
Parallelism for Free:
Bitvector Analyses
No State Explosion!

Jens Knoop*
Bernhard Steffen*
Jiirgen Vollmer t$

%

[

ABSTRACT One of the central problems in the automatic analysis of dis-
tributed or parallel systems is the combinatorial state explosion leading to
models, which are exponential in the number of their parallel components.
The only known cure for this problem are application specific techniques,
which avoid the state explosion problem under special frame conditions. In
this paper we present a new such technique, which is tailored to bitvector
analyses, which are very common in data flow analysis. In fact, our method
allows to adapt most of the practically relevant optimizations for sequen-
tial programs, for a parallel setting with shared variables and arbitrary
interference between parallel components.

1 Motivation

Parallel systems are of growing interest, as they are more and more sup-
ported by modern hardware environments. However, it is very difficult to
guarantee their reliability (cf. IMP]): the adaptation of the successful tech-
niques for sequential systems seems inevitably be tied to the combinatorial
explosion of the systems' state space leading to models, which are exponen-
tial in the number of the parallel components. As a consequence, also clas-
sical data flow analysis for parallel programming languages was considered
too expensive to be implemented in real programming environments. The
only known cure for this problem are application specific techniques, which
avoid the state explosion problem under usually very specific frame condi-

*Fakult~t fiir Mathematik und Informatik, Universit~t Passau, Innstrasse 33, D-94032
Passau, Germany. E-mail: {knoop,steffen}@fmi.uni-passau.de

?Fakult~t fiir Informatik, Institut fiir Programmstrukturen und Datenorganisation
(IPD), Universlt~it Karlsruhe, Vincenz-PrieBnitz-Stratle 3, D-76128 Karlsruhe, Germany.
E-mail: vollmer~ipd.info.uni-karlsruhe.de

SA preliminary version of this article was published in the preliminary proceedings
of TACAS'g5 (cf. [KSVI]).

Parallelism for Free: Bitvector Analyses =~ No State Explosion! 265

tions. For data flow analysis, this ranges from special heuristics (cf. [McD])
and approaches which require data independence of the parallel components
(cf. [GS]) or exclude shared variables (cf. [LC]) over approaches tailored for
specific analyses like mutual exclusion or data races (cf. [DC]) to approaches
that are based on state space reductions (cf. [CH1, CH2, DBDS, GW, Va]).
The latter allow general synchronization mechanisms, but still require the
investigation of an appropriately reduced version of the global state space,
which is often still unmanageable.

In this paper we show how to construct for unidirectional bitvector analy-
sis problems (which are most prominent in practice) algorithms for parallel
programs with shared memory and interleaving semantics that

1. optimally cover the phenomenon of interference

2. are as eJ~icient as their sequential counterparts and

3. easy to implement.

The first property is a consequence of a Kam/Ullman-style ([KU]) Coin-
cidence Theorem for bitvector analyses stating that the parallel meet over
all paths (PMOP) solution, which specifies the desired properties, coin-
cides with our parallel bitvector maximal fixed point (PMFPBv) solution,
which is the basis of our algorithm. This result is rather surprising, as it
states that although the various interleavings of the executions of parallel
components are semantically different, they need not be considered during
bitvector analysis, which is the key observation of this paper.

The second property is a simple consequence of the fact that our algo-
rithms behave like standard bitvector algorithms. In particular, they do
not require the consideration of any kind of global state space. This is im-
portant, as even the corresponding reduced state spaces would usually still
be exponential in size.

The third property is due to the fact, that only a minor modification of
the sequential bitvector algorithm needs to be applied after a preprocess
consisting of a single fixed point routine (cf. Section 3.3).

Thus, using our methods all the well-known algorithms for unidirectional
bitvector analysis problems can be adapted for parallel programs at almost
no cost on the runtime and the implementation side. This is highly rele-
vant in practice as this class of bitvector problems has a broad scope of
applications ranging from simple analyses like liveness, availability, very
business, reaching definitions, and definition-use chains (cf. [He]) to more
sophisticated and powerful program optimizations like code motion (cf.
[DS, DRZ, KRS1, KRS2]), partial dead code elimination (cf. [KRS3]), as-
signment motion (cf. [KRS4]), and strength reduction (cf. [KRS5]). All
these techniques, which only require unidirectional bitvector analyses, are
now available for parallel programs. In Section 4 this is demonstrated by

266 Jens Knoop, Bernhard Steffen, Jiirgen Vollmer

presenting a code motion algorithm, which evolves from the busy code mo-
tion transformation of [KRS2], and is unique in placing the computations
of a parallel program computationally optimally.

Structure of the Paper

The next section will recall the sequential situation, while Section 3 devel-
ops the corresponding notions for parallel programs. Subsequently, Section
4 presents an application of our algorithm, and Section 5 contains the con-
clusions. The Appendix contains the detailed generic algorithm.

2 Sequential Programs

In this section we summarize the sequential setting of data flow analysis.

2.1 Representation: Program Models

In the sequential setting procedures are usually represented by directed flow
graphs G -- (N, E, s, e) with node set N and edge set E, where the nodes
n E N represent the statements, and the edges (n, m) E E the nondeter-
ministic branching structure of the procedure under consideration, while s
and e denote the unique start node and end node of G. Without loss of
generality, it is assumed that s and e do not have any predecessors and
successors, respectively. Figure 1 shows the flow graph of some procedure
for illustration.

However, similar to [St], we use here a different, transition system-like
representation of a procedure, which we call a program model. Like a flow
graph, also a program model is a directed graph T -- (N, E, s, e) with node
set N, edge set E, and a unique start node s and end node e that are
assumed to have no predecessors and successors, respectively. In contrast to
a flow graph, however, the edges of T represent both the statements and the
nondeterministic control flow of the underlying procedure, while the nodes
only represent program points. This gives a program model the flavour
of a transition system, and therefore, we will use the notions 'nodes' and
'states', and 'edges' and 'transitions' of a program model T synonymously.

Given a flow graph G the corresponding program model T results from
the following simple transformation: For every node n of G do:

�9 introduce a new node n ~, and an edge e from n to n ~,

�9 label e with the assigment node n is labelled with in G, and remove
the labelling of node n,

Parallelism for Free: Bitvector Analyses ::~ No State Explosion! 267

FIGURE 1. The Flow Graph G

�9 replace every edge starting in n (except for the one inserted in the
first step) by a corresponding edge starting in n ~.

