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ABSTRACT This paper presents a transformational approach to the de- 
sign of distributed systems where environment and concurrently running 
components communicate via synchronous message passing along directed 
channels. System specifications that combine trace-based with state-based 
reasoning are gradually modified by application of transformation rules 
until occam-like programs are achieved finally. We consider interactive and 
automatic aspects of such a design process and illustrate our approach by 
sketching the development of a shared register implementation. 

1 Introduction 

The design of provable correct software requires formal methods whose 
usage should be assisted by suitable tools. Following a transformational 
approach the design needs interactive user help when important  design de- 
risions have to be made. Nevertheless simple parts should be automated 
as far as possible. Ideally the user only guides the design process by indi- 
cating the design ideas which are then carried out automatically. Typically 
sequential implementations are more appropriate for automation while par- 
allelization needs interaction to determine the intended program architec- 
ture. 

Our approach deals with the transformational development of communi- 
cating systems in the mixed term language MIX which encompasses speci- 
fication and programming notation. A formal refinement notion guarantees 
tha t  starting from a specification of a desired system only correct imple- 
mentations can be reached. As part  of the ESPRIT Basic l~.esearch Action 
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ProCoS a refinement calculus for communicating systems was developed in 
order to provide a constructive and mathematically sound way for bridging 
the gap between specifications and programs [Old91, R6s94]. We consider 
communicating systems as an approach to distributed computing that in- 
tegrates the state transformation aspect of iterative programs in the sense 
of UNITY [CM88] and action systems [Bac90] with the CSP paradigm 
of synchronous message passing along communication channels. When de- 
signing such systems several different aspects like concurrency, communi- 
cation, nondeterminism, deadlock, termination, divergence and assignment 
to variables have to be considered. A state-trace-readiness semantics in a 
specification-oriented fashion provides the necessary power to express such 
properties and concepts. Additionally it induces immediately a refinement 
relation which is used to define correctness of system transformations. 

The rest of this paper is structured as follows. Section 2 introduces our 
specification language SL and explains how SL constructs can be applied 
in order to specify a regular register with concurrent access. Section 3 
considers basic aspects of a transformational approach to system design. 
Section 4 sketches major steps within the development process of a parallel 
architecture of sequential components implementing the regular register. 
Section 5 treats the derivations of sequential implementations by systematic 
exploitation of specifications. Section 6 deals with the automation of such 
systematic proceeding in order to decrease the degree of user interaction 
within the whole design process. A final section concludes this paper with 
a short discussion of the achieved results. 

2 Specification Language SL 

The specification language SL develops further the ProCoS specification 
language SL0 [JROR90] that was designed to describe continuously running 
embedded systems communicating with their environment via synchronous 
message passing along directed channels. A communication along a channel 
takes place if both, system and environment, are ready for communication 
on that channel. A system is in a deadlock whenever it does not become 
ready for communication on at least one channel. 

An SL specification provides several parts to describe such communicat- 
ing systems in a constraint-oriented style. Syntactically a specification is a 
list of so-called basic items enclosed by spec - end brackets. The following 
sketches the basic ideas of these constructs using the general specification 
pattern given in figure 1. Afterwards a few more details are discussed in 
the context of an example specification (cf. figure 3). 

The interface A stresses a static view of the intended system by listing all 
entities which may be used for interaction with the environment. It consists 
of optionally typed declarations of external channels with associated direc- 
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FIGUR.E 1. Specification format. 

tion indication ( inpu t  or ou tpu t )  and of global variables with assoicated 
access mode ( w r i t e  or read-only).  

Essentially the description of the intended dynamic behaviour is split 
into two parts  in SL. The trace part TA specifies in which order communi- 
cations may take place on the various channels. A trace assertion ta E TA 
describes a sequencing constraint for the channels of alphabet ata by giv- 
ing a regular expression 1 reta over these channels. Several ordering aspects 
can be specified in a modular fashion by stating different trace assertions. 
Technically the so-called trace language s TA] of the specification is 
tha t  regular language over all channels which obeys all sequencing con- 
straints simultaneously. The trace part  prevents any communication trace 
of which the channel order does not belong to s  TA]. 

