of the computation under consideration (see nodes 
111 and 181). 

After inserting an initialization statement at each earliest state, all orig- 
inal computations belonging to transitions with a safe source state can be 
replaced by the corresponding temporary, as illustrated in Figure 8. This 
transformation results in the promised parallel program of Figure 7, which 
is indeed computationally optimal with respect to a + b. 

2 ( ~  151 

2' I is' q 

s( 

$'{ ld 

17( 

2f 

29 

[ ]  Down-Safe �9 Up-Safe �9 Earliest �9 Replar 

FIGURE 8. Down-Safe, Up-Safe, Earliest, and Replacement Points of a + b 



284 Jens Knoop, Bernhard Steffen, Jiirgen Vollmer 

5 Conclusions 

We have shown how to construct for unidirectional bitvector problems opti- 
mal analysis algorithms for parallel programs with shared memory that  are 
as efficient as their purely sequential counterparts,  and which can easily be 
implemented. At the first sight, the existence of such an algorithm is rather 
surprising, as the interleaving semantics underlying our programming lan- 
guage is an indication for an exponential effort. However, the restriction 
to bitvector analysis constrains the possible ways of interference in such a 
way, that  we could construct a generic fixed point algorithm that  directly 
works on the parallel program without taking any interleavings into ac- 
count. This algorithm is implemented on the Fixpoint Analysis Machine 
of [SCKKM]. Moreover, the 'lazy' variant (cf. [KRS1, KRS2]) of the code 
motion transformation of Section 4 is implemented in the ESPRIT project 
COMPARE #5933 [Vol, Vo2]. 
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1 C o m p u t i n g  the  PMFPBv-Solution 

A l g o r i t h m  1.1 ( C o m p u t i n g  t h e  PMFPBy-So lu t ion )  

I n p u t :  A parallel program model T* ---- (N*,E*,s*,e*) ,  a local semantic func- 
tional [ ] : E* __+ ~r~, a function fi,~i~ �9 jr~ and a Boolean value blni~ E B, where 
fi,~it and bi,~it reflect the assumptions on the context in which the program model 
under consideration is called. Usually, fi,~i~ and bi,~it are given by IdB and f f  , 
respectively. 

O u t p u t :  An annotation of T* with functions ~ T ] *  �9 J:B, T �9 TT,(T*), 
representing the semantic functions computed in step 2 of the three-step procedure 
of Section 3.3, and with functions [ n ] �9 J~B, n �9 N*, representing the greatest 
solution of the equation system of Definition 3.5. In fact, after the termination 
of the algorithm the functional HI ] satisfies: 

V n �9 N*. [ n ] = PMFPBv (T* ,[ ]) (n) ---- PMOP(T* .[ ]) (n) 

R e m a r k :  The global variables I T ] * ,  T �9 Tc(T*), each of which is storing 
a function of YrB, are used for storing the global effects of component graphs 
of graphs T �9 T~,(T*) during the hierarchical computation of the PMFPBy-  
solution. The global variables Kills(start(T)),  T �9 Tc(T*), store whether T 
contains a transition e with [ e ] = Constt~. These variables are used to compute 
the value of the predicate NotKilled of Section 3.3. Moreover, every program 
model T �9 Tp(T*) is assumed to have a rank, which is recursively defined by: 

0 if T �9 T ~  ~ (T*) 
rank(T)=df max{  rank(T') IT'  �9 Tp(T*) A T '  C T }  + 1 otherwise 

where T ~ i ~ ( T * ) = d f { T  E T~,(T*)IVT'  e TTo(T*). T '  C T o T '  = T }  denotes 
the set of minimal graphs of T~,(T*). Finally, succT(n)=df { m ] (n, m) e E* } 
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denotes the set of all immediate successors of a state n of a parallel program 
model T, and MFP denotes the standard procedure for computing the MFP- 
solution in the sequential case. 

B E G I N  
( Synchronization: Computing [ T ]* for all T �9 TT~(T*) ) 
GLOBEFF(T*, [ ]); 

( Interleaving: Computing the PMFPBv-Solution | n | for all n �9 N* ) 
PMFPBv(T*, [ 1, finit, bi,~it) 

E N D .  

where 

P R O C E D U R E  GLOBEFF (T = (N, E, s, e) : ParallelProgramModel; 
[ ] :E-~s :LocalSemanticFunctional); 

V A R  i : integer; 
B E G I N  

F O R  i : =  0 TO rank(T) DO 
F O R A L L  T' �9 {T" IT" �9 T~,(T) A rank(T")=i}  DO 

F O R A L L  T "  - -  (N", E",  s", e") �9 {Y,~q IT'" �9 7~(T')} DO 

L E T  Ve �9 E".  [ e ] "  = { [ppm(dest(e))|*[ e ] ifeeN~otherwise x N ~  

B E G I N  
Kills(start(T")) := ( I { n �9 N" I Kills(n) } I > 1 ) V 

( l { e  �9 E " l [ e l "  -'- Consttr }l > 1); 
MFP(T",[ ]", IdB); 
[ T" IS* := [ end(T") ] 

E N D  

I Constfy 
IdB 
Const, 

OD; 

[ T ' ] *  := 

OD 
OD 

END.  

if 3T"  �9 Tc(T'). I T~,~q ]" = Co~t~ 
if VT"  �9 Tc(T'). I T~q I" = IdB 
otherwise 

P R O C E D U R E  PMFPBv (T = (N, E, s, e) : ParalleIProgramModel; 
[ ] : E-~  }rs : LocaISemanticFunctional; 
f, tart: }:B; IsKilled : B); 

V A R  f : .~'~; 
B E G I N  

IF  IsKilled T H E N  F O R A L L  n E N DO [ n |  := Const~ OD 
E L S E  

(Initialization of the annotation arrays [ ] and the variable workset ) 
FORALL n e States(T, eq)\{s} DO 

i ,,, 
Constfy if 3 e �9 E. dest(e) = n ^ [ e ] = Consttf 

[ n | := Consttt otherwise 
OD; 
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I s ]  :=A,o,~; 
workset := { n �9 S ta t e s (T .~ )  I n �9 N;~ U {s} V i n l  = a o n s t z  }; 

( Iterative fixed point computation ) 
W H I L E  workset ~ $ D O  

L E T  n E workset 
B E G I N  

workset := workset\ { n }; 
I F  n �9 N\N~v 

T H E N  
F O R A L L  m �9 SUCCT(n) D O  

f:= [ (n,,n) ] o [ n i ;  
I F  [ m ] ~  f 

T H E N  

[ m I : = f ;  
workset := workset U { m } 

F I  
OD 

E L S E  
F O R A L L  T' E_TTc(ppm(n)) D O  

PMFPsv(T' ,[  ] , I n ] ,  ~ Kills(start(T"))) 
T t' e 'Yc ( p p r n ( n ) ) \ { T  I } 

OD; 
f : =  [ pp,n(n) |* o I n ] ;  
I f  [ end(ppm(n)) ] -I f 

T H E N  
[ end(~pm(n)) ] := f ;  
workset := workset U { end(ppm(n) ) } 

F I  
F I  

E N D  
O D  

Let | n Ltg, n E N*, denote the final values of the corresponding variables after 
the termination of Algorithm 1.1, and [ n ] ,  n E N*, the greatest solution of the 
equation system of Definition 3.5, then we have: 

T h e o r e m  1.2 V n e N * .  | n | a z g = [ n ]  