Figure 2 shows the result of this transformation for the flow graph of
Figure 1. It is worth noting that the two states of a program model cor-
responding to a node n of the underlying flow graph explicitly represent
the usual distinction between the entry point and the exit point of n. This
simplifies the formal development of the theory, as the implicit t reatment
of this distinction, which, unfortunately is usually necessary for the tradi-
tional flow graph representation, is obsolete here.

Given a program model T, then predT(n)-~4f { m I (m, n) E E } denotes
the set of all immediate predecessors of a state n, and source(e) and
dest(e) denote the source and the destination state of a transition e.
A finite path in T is a sequence (el , . . . ,eq) of transitions such that
dest(ej) = source(ej+l) for j E { 1 , . . . , q - 1); it is a path from m to n,
if source(el) = m and dest(eq) -= n. Moreover, PT[m, n] denotes the set of
all finite paths from m to n, and r denotes the empty path containing no
transition. Finally, without loss of generality we assume that every state
n E N lies on a path from s to e.

2.2 Data Flow Analys is

Data flow analysis (DFA) is concerned with the static analysis of programs
in order to support the generation of efficient object code by "optimizing"
compilers (cf. [He, M J]). For imperative languages, DFA provides informa-

268 Jens Knoop, Bernhard Steffen, Jiirgen Vollmer

2 I

' (i '~

+,' < ~o' (

,< ,,(

,C '~(21'(

~.(

-(

-(_)

FIGURE 2. The Program Model T of G

tion about the program states that may occur at some given program points
during execution. Theoretically well-founded are DFAs that are based on
abstract interpretation (cf. [CC1, Ma D. The point of this approach is to
replace the "full" semantics by a simpler more abstract version, which is
tailored to deal with a specific problem. Usually, the abstract semantics
is specified by a local semantic functional, which gives abstract meaning
to every statement in terms of a transformation function on a complete
lattice. Thus considering program models, the abstract semantics gives ab-
stract meaning to every transition by means of a functional

[] : E ~ (C ~ C)

where (C, •, E, 3_, T) denotes a complete lattice with least element _L and
greatest element T, whose elements express the data flow information of

Parallelism for Free: Bitvector Analyses =~ No State Explosion! 269

interest. 1
Unlabelled transitions representing the empty statement sk ip are associ-

ated with the identity Idc on C. A local semantic functional [] can easily
be extended to cover finite paths as well. For every path p = (e l , . . . , eq) E
Pa[m, n], we define:

Idc if p _=
[P] =d/ [(e2 , . . . , eq)] o [el] otherwise

The MOP-Solut ion of a DFA

The solution of the meet over all paths (MOP) approach in the sense of Kam
and Ullman [KU] defines the intuitively desired solution of a DFA. This
approach directly mimics possible program executions in that it "meets"
(intersects) all information belonging to a program path reaching the pro-
gram point under consideration. This directly reflects our desires, but is in
general not effective.

T h e MOP-Solution:

kin E N VCO E C. MOP(T,[])(n)(co) = F-] { ~p](Co)IP E PT[s,n] }

The MFP-Solut ion of a DFA

The point of the maximal fixed point (MFP) approach in the sense of
Kam and Ullman [KU] is to iteratively approximate the greatest solution
of a system of equations which specifies the consistency between conditions
expressed in terms of data flow information of C:

E q u a t i o n S y s t e m 2.1

info(n) = { Co if n = s
[7 { [(m, n)](info(m))[m E predT(n) } otherwise

Denoting the greatest solution of Equation System 2.1 with respect to the
start information Co E C by infoc0, the solution of the MFP-approach is
defined by:

T h e MFP-Solution: Vn E N Vco E C. MFP(T,[D(n)(CO)=infoco(n)

For monotonic functionals, 2 this leads to a suboptimal but algorithmic
description (cf. [KU]). The question of optimality of the MFP-solution

1In the following C will always denote a complete lattice.
2A function f : C --+ C is called monotonic iff Vc, c' E C. c __. d implies f(c) __. f(d).

270 Jens Knoop, Bernhard Steffen, Jiirgen Vollmer

was elegantly answered by the Coincidence Theorem of Kildall [Kil, Ki2],
and Kam and Ullman [KU], which we reformulate here for program models:

T h e o r e m 2.2 (T h e (Sequent ia l) C o i n c i d e n c e T h e o r e m)
Given a program model T = (N, E, s, e), the MFP-solution and the MOP-
solution coincide, i.e. V n E N. MOP(T,[|) (n)=MFP(T,[])(n), whenever
all the semantic functions [e l, e G E, are distributive, v

T h e F u n c t i o n a l C h a r a c t e r i z a t i o n o f the M F P - S o l u t i o n

From interprocedural DFA, it is well-known that the MFP-solution can
alternatively be defined by means of a functional approach [SP]. Here, one
iteratively approximates the greatest solution of a system of equations spec-
ifying consistency between functions | n | , n E N. Intuitively, a function
| n | transforms data flow information that is assumed to be valid at the
start node of the program into the data flow information being valid at n.

D e f i n i t i o n 2.3 (The F u n c t i o n a l A p p r o a c h)
The functional |] : N --} (C --} C) is defined as the greatest solution of the
equation system given by:

f Idc if n = s in | ['1{ [(m, n)] o | m] I m �9 predT (n)} otherwise

The following equivalence result is important [KS]:

T h e o r e m 2.4 Vn e g Vco e C. MFP(T,[])(n)(co)= | n](Co)

The functional characterization of the MFP-solution will be the (intuitive)
key for computing the parallel version of the maximal fixed point solution.
As we are only dealing with Boolean values later on, the functional form
can be dealt with without performance penalty.

3 Parallel Programs

As usual, we consider a parallel imperative programming language with
an interleaving semantics. Formally, this means that we view parallel pro-
grams semantically as 'abbreviations' for nondeterministic programs, which
result from a product construction between parallel components (cf. [CC2,

3A function f : C --+C is called distributive iff VC' C_ C. f (~ C r) = ~ {f(c) I c E
Ct}. It is well-known that distributivity is a stronger requirement than monotonicity
in the following sense: A function f : C--#C is monotonic iff VC' C_C. f(~C') E
[-] {/(~) I c e c'}.