The state part CA relates single communications with the current system 
state. A communication assertion ca E CA consists of a channel name naca, 
two disjoint lists Eta  and Yea of write and read-only variables, respectively, 
and two predicates. The when-predicate whca over free variables we., re. 
disables channel naca for communication whenever whoa does not hold in 
the current state. The value of a communication refered to by @nat. as 
well as its effect on the system state are specified by the then-predicate thca 
over free variables Ec., Yea, ~'c., @naca. In the style of TLA [Lam94] and Z 

1 of an extended format additionally using pref as prefix closure operator 
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[Spi89] the unprimed variables refer to the values in the before state while 
the primed ones to those in the after state in which read-only variables ~ca 
must not change their values. Giving empty lists as well as predicate t r u e  
is optional. Several communcation assertions for the same channel must be 
obeyed all together. 

The use of a more operational formalization approach to the behaviour 
specification is supported by declarations of local variables IV  and local 
channels IC. The various state restrictions S R  provide a good basis for 
the integrated reasoning with state-based arguments as invariance and sta- 
ble properties and with control flow arguments as initial state and establish 
properties. Technically these latter constraints could be replaced by certain 
more or less complex combinations of other basic items of which intuitive 
understanding is then often lost. The same holds for the always possible 
replacement of the trace part by additional local variables and communi- 
cations assertions. 

REGISTER EXAMPLE 
In [LG89] a good overview can be found about the various kinds of shared 
registers treated in the literature on distributed algorithms. According to 
the classification in [Lam86] we use as running example in this paper a 
regular register with a single reader and a single writer. In general a regis- 
ter stores values of a type V and the most recently written value shall be 
returned to the reader if its access does not overlap with a write. In the 
case of overlapping phases the regular behaviour guarantees tha t  a read 
phase will return a value that  was hold before or after one of write ac- 
cesses. Figure 2 presents our view of a single-writer, single-reader register 

writer . register , reader 
A T 

FIGURE 2. Register as communicating system 

as communicating system. The writer initiates a writing phase by sending 
the new value along the input channel W. This phase ends when a corre- 
sponding acknowledgment signal is output  on channel A. Conversely, the 
reader initiates a reading phase by sending a request signal along the in- 
put  channel R. This phase ends when a value is returned along the output  
channel T. 

Figure 3 shows a complete SL specification of a regular register which is 
explained here shortly. 2 Here the interface consisting of the declarations 
of channels W, A, R, T together with the trace par t  consisting of trace as- 

aSimilar SL specifications of various registers are presented in [0R93, Pdisg4] together 
with a very detailed motivation of the single components. 
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ta l  : 

t a 2  : 

c a w  : 

C a A  : 

C a R  : 

C a T  : 

spec 

e n d  

input W of V 
output A of signal 
input R of signal 
output T of V 
t r a c e  W, A in pref(W.A)* 
t r a c e  R, T in pref(R.T)* 
VS.T n e ~  o!  d - of V 
va t  C of se t  (V) 
corn W wri te  n e w , C  then new'  = @ W  ^ C'  = C U { @ W }  
corn A wri te  old read new then old' = new 
corn R wri te  C read new,  old then C' = {new,  old} 
corn T r e a d  C t h e n  ~ T  E C 

FIGURE 3. Specification of a regular register. 

sertions t a l ,  ta2 formalize the value independent aspects. Communications 
along channels of type s igna l  are used for synchronization purposes only 
but do not pass any message value. The trace assertions guarantee that ini- 
tiating and ending communications of write as well as read phases always 
occur in alternating order starting with channels W and R, respectively. 

To specify the values that may be returned we use local variables to 
store certain pieces of information. Variables old and n e w  shall hold the 
before and the after value when a write access is active and otherwise that 
unique value which is stored in the register. Therefore a communication 
on W updates n e w  with the newly received value what is formalized by 
conjunct  new'  = ~ W  in the then-predicate of caw. Analogously old' = n e w  
expresses that old gets the value of n e w  whenever an A signal ends up a 
write phase. The idea of the set-valued variable C is to collect all possible 
return values for a read access. Thus the value ~T to be passed by an 
ending T communication can be easily chosen from C. Any write phase 
starting during a read phase overlaps this and thus every newly written 
value becomes a possible return value. Therefore each W communication 
enriches C by its communication value ~W. 