Parallelism for Free: B i tvec tor Analyses =~ No State Explosion! 271

CH1, CH2]). In fact, the size of the nondeterministic 'product ' program may
grow exponentially in the number of parallel components of the correspond-
ing parallel program. This immediately clarifies the dilemma of da ta flow
analysis for parallel programs: even though it can be reduced to standard
data flow analysis on the corresponding nondeterministic program, this ap-
proach is unacceptable in practice for complexity reasons. Fortunately, as
we will see in Section 3.3, unidirectional bitvector analyses, which are most
relevant in practice, can be performed as efficiently on parallel programs
as on sequential programs.

The following section establishes the notational background for the for-
mal development and the proofs.

3.1 R e p r e s e n t a t i o n : Para l l e l P r o g r a m M o d e l s

Syntactically, we express parallelism by means of a pax statement whose
components are assumed to be executed in parallel on a shared memory. As
usual, we assume that there are neither jumps leading into a component of a
pax statement from outside nor vice versa. This already introduces the phe-
nomena of interference and synchronization, and allows us to concentrate
on the central features of our approach which, however, is not limited to this
setting. For example, a replicator statement in order to allow a dynamical
process creation can be integrated along the lines of [CH2, Vol, Vo2].

Following [SHW] and [GS], the standard representation of a parallel pro-
gram is a nondeterministic parallel flow graph G* = (N * , E* , s*, e*) with
node set N* and edge set E* as illustrated in Figure 3. This figure shows
the flow graph of Figure 1, where some of the branch instructions have been
replaced by parallel statements. 4 The components of a parallel statement
are encapsulated by a ParBegin and a ParEnd node, which are represented
by ellipses. For clarity we additionally separate the parallel components by
two parallels.

In anology to Section 2, we represent parallel programs as parallel pro-
gram models, which are a straightforward extension of program models
to the parallel setting. Except for subgraphs representing par statements a
parallel program model is a program model in the sense of Section 2, and in
fact, all the standard notation can be transferred. Also the transformation
from flow graphs to program models is the same, except that PaxBegin and
PaxEnd nodes are not duplicated. Figure 4 displays the parallel program
model of the parallel flow graph of Figure 3.

A par statement and each of its components are also considered parallel
program models. The graph Tpar representing a complete par statement
arises from linking its component graphs by means of a ParBegin and a

4Of course, this replacement is not assumed to be semantics preserving.

272 Jens Knoop, Bernhard Steffen, Jiirgen Vollmer

I

6 18

7 10 20

8 1 | 21

24 26

13 27

FIGURE 3. The Parallel Flow Graph G*

ParEnd node which have the start nodes and the end nodes of the com-
ponent graphs as their only successors and predecessors, respectively. The
ParBegin node and the ParEnd node are the unique start node and end
node of Tpar. They form the entry and the exit to program regions whose
subgraph components are assumed to be executed in parallel making the
synchronization points in the program explicit. As in a parallel flow graph,
we represent the states corresponding to a ParBeg• node or a ParEnd
node of a parallel flow graph by ellipses and additionally separate the cor-
responding component graphs by two parallels as shown in Figure 4.

Moreover, TT:,(T*) and T~naX(T *) denote the set of all subgraphs and
of all maximal subgraphs of T* representing a p a r statement, i,e.,5

T~na=(T*)=dJ { T 6 T~(T*)[VT' �9 Tp(T*). T c T' =~ T = T'}

Additionally, 7~(T'), T ' �9 Tp(T*), denotes the set of component program
models of T ' , and 7~(T*) is an abbreviation for [J { 7~(T') IT ' �9 Tp(T*) }.
It is worth noting that every graph T �9 Tp(T*) and all of its component
program models T ' �9 7~(T) are single-entry/single-exit regions of T*.
Moreover, for technical reasons (see Section 'Interleaving Predecessors') we
assume that the unique transitions ending in the start state or starting in
the end state of a graph T �9 7~(T*) are edges of T.

5For parallel program models T and T I we define: T C_ T I if and only if N C_ N I
and E C_ E I.

Parallelism for Free: Bitvector Analyses =~ No State Explosion! 273

2' 15 ~

17

2~

z#

FIGURE 4. The Parallel Program Model T* of G*

Additionally, we need the functions States, Trans, start, and end, which
map a parallel program model to its state set, its transition set, its start
state, and its end state, respectively. Moreover, we need the polymorphic
functions ppm and cpm, where ppm is defined for the states of graphs of
T~(T*) and for the graphs of We(T*), and epm is defined for the states and
the transitions of T*. ppm maps its argument x to the smallest parallel
program model of Tp(T*) containing x, i.e.,

["]{T' e Tp(T*)Ix e States(T')) if x e States(TT~(T*))
ppm(x)=dl N{T, ETp(T.)[xC_T, } if x e We(T*)

Similarly, the polymorphic function cpm maps its argument x, which is
a state or a transition of T* to the smallest parallel component model

274 Jens Knoop, Bernhard Steffen, Jiirgen Vollmer

containing x, if it lies in a graph T �9 7~(T*), and to T* itself otherwise,
i.e., 6

cpm(x)=4 f { TN.{ T ' �9 Tc(T*) Ix �9 T' } otherwiseif x e 7~(T*)

a program are either unrelated or properly nested.
Additionally, we introduce the following abbreviations for the sets of

start nodes (i.e., ParBegin nodes) and end nodes (i.e., ParEnd nodes) of
graphs of Tp (T*):

N~=dl { start(T) IT E T~,(T*) } and N~=4f { end(T) IT �9 TT~(T*) }

Finally, given a parallel program model T, we define an associated se-
quential program model Taeq, which results from T by replacing all states
belonging to a component parallel model of some graph T' E T~ naz (T)
together with all transitions starting or ending in such a state by a tran-
sition leading from start(T') to end(T'). Note that Tseq is a sequential
program model in the sense of Section 2. This is illustrated in Figure 5,
which shows the sequentialized version of the parallel program model en-
capsulated by the nodes 16 and 27 of Figure 4.

Tll~t

2~(.__)

FIGURE 5. A Sequentialized Program Model

Interleaving Predecessors

Given a sequential program model T, the set of transitions that might
precede a transition e at run-time is precisely given by the set of static

6x e To(T*) is an abbreviation for z e States(To(T*)) U Trans(Tc(T*)).

Parallelism for Free: Bitvector Analyses =~ No State Explosion! 275

predecessors, the incoming transitions of source(e). For parallel program
models, however, the interleaving of parallel components must also be taken
into account: here each transition occurring in a component of some par
statement can dynamically also be preceded by any transition of another
component of this pa r statement.

We denote this kind of predecessors as interleaving predecessors. This
notion can easily be defined by means of the function ParRel mapping a
graph of 7~ (T*) to the set of its parallel relatives, i.e., the set of component
graphs which are executed in parallel, i.e.,

ParRel: Tc(T*) --+ 7)(7~ (T*))

is defined by

ParRel(T)=df

Tc(ppm(T))\T U { OParRel(ppm(T)) otherwiseif ppm(T) E T~nax(T ")

where :P denotes the power set operator.
Based on this function, the set of interleaving predecessors of a transition

e E E* is given by the function ItlvgPredT. : E* --~7~(E *) defined by:

Trans(ParRel(cpm(e))) if e E Trans(Tp(T*))
ItlvgPred T* (e) =dy 0 otherwise

For illustration consider the transition e -- (21, 21 ~) of Figure 6. While e o

is the only transition, which statically precedes this transition, its execution
may be interleaved with all transitions of the shadowed components.

Program Paths of Parallel Program Models

As mentioned already, the interleaving semantics reduces parallel programs
to (much larger) nondeterministic sequential programs representing all the
possible interleavings explicitly (cf. [HU]). Paths in these nondeterministic
'product programs' model the possible executions of a parallel program
model. We therefore define that an edge sequence of a parallel program
model is a parallel path iff it is a path in the corresponding nondeterministic
sequential product program, and we denote the set of all parallel paths from
m to n by PPT.[m,n]. 7

7In [KSV1] an alternative and technically much more complicated definition was given
for parallel flow graphs.

276 Jens Knoop, Bernhard Steffen, Jtirgen Vollmer

FIGURE 6. Parallel Relatives and Interleaving Predecessors

3.2 Data Flow Analysis of Parallel Programs

As before, a DFA for a parallel program model is completely specified by
a local semantic functional [] : E* -~ (C--+ C), which can straightforward
be extended to cover finite parallel paths as well. Thus, given a state n of
a parallel program model T*, the parallel version of the 'desired' MOP-
solution is given by:

The PMOP-Solution:

Vn G N* Vco E C. PMOP(T.,[])(n)(co) = [--] { [p] (co) [p E PPT.[s*,n] }

Note that the corresponding nondeterministic product program would al-
low us to straightforward adapt the sequential situation with all its results,
However, the involved potentially exponential product construction is un-
acceptable in practice. Fortunately, as we will see in the next section, for
bitvector problems there exists an elegant and efficient way out.

Parallelism for Free: Bitvector Analyses =~ No State Explosion! 277

3.3 Bitvector Analyses

Unidirectional bitvector problems can be characterized by the simplicity of
their local semantic functional

[] : E * - ~ (~ - ~ B)

which specifies the effect of a transition e on a particular component of the
bitvector (cf. Section 4 for illustration). Here, B is the lattice of Boolean
truth values ({if, tt}, [7, E) with ff E tt and the logical 'and' as meet
operation N, or its dual counterpart with tt E ff and the logical 'or' as
meet operation R.

Despite their simplicity, unidirectional bitvector problems are highly rel-
evant in practice because of their broad scope of applications ranging from
simple analyses like liveness, availability, very business, reaching definitions,
and definition-use chains to more sophisticated and powerful program op-
timizations like code motion, partial dead code elimination, assignment
motion, and strength reduction.

We are now going to show how to optimize the effort for computing the
PMOP-solution for bitvector problems. This requires the consideration of
the semantic domain ~-B consisting of the monotonic Boolean functions
B -+ B. Obviously we have:

Proposition 3.1

1. J:B simply consists of the constant functions Constu and Constff,
together with the identity IdB on B.

. J:B, together with the pointwise ordering between functions, forms
a complete lattice with least element Constff and greatest element
Consttt, which is closed under function composition.

3. All functions of JoB are distributive.

The key to the efficient computation of the 'interleaving effect' is based
on the following simple observation, which pinpoints the specific nature
of a domain of functions that only consists of constant functions and the
identity on an arbitrary set M.

L e m m a 3.2 (Main-Lemma)
Let fi : ~B -+ :~B, 1 < i < q, q E IN', be functions from ~B to , ~ . Then
we have:

3 k e {1 , . . . ,q} . f q o . . . o . f 2 o f l--:fk A V j E {k- t -1 , . . . ,q} . f j=Id~

278 Jens Knoop, Bernhard Steffen, Jiirgen Vollmer

Interference
The relevance of this lemma for our application is that it restricts the
way of possible interference within a parallel program model: each possible
interference is due to a single transition within a parallel component. Com-
bining this observation with the fact that for e ~ E ItlvgPredT.(e), there
exists a p~rnll~l path, where e ~ is directly executed after e, we obtain that
the potential of interference, which in general would be given in terms of
paths, is fully characterized by the set ItlvgPredT. (e). In fact, consider-
ing the computation of universal properties that are described by maximal
fixed points (the computation of minimal fixed points requires the dual ar-
gument), the obvious existence of a path to dest(e) that does not require
the execution of any transition of ItlvgPred T* (e) implies that the only ef-
fect of interference is 'destruction'. This motivates the introduction of the
predicate NotKilled, which we derive from a predicate Kills defined for
graphs of 7c(T*), which is true for such a graph if it contains a transition
e with ~ e] = Const~. Note that this predicate can easily be computed by
a statical examination of T*. Based on Kills, we now define the desired:

NotKilled (n) =dI
(A('~Kills(T') [T' e ParRel(cpm(n)) }

if cpm(n) E 7"c(T*)
tt otherwise

Intuitively, NotKilled indicates that no transition of a parallel relative
destroys the property under consideration, i.e. [e ~] ~ Constff for all e ~ E
ItlvgPredT. (e), e E Trans(cpm(n)). Note that only the constant function
given by the precomputed value of this predicate is used in Definition 3.5 to
model interference, and in fact, Theorem 3.6 guarantees that this modelling
is sufficient. Obviously, this predicate is easily and efficiently computable.
Algorithm 1.1 computes it as a side result.