Outside of write phases both variables old and new hold the same value 
and hence the then-predicate C' = {new,  old} of car  describes a singlton 
set for variable C, resulting in a unique return value for a reader. Formally 
the equality of old and new outside write phases can be expressed in SL 
for the register specification by the state restrictions 

establish new = old by A 

s t ab l e  new = old fo r  R , T , A .  

Intuitively the establish property says that new equals old after ending a 
write phase by an acknowledge signal on channel A, while the stable prop- 
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erty guarantees that communications on R, T and A do not violate a given 
equality. Obviously the stable property holds because communications on 
channels R and T must not effect the values of old and new and those 
along channel A just establish this equality. By transformational reasoning 
we can prove that both state restrictions are redundant for the specification 
in figure 3, i.e. they do not strengthen the specified behaviour. 

3 Transformational Implementation Design 

To implement communicating systems we use an occam-like programming 
language PL [INM88]. Programs are terms constructed from the 0-ary op- 
erators STOP, SKIP, multiple assignments, input and output on channels, 
the unary operators WHILE, vat  and chan for describing loops and declara- 
tion of local variables and channels, and the operators SEQ, IF, ALT and PAR 
for sequential, conditional, alternative and parallel composition of lists of 
n arguments. Figure 4 shows a PL program which implements the register 
specification of figure 3. Analogously to specifications a program declares its 

sys tem input  W of V 
output  A of s igna l  
input  R of s igna l  
output  T of V 
chanu,  d o f  V 
chart r of s igna l  
PAR[ va t  new of V 

WHILE t r u e  do SEq[ W ? n e w ,  u ! new, A ! ] od, 
va t  x of V 

WHILE t r u e  do ALT[ u?x-->SKIP, r ? - - > d  ! x ] od, 
va t  y of V 

WHILE t r u e  do SE•[ R ? , r  !, d ? y , T ! y  ] od 
end 

FIGURE 4. Register Implementation. 

interface to the environment explicitly. The system - end brackets empha- 
size that programs represent implementations of communicating systems. 

Semantically a communicating system is viewed as pair A : p where the 
interface/k declares the communication channels and global variables. The 
predicate P characterizes the dynamic behaviour of the system as the set 
of possible observations in a state-trace-readiness model. This model in- 
tegrates a purely event-based readiness approach [OH86] and a standard 
input/output semantics into a specification-oriented semantics of which 
details are presented in [Old91, RSs94]. A major reason for this semantics 
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construction is the immediate presence of a refinement notion for commu- 
nicating systems. A system A1 :P1 refines a system A2:P2 if both ones 
have the same interface and if behaviour P1 implies behaviour P2: 

AI:PI~A2:P2 iff A1--A2and ~PI ~ P2. 

This definition encompasses a correctness notion Prog -=~ Spec since spec- 
ifications and programs are special representations of communicating sys- 
tems. 

Figure 5 shows a design sequence of a transformational implementation 
approach. Starting from an SL specification Spec, a PL implementation 

Spec = 

= Prog 

FIGURE 5. Implementation design sequence. 

Prog is derived in a top-down fashion by iterated application of transfor- 
mation rules such that the specification notation is gradually replaced by 
programming language constructs. The intermediate system expressions Si 
are so-called mi~ed terms of the language MIX. This language encompasses 
specifications and programs as disjoint subsets and extends the application 
of every programming operator to arbitrary mixed terms. Moreover, there 
exist additional MIX specific operators in order to express intermediate 
stages of a system design much more conveniently. E.g. the treatment of 
the semantically complex PL operator PAR can be reduced within MIX to a 
combination of the simpler operators SYN and HIDE dealing separately with 
the aspects of multiple synchronization and of divergence raised by infinite 
internal communication. 