Synchronization
Besides taking care of possible interference, we also need to take care of the
synchronization required at nodes in N~: control may only leave a parallel
statement after all parallel components terminated. The corresponding in-
formation can be computed by a hierarchical algorithm that only considers
purely sequential program models. The underlying idea coincides with that
o f interprocedural analysis [KS]: we need to compute the effect of complete
subgraphs or in this case of complete parallel components. This information
is computed in an 'innermost' fashion and then propagated to the next sur-
rounding parallel statement, s The following definition, which is illustrated
in Section 4, describes the complete three-step procedure:

SAlso in [SHW] parallel statements are investigated in an innnermost fashion.

Parallelism for Free: Bitvector Analyses =~ No State Explosion! 279

. Terminate, if T does not contain any parallel statement. Otherwise,
select successively all maximal program models T ~ occurring in a
graph of 7"7~(T) that do not contain any parallel statement, and de-
termine the effect | T ~] of this (purely sequential) graph according
to the equational system of Definition 2.3.

2. Compute the effect ~ T"]* of the innermost parallel statements T"
of T by

Constl r
| T"]* = Ids

Constu

if 3T ' e 7"c(T"). ~ end(T')] = Constfy
if VT' e 7-c(T"). | end(T')] = Idn
otherwise

3. Transform T by replacing all innermost parallel statements T" =
(N", E", s", e") by ({s" ,e"},{(s" ,e")},s" ,e") , define the local se-
mantics of (s",e") by ~[T"]~*, and set the predicate Kills(s") to
tt, if one of the start nodes of the parallel components of T" satisfies
the predicate Kills, and to ff otherwise. Continue with step 1.

This three-step algorithm is a straightforward hierarchical adaptation of
the algorithm for computing the functional version of the MFP-solution for
the sequential case. Only the second step realizing the synchronization at
nodes in N~c needs some explanation, which is summarized in the following
lemma.

L e m m a 3.3 The PMOP-solution of a parallel program model T E TT~(T*)
that only consists of purely sequential parallel components T1 , . . . ,Tk is
given by:

Constz
PMOP(T,[]) (end(T)) = Ids

Consttt

if 3 1 < i < k. ~ end(Ti)] = Constg
if V 1 < i < k. | end(Ti)] = Ids
otherwise

Also the proof of this lemma is a consequence of Main Lemma 3.2. As a
single transition is responsible for the entire effect of a path, the effect of
each complete path through a parallel statement is already given by the
projection of this path onto the parallel component containing the vital
transition. Thus in order to model the effect (or PMOP-solution) of a
parallel statement, it is sufficient to combine the effects of all paths local
to the components, a fact, which is formalized in Lemma 3.3.

Now the following theorem can be proved by means of a straightforward
inductive extension of the functional version of the sequential Coincidence
Theorem 2.2, which is tailored to cover complete paths, i.e. paths going
from the start to the end of a parallel statement:

280 Jens Knoop, Bernhard Steffen, Jiirgen Vollmer

Theorem 3.4 (The Hierarchical Coincidence Theorem)
Let T �9 TT~(T*) be a parallel program model, and ~] : E* -+ Yre
semantic functional. Then we have:

PMOP (T,~]) (end(T)) = ~ T]"

a local

After this hierarchical preprocess the following modification of the equation
system for sequential bitvector analyses leads to optimal results:

Definition 3.5 The functional ~] : N* --+ ~B is defined as the greatest
solution of the equation system given by: 9

|nl= /
Ide if n = s*

ppm(n) ~* o ~ s tart(ppm(n)) ~ N Const~otgiuea(n)
if n e N ~

~ { ~ (m, n) ~ o ~ m ~ I m E predT. (n)} M COnStNotKilled(n)
otherwise

This allows us to define the PMFPBv-solution, a fixed point solution for
the bitvector case, in the following fashion:

The PMFPBv-So lu t ion :

PMFPBv (T.,~]) : N* ~ H~ defined by

V n E N* V b E B. PMFPBv(T.,~]) (n)(b)= ~ n In(b)

As in the sequential case the PMFPsv-solut ion is practically relevant,
because it can efficiently be computed (see Algorithm 1.1 in Appendix 1).
The following theorem now establishes that it coincides with the desired
PMOP-solution.

Theorem 3.6 (The Parallel Bitvector Coincidence Theorem)
Let T* = (N*,E* , s*, e*) be a parallel program model, and ~] : E* --+ Y:~
a local semantic functional. Then we have that the PMOP-solution and the
PMFPBy-solution coincide, i.e.,

V n E N*. PMOP(T.,[]) (n) = PMFPBv(T. ,l]) (n)

9Noteth&t HI ~ is the straightforward extension ofthe functional defined in Definition
2.3, Thus the overloading of notation is harmless, as no reference to the sequential version
is made in this definition.

Parallelism for Free: Bitvector Analyses ::~ No State Explosion! 281

Intuitively, the (sequential) Coincidence Theorem 2.2 can be read as that
unidirectional distributive data flow analysis problems allow to model the
confluence of control flow by merging the corresponding data flow informa-
tions during the iterative computation of the MFP-solution without losing
accuracy. The intuition behind the Parallel Bitvector Coincidence Theo-
rem 3.6 is the same, only the correspondence between control flow and
program representation is more complicated due to the interleaving and
synchronization effects.

4 Application: Code Motion

In this section we demonstrate the practicality of our framework by sketch-
ing a code motion algorithm, which is unique in placing the computations of
a parallel program computationaUy optimally. The power of this algorithm,
which evolves as the straightforward extension of its sequential counterpart,
the busy code motion transformation of [KRS2], is illustrated by means of
the example of Figure 3, where our algorithm achieves the optimization
result of Figure 7. It eliminates the partially redundant computations of
a + b at the nodes 3, 10, 12, 14, 20, 21, 29 by moving them to the nodes
2, 11 and 18, but it does not touch the partially redundant computations
of a + b at the nodes 7 and 9, which cannot safely be eliminated.

6

7 10

8 11

FIGURE 7. The Result of the BCMpp-Transformation

282 Jens Knoop, Bernhard Steffen, Jiirgen Vollmer

Intuitively, code motion improves the run-time efficiency of a program by
avoiding unnecessary recomputations of values at run-time. This is achieved
by replacing the original computations of a program by temporaries that
are initialized at certain program points. For sequential programs it is well-
known that placing the computations as early as possible in a program,
while maintaining its semantics, leads to computationally optimal results
(cf. [KRS1, KRS2]). This carries over to the parallel setting.

As in the sequential case the as-early-as-possible placement of compu-
tations requires the computation of the set of program points where a
computation is up-safe and down-safe, i.e., where it has been computed
on every program path reaching the program point under consideration,
and where it will be computed on every program continuation reaching the
program's end node. 1~ For the ease of presentation we assume here that
parallel statements of the argument program are free of 'recursive' assign-
ments, i.e., assignments whose left hand side variable occurs in its right
hand side term. 11 The DFA-problems for up,safety and down-safety are
then specified by the local semantic functionals []u8 and [Ida, where
Comp and Transp a r e two local predicates, which are true for a transition
e with respect to a computation t, if t occurs in the right hand side term
of the statement of e, and if no operand of t is modified by it, respectively.

Consttt
e |~8=~ IdB

Const z

if Transp(e) ^ Comp(e)
if Transp(e) A -~Comp(e)
otherwise

I Consttt if Comp(e)
[e]ds=d] IdB if "~Comp(e) A Transp(e)

Constff otherwise

It is worth noting that these are the very same functionals as in the
sequential case because the effect of interference is completely taken care
of by the corresponding versions of the predicate NotKilled, which are
automatically derived from the definitions of the local semantic functionals.

Moreover, the functionals can directly be fed into the generic Algorithm
1.1 for computing the PMFP-solutions of down-safety and up-safety, as
illustrated in Figure 8. As in the sequential case, down-safe start states
are 'earliest', as well as other down-safe but not not up-safe states that

1~ and down-safety are also known as availability and anticipability (very
business), respectively.

11Recursive assignments can also be handled but require a slightly refined treatment.

Parallelism for Free: Bitvector Analyses =~ No State Explosion! 283

either possess an 'unsafe' predecessor (see node 2) or an incoming transition
modifying an operand of the computation under consideration (see nodes
111 and 181).

After inserting an initialization statement at each earliest state, all orig-
inal computations belonging to transitions with a safe source state can be
replaced by the corresponding temporary, as illustrated in Figure 8. This
transformation results in the promised parallel program of Figure 7, which
is indeed computationally optimal with respect to a + b.

2 (~ 151

2' I is' q

s(

$'{ ld

17(

2f

29

[] Down-Safe �9 Up-Safe �9 Earliest �9 Replar

FIGURE 8. Down-Safe, Up-Safe, Earliest, and Replacement Points of a + b

284 Jens Knoop, Bernhard Steffen, Jiirgen Vollmer

5 Conclusions

We have shown how to construct for unidirectional bitvector problems opti-
mal analysis algorithms for parallel programs with shared memory that are
as efficient as their purely sequential counterparts, and which can easily be
implemented. At the first sight, the existence of such an algorithm is rather
surprising, as the interleaving semantics underlying our programming lan-
guage is an indication for an exponential effort. However, the restriction
to bitvector analysis constrains the possible ways of interference in such a
way, that we could construct a generic fixed point algorithm that directly
works on the parallel program without taking any interleavings into ac-
count. This algorithm is implemented on the Fixpoint Analysis Machine
of [SCKKM]. Moreover, the 'lazy' variant (cf. [KRS1, KRS2]) of the code
motion transformation of Section 4 is implemented in the ESPRIT project
COMPARE #5933 [Vol, Vo2].

6

[CC1]

[cc2]

[CH1]

[CH2]

[DBDS]

[DC]

[DRZl

R E F E R E N C E S

Cousot, P., and Cousot, R. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation
of fixpoints. In Conference Record of the 4 th International Symposium
on Principles of Programming Languages (POPL'77), Los Angeles,
California, 1977, 238 - 252.

Cousot, P., and Cousot, R. Invariance proof methods and analysis
techniques for parallel programs. In Biermann, A. W., Guiho, G.,
and Kodrato~, Y. (eels.) Automatic Program Construction Techniques,
chapter 12, 243 - 271, Macmillan Publishing Company, 1984.

Chow, J.-H., and Harrison, W. L. Compile time analysis of paral-
lel programs that share memory. In Conference Record of the 19 ~h
International Symposium on Principles of Programming Languages
(POPL'9$), Albuquerque, New Mexico, 1992, 130 - 141.

Chow, J.-H., and Harrison, W. L. State Space Reduction in Abstract
Interpretation of Parallel Programs. In Proceedings of the International
Conference on Computer Languages, (ICCL'9$), Toulouse, France,
May 16-19, 1994, 277-288.

Duri, S., Buy, U., Devarapalli, R., and Shatz, S. M. Using state space
methods for deadlock analysis in Ada tasking. In Proceedings of the
A CM SIGSOFT'93 International Symposium on Software Testing and
Analysis, Software Engineering Notes 18, 3 (1993), 51 - 60.

Dwyer, M. B., and Clarke, L. A. Data flow analysis for verifying prop-
erties of concurrent programs. In Proceedings of the ff, d ACM SIG-
SOFT'g4 Symposium on Foundations of Software Engineering (SIG-
SOFT'94), New Orleans, Lousiana, Software Engineering Notes 19, 5
(1994), 62 - 75.

Dhamdhere, D. M., Rosen, B. K., and Zadeck, F. K. How to analyze
large programs efficiently and informatively. In Proceedings of the A CM

Parallelism for Free: Bitvector Analyses =~ No State Explosion! 285

[DS]

[GSl

[GW]

[He]

[HU]

[Kill

[Ki2]

[KRS1]

[KRS2]

[KRS3]

[KRS4]

[KRS5]

SIGPLAN'92 Conference on Programming Language Design and Im-
plementation (PLDI'92), San Francisco, California, SIGPLAN Notices
2 7 , 7 (1 9 9 2) , 2 1 2 - 2 2 3 .