Typically a transition step from mixed term Si to S~+1 is performed by 
replacing some specification expression S in Si by a mixed term T where 
the refinement T -=> S is guaranteed by a transformation rule. Then 
the overall implementation correctness follows from the transitivity of -=~ 
and the monotonicity of all operators. 

In easy cases a transformation step will replace a specification by a basic 
PL statement as e.g. an input or output communication or an assignment. 
Figure 13 below shows appropriate equivalences of specification and pro- 
grarnming constructs. But more often more complex specifications have to 
be decomposed into mixed terms applying some composition operator to 
several simpler arguments. As typical example supporting this later kind 
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of refinements, figure fi shows a transformation rule which introduces the 

spec  A TA CA lV end 

4) 
SYN[ spec A 1 TA1 CA1 IV1 end , . . . ,  

spec  An TAn CAn IVn end ] 

provided A n n n = : Ui-----1 TAi, [Jlli_lA~, TA CA = [Ji=l CAi, 
IV " : ~Ji=l IVi and . .  

FIGURE 6. Transformation rule SYN decomposition. 

synchronization operator SYN. Generally a side condition "provided . . . "  
restricts the applicability of the transformation rule and describes how the 
new mixed term is derived by syntactic modifications from the given one. 
In the example it is expressed that essentially the basic items of the given 
specification have to be shared out between the new argument specifications 
spec  Ai TAi CAi IVi end obeying some static semantic constraints. 

For practical implementation designs a user needs guidance how to realize 
intuitive implementation ideas by application of such transformation rules. 
Here so-called design strategies provide recipes how to combine several rules 
in order to derive implementations in certain situations systematically or 
even mechanically. Data refinement, parallelization concepts or the develop- 
ment of specific sequential implementations are implementation concepts 
that can be supported by such strategies. As example we will later con- 
sider the automated synthesis of sequential programs based on the syntax 
directed transformation strategy SDT. 

TOOL SUPPORT 
An interesting consequence of basing all semantic reasoning on a uniform 
predicate language is that this reasoning comes close to what can be me- 
chanicaUy supported by higher order logic theorem provers. In the Ger- 
man national research project KORSO one of the goals was to provide 
tool support for formal methods in software design [BH94]. As part of this 
work a computer assisted validation of our semantical model was performed 
within the theorem prover LAMBr)A [BR95]. To this end first the model 
was implemented in the higher order logic of LAMBIbA [FM91, FFHM93] 
and various basic propositions about the model have been verified in the 
LAMBDA framework interactively. On the one hand this validation gives 
great confidence in soundness of the model as well as of its formaliza- 
tion in LAMIqDA. On the other hand a basic transformation environment 
for communicating systems emerges from the verification of transformation 
rules since LAMBr~A provides mechanisms for the representation of syntactic 
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objects and supports their modification by rule applications. Particularly 
a transformational design processes is assisted by saving the design his- 
tory, backtracking mechanisms, generation of proof obligations and a rule 
browser. Furthermore the tactics concept provides a possibility to perform 
algorithmic rule applications and automatic condition checking. 

4 Parallel Register Architecture 

Frequently specifications require tha t  sometimes a system should be ready 
for communication on several channels. As in occam, the restriction to so- 
called input guards as arguments of the alternative operator ALT forces 
parallel implementations in such cases where an output  channel must be 
together ready with at least one other channel. 

In the regular register such a situation is present e.g. when a first com- 
munication took place. Initially the regular register must be ready for input 
channels W and R. Independently on the channel along which a communi- 
cation is performed in the next situation common readiness is required for 
an input and an output  channel. Hence an occam-like implementation of 
this register has to use concurrently running subcomponents which interact 
via internal communication. Obviously we shall choose one write manager 
component WM dealing with write access and a read manager R M  serving 
the reader. Both these components require access to the value stored in the 
register. But PL does not provide shared variables and therefore a third 
component S V  will play this role. Figure 7 indicates how these components 

A W M  u SV ~ d 

R 

T 

FIGURE 7. Intended process architecture. 

are connected via local channels u, r, d of which usage is as follows. After 
having received a new value along W the WM component updates the cur- 
rent register value by sending the new value along channel u to SV before 
the external acknowledgment on A is offered. R M  serves a read request 
along R by sending an internal request along r to SV. The shared variable 
process immediately answers by delivering its actual value along channel d 
to R M  which then transmits this value along T to the reader. 34 The spec- 

aThe different treatment of write and read accesses to the shared variable process is 
necessary in order to allow a sequential implementation of SV. Otherwise the problem 
of output channels in non singleton readysets would only be delayed. 

4Note that this register implementation refines the regular specification properly 
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ifications WMspec, SVspec and RMspec presented in figure 8 express this 

WMspec = spec  

end 

SVspec = spec 

end 

RMspec = spec 

end 

inpu t  W of V 
ou tpu t  A of s i g n a l  
o u t p u t  u of V 
t r a c e  W, A, u i n  pref(W.u:A)* 
vat  new of V 
corn W w r i t e  new t hen  new' = @W 
corn u read  new then  ~u = new 

i npu t  u of  V 
inpu t  r of  s i g n a l  
ou tpu t  d of  V 
t r a c e  u, r, d in  p r e f ( u  + r.d)* 
v a t  x of V 
corn u w r i t e  x t h e n  x' = ~ u  
corn d read x then ~d = x 

inpu t  R of  s i g n a l  
ou tpu t  T of  V 
ou tpu t  r of  s i g n a l  
inpu t  d of  V 
t r a c e  R,T,  r, d in  pref(R.r.d.T)* 
v a t  y of  V 
corn T read  y then  @T --- y 
corn d w r i t e  y t hen  y' ---- ~ d  

FIGUB.E 8. Component specifications. 

intuitive description of WM, SV  and RM formally. They are designed by 
systematic transformation from the original specification shown in figure 3. 
In the following we list the major transformation steps towards the paral- 
lel decomposition. 5 Essentially these steps are motivated by the intended 
architecture which reflects the overall design ideas. 

1. The local channels u, r, d are declared and their global communica- 
tion behaviour is restricted according to the indicated communication 
order by modification of the trace assertions tal, ta2 to 

because of a more deterministically chosen return value in the case of overlapping write 
and read accesses. Essentially this implementation realizes the stronger behaviour of an 
atomic register. 

51n [OR93, RSs94] detailed explanations are given on the execution of such steps. 
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t r a c e  W, A, u in pref(Vc'.u.A)* 
t r a c e  R, T, r, d in pref(R.r.d.T)* 
t r a ce  u, r, d in p re f (u  -b r.d)* . 

2. To store the register value in SVand  to hold the return value in R.M, 
respectively, the state space is extended by ~riab!e declaration 

v a t  z,y of V. 

. 

. 

The original variables o/d and C are removed. To this end they are 
made auxiliary variables by introduction of appropriate state restric- 
tions and strengthening of communication effects. 

The local channel declarations are moved in front of the specification 
and thus they become global ones for the body. Since the trace part 
prevents infinite communication on local channels u, r, d only, their 
hiding from the specification does not introduce divergence. 

. 

. 

The communication assertions of channels u and d are split in order 
to enable the intended distribution of local variables new, z,y onto 
the components WM, SV, RM. 

Now the synchronous decomposition rule shown in figure 6 is applied 
and we end up with the mixed term 

chanu,  d o f  V 
chan r  of s igna l  
HIDE u, r, d in SYN[ WMspec, SVspec, RMspec ] 

with the component specifications of figure 8. Finally the operators 
HIDE and SYN are replaced by PAR because exactly all channels linking 
two argument systems of SYN are hidden. 

The steps 2. and 3. perform a data refinement on the internal state space 
thereby proceeding quite systematically. A partial automation of this strat- 
egy would be very useful and seems to be possible. Generally executing the 
above steps and especially those performing the parallel decomposition re- 
quires a high degree of user interaction because the underlying rules allow 
various instantiations of their parameters leading to quite different refine- 
ments. 