Drechsler, K.-H., and Stadel, M. P. A variation of Knoop, Riithing and
Steffen's LAZY CODE MOTION. SIGPLAN Notices 28, 5 (1993), 29
- 38.

Grunwald, D., and Srinivasan, H. Data flow equations for explicitely
parallel programs. In Proceedings of the ACM SIGPLAN Symposium
on Principles of Parallel Programming (PPOPP'93), SIGPLAN No-
tices 28, 7 (1993).

Godefroid, P., and Wolper, P. Using partial orders for the efficient
verification of deadlock freedom and safety properties. In Proceedings
of the 3 ~d International Workshop on Computer Aided Verification
(CAV'91), Aalborg, Denmark, Springer-Verlag, LNCS 575 (1991), 332

- 342.

Hecht, M. S. Flow analysis of computer programs. Elsevier, North-
Holland, 1977.

Hopcroft, J. E., and Ullman, J. E. Introduction to automata the-
ory, languages, and computation. Addison-Wesley, Reading, Massach.,
1979.

Kildall, G. A. Global expression optimization during compilation.
Ph.D. dissertation, Technical Report No. 72-06-02, University of Wash-
ington, Computer Science Group, Seattle, Washington, 1972.

Kildall, G. A. A unified approach to global program optimization. In
Conference Record of the i st ACM Symposium on Principles of Pro-
gramming Languages (POPL'73), Boston, Massachusetts, 1973, 194-
206.

Knoop, J., Riithing, O., and Steffen, B. Lazy code motion. In Pro-
ceedings of the ACM SIGPLAN'92 Conference on Programming Lan-
guage Design and Implementation (PLDI'92), San Francisco, Califor-
nia, SIGPLAN Notices 27, 7 (1992), 224 - 234.

Knoop, J., Riithing, O., and Steffen, B. Optimal code motion: Theory
and practice. Transactions on Programming Languages and Systems
16, 4 (1994), 1117 - 1155.

Knoop, J., Riithing, O., and Steffen, B. Partial dead code elimination.
In Proceedings of the A CM SIGPLAN'9~ Conference on Programming
Language Design and Implementation (PLDI'9~), Orlando, Florida,
SIGPLAN Notices 29, 6 (1994), 147 - 158.

Knoop, J., Riithing, O., and Steffen, B. The power of assignment mo-
tion. In Proceedings of the ACM SIGPLAN'95 Conference on Pro-
gramming Language Design and Implementation (PLDI'95), La Jolla,
California, SIGPLAN Notices 30, 6 (1995), 233 - 245.

Knoop, J., Riithing, O., and Steffen, B. Lazy strength reduction. Jour-
nal of Programming Languages 1, 1 (1993), 71 - 91.

286

[KS]

[KSV1]

[KSV2]

[KU]

[LC]

[Ma]

[McD]

[MJ]

IMP]

[st]

[SCKKM]

[SHW]

[SP]

[sw]

Jens Knoop, Bernhard Steffen, Jiirgen Vollmer

Knoop, J., and Steffen, B. The interprocedural coincidence theorem.
In Proceedings of the ~ th International Conference on Compiler Con-
struction (CC'92), Paderborn, Germany, Springer-Verlag, LNCS 641
(1992), 125- 140.
Knoop, J., Steffen, B., and Vollmer, J. Parallelism for free: Efficient
and optimal bitvector analyses for parallel programs. In Preliminary

for ~he Construction and Analysis of Systems (TACAS'95), Aarhus,
Denmark, BRICS Notes Series NS-95-2 (1995), 319 - 333.
Knoop, J., Steffen, B., and Vollmer, J. Optimal code motion for par-
allel programs. Fakultiit fiir Mathematik und Informatik, Universit~t
Passau, Germany, MIP-Bericht 9511 (1995), 30 pages.

Kam, J. B., and Ullman, J. D. Monotone data flow analysis frame-
works. Acta Informatica 7, (1977), 309 - 317.
Long, D., and Clarke, L. A. Data flow analysis of concurrent systems
that use the rendezvous model of synchronization. In Proceedings of the
ACM SIGSOFT'91 Symposium on Testing, Analysis, and Verification
(TAV4), Victoria, British Columbia, So~ware Engineering Notes 16,
(1991), 21- 35.

Marriot, K. Frameworks for abstract interpretation. Acta Informatica
30, (1993), 103 - 129.

McDowell, C. E. A practical algorithm for static analysis of parallel
programs. Journal of Parallel and Distributed Computing 6, 3 (1989),
513- 536.
Muchnick, S. S., and Jones, N. D. (Eds.). Program flow analysis: The-
ory and applications. Prentice Hall, Englewood Cliffs, New Jersey,
1981.
Midkiff, S. P., and Padua, D. A. Issues in the optimization of parallel
programs. In Proceedings of the International Conference on Parallel
Processing, Volume H, St. Charles, Illinois, (1990), 105 113.

Steffen, B. Generating data flow analysis algorithms from modal spec-
ifications. Science of Computer Programming $1, (1993), 115- 139.
Steffen, B., Claflen, A., Klein, M., Knoop, J., and Margaria, T. The

fixpoint-analysis machine. In Proceedings of the 6 ~h International Con-
ference on Concurrency Theory (CONCUR'g5), Philadelphia, Penn-
sylvania, Springer-Verlag, LNCS 962 (1995), 72 - 87.

Srinivasan, H., Hook, J., and Wolfe, M. Static single assignment form
for explicitly parallel programs. In Conference Record of the 20 ~h
A CM SIGPLAN Symposium on Principles of Programming Languages
(POPL'93}, Charleston, South Carolina, 1993, 260 - 272.

Sharir, M., and Pnueli, A. Two approaches to interprocedural data
flow analysis. In [MJ], 1981, 189 - 233.

Srinivasan, H:i and Wolfe, M. Analyzing programs with explicit par-
allelism. In Proceedings of the 4th International Conference on Lan-
guages and Compilers for Parallel Computing, Santa Clara, California,
Springer-Verlag, LNCS 589 (1991), 405 - 419.

[va]

[Vol]

[vo2]

[ws]

Parallelism for Free: Bitvector Analyses :~ No State Explosion! 287

Valmari, A. A stubborn attack on state explosion. In Proceedings of the
~ d International Conference on Computer Aided Verification, New
Brunswick, New Jersey, Springer-Verlag, LNCS 531 (1990), 156 - 165.

Vollmer, J. Data flow equations for parallel programs that share mem-
ory. Tech. Rep. 2.11.1 of the ESPRIT Project COMPARE ~5933,
Fakult~t fiir Informatik, Universit~t Karlsruhe, Germany, (1994).

Vollmer, J. Data flow analysis of parallel programs. In Proceedings
of the IFIP WG 10.3 Working Conference on Parallel Architectures
and Compilation Techniques (PACT'g5), Limassol, Cyprus, 1995, 168

- 177.

Wolfe, M, and Srinivasan, H. Data structures for optimizing programs
with explicit parallelism. In Proceedings of the 1 ~t International Con-
ference of the Austrian Center for Parallel Computation, Salzburg,
Austria, Springer-Verlag, LNCS 591 (1991), 139 - 156.

1 C o m p u t i n g the PMFPBv-Solution

A l g o r i t h m 1.1 (C o m p u t i n g t h e PMFPBy-So lu t ion)

I n p u t : A parallel program model T* ---- (N*,E*,s*,e*) , a local semantic func-
tional [] : E* __+ ~r~, a function fi,~i~ �9 jr~ and a Boolean value blni~ E B, where
fi,~it and bi,~it reflect the assumptions on the context in which the program model
under consideration is called. Usually, fi,~i~ and bi,~it are given by IdB and f f ,
respectively.

O u t p u t : An annotation of T* with functions ~ T] * �9 J:B, T �9 TT,(T*),
representing the semantic functions computed in step 2 of the three-step procedure
of Section 3.3, and with functions [n] �9 J~B, n �9 N*, representing the greatest
solution of the equation system of Definition 3.5. In fact, after the termination
of the algorithm the functional HI] satisfies:

V n �9 N*. [n] = PMFPBv (T* ,[]) (n) ---- PMOP(T* .[]) (n)

R e m a r k : The global variables I T] * , T �9 Tc(T*), each of which is storing
a function of YrB, are used for storing the global effects of component graphs
of graphs T �9 T~,(T*) during the hierarchical computation of the PMFPBy-
solution. The global variables Kills(start(T)), T �9 Tc(T*), store whether T
contains a transition e with [e] = Constt~. These variables are used to compute
the value of the predicate NotKilled of Section 3.3. Moreover, every program
model T �9 Tp(T*) is assumed to have a rank, which is recursively defined by:

0 if T �9 T ~ ~ (T*)
rank(T)=df max{ rank(T') IT' �9 Tp(T*) A T ' C T } + 1 otherwise

where T ~ i ~ (T *) = d f { T E T~,(T*)IVT' e TTo(T*). T ' C T o T ' = T } denotes
the set of minimal graphs of T~,(T*). Finally, succT(n)=df { m] (n, m) e E* }

288 Jens Knoop, Bernhard Steffen, Jiirgen Vollmer

denotes the set of all immediate successors of a state n of a parallel program
model T, and MFP denotes the standard procedure for computing the MFP-
solution in the sequential case.

B E G I N
(Synchronization: Computing [T]* for all T �9 TT~(T*))
GLOBEFF(T*, []);

(Interleaving: Computing the PMFPBv-Solution | n | for all n �9 N*)
PMFPBv(T*, [1, finit, bi,~it)

E N D .

where

P R O C E D U R E GLOBEFF (T = (N, E, s, e) : ParallelProgramModel;
[] :E-~s :LocalSemanticFunctional);

V A R i : integer;
B E G I N

F O R i : = 0 TO rank(T) DO
F O R A L L T' �9 {T" IT" �9 T~,(T) A rank(T")=i} DO

F O R A L L T " - - (N", E", s", e") �9 {Y,~q IT'" �9 7~(T')} DO

L E T Ve �9 E". [e] " = { [ppm(dest(e))|*[e] ifeeN~otherwise x N ~

B E G I N
Kills(start(T")) := (I { n �9 N" I Kills(n) } I > 1) V

(l { e �9 E " l [e l " -'- Consttr }l > 1);
MFP(T",[]", IdB);
[T" IS* := [end(T")]

E N D

I Constfy
IdB
Const,

OD;

[T '] * :=

OD
OD

END.

if 3T" �9 Tc(T'). I T~,~q]" = Co~t~
if VT" �9 Tc(T'). I T~q I" = IdB
otherwise

P R O C E D U R E PMFPBv (T = (N, E, s, e) : ParalleIProgramModel;
[] : E-~ }rs : LocaISemanticFunctional;
f, tart: }:B; IsKilled : B);

V A R f : .~'~;
B E G I N

IF IsKilled T H E N F O R A L L n E N DO [n | := Const~ OD
E L S E

(Initialization of the annotation arrays [] and the variable workset)
FORALL n e States(T, eq)\{s} DO

i ,,,
Constfy if 3 e �9 E. dest(e) = n ^ [e] = Consttf

[n | := Consttt otherwise
OD;

F I
E N D .

Parallelism for Free: Bitvector Analyses =~ No State Explosion! 289

I s] :=A,o,~;
workset := { n �9 S ta t e s (T .~) I n �9 N;~ U {s} V i n l = a o n s t z };

(Iterative fixed point computation)
W H I L E workset ~ $ D O

L E T n E workset
B E G I N

workset := workset\ { n };
I F n �9 N\N~v

T H E N
F O R A L L m �9 SUCCT(n) D O

f:= [(n,,n)] o [n i ;
I F [m] ~ f

T H E N

[m I : = f ;
workset := workset U { m }

F I
OD

E L S E
F O R A L L T' E_TTc(ppm(n)) D O

PMFPsv(T' ,[] , I n] , ~ Kills(start(T")))
T t' e 'Yc (p p r n (n)) \ { T I }

OD;
f : = [pp,n(n) |* o I n] ;
I f [end(ppm(n))] -I f

T H E N
[end(~pm(n))] := f ;
workset := workset U { end(ppm(n)) }

F I
F I

E N D
O D

Let | n Ltg, n E N*, denote the final values of the corresponding variables after
the termination of Algorithm 1.1, and [n] , n E N*, the greatest solution of the
equation system of Definition 3.5, then we have:

T h e o r e m 1.2 V n e N * . | n | a z g = [n]