In contrast implementations of the three component specifications WM- 
spec, SVspec and RMapec can be achieved by automatic synthesis of se- 
quential programs. The conceptual basis of this automation and its imple- 
mentation within LAMBDA are dealt with in the rest of this paper. 
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5 Designing Sequential Implementations 

A notion of termination is essential when dealing with sequential imple- 
mentations. In this section we present a suitable extension of SL to enable 
the description of termination. This new notion provides the basis for a 
transformational design of sequential implementations. 

In order to refine a specification into a sequential composition of sev- 
eral specifications of reduced complexity, the circumstances have to be ex- 
pressed, under which the control flow passes from one system to the next 
one. Therefore so-called T-specifications are introduced in SL. These are 
syntactically distinguished by system - end brackets instead of spec - 
end bracketed so-called S-specifications. Dependent on the trace part T- 
specifications may terminate in certain situations where the corresponding 
S-specifications would reach a deadlock. For a detailed comparison of S- 
and T-specifications see [RSs94]. A consequence of this differentiation is 
that an empty T-specification system end immediately terminates what 
is equivalent to the SEIP statement at the programming level. In contrast 
the empty S-specification spec end denotes an immediate deadlock which 
is represented in PL by STOP. 

The following presents two transformation rules which relate S- and T- 
specifications. The first one in figure 9 allows in particular to switch from 

s p e c  A TA CA end 

SE{~[ system A TA1 CA end, STOP ] 

provided s TAI = pcs TA~ I. 

FIGURE 9. Linking S- and T-specifications 

an S- to a T-specification which at most differs in the trace part. The trace 
language s TA~ of the S-specification must be equal to pcL:~A, TAI~ 
which denotes the prefix closure of the trace language of the T-specification. 
When the refined system reaches the STOP it starves in a deadlock. 

Figure 10 shows a more general rule for the sequential decomposition of 
S-specifications. The first condition of this rule links the trace languages 
of the different specifications. The other condition "E.[[A,TAI~] is prefix 
free" guarantees a unique transition of the control flow from the first to the 
second argument in the mixed term. 

In the following we concentrate on the implemention of T-specifications. 
The introduction of while-loops within the implementation design process 
simplifies T-specifications of which trace languages are iterations of prefix- 
free base languages. The body of an achieved while-loop is built up from 
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spec A TA CA end 

SE{~[ system A TA1 CA end, spec A TA2 CA end ] 

provided L:[A, TA] = pcs TAll U s TA1]./:[A, TA2~ 
and I:[A, TAll is prefix free. 

FIGURE I0. Transformation rule sequential decomposition. 

the given specification by reducing the trace language to this base language 
as shown in the conditions of the while rule in figure 11. The termination 

system A TA CA end 

WHILE Vc~I~rst(A,TA1) whc do system A TA1 CA end od 

provided s TA] = s TAI]* and ~.[fA, TAIl is prefix free. 

FIGLrB]~ 11. Transformation rule loop decomposition. 

condition (Vce/~r,t(A, TA1)Who) is constructed from the when-predicates of 
those channels which are initially enabled by the trace language. 

The decomposition of S-specifications into while-loops can be performed 
by an preparatory application of the rule in figure 9 and afterwards in- 
troducing a while-loop for the T-specification part. In case of a never ter- 
minating loop as first argument the sequential composition with STOP as 
second argument can be simplified using the rewriting rule : 

SE{~[ WHILE t rue  do P o d ,  Q I --~ WHILE t rue  do P o d .  

Another way of decomposing a specification into several ones with sim- 
pler trace languages are disjunctive decompositions thereby introducing 
an ALT or IF operator. Figure 12 shows a transformation rule for alterna- 
tive decomposition which splits a T-specification into k subspecifications, 
where k is the number of that interface channels that occur as first element 
in at least one word of the trace language. Immediate termination is im- 
possible due to the first rule condition. Each subspecification contains an 
additional trace assertion that marks one channel to precede each commu- 
nication trace of that subsystem. 
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system A TA CA end 

4) 
ALT[ sys tem A TA t r a c e  ~ in  dl.(Cl + . . .  + ca)* CA end, 

system A TA trace ~ in dk.(Cl + " "  + c,)* CA end ] 

provided c r Z:[A, TA] and f i r s t (A ,  TA) -= ( d l , . . . , d k }  ~ 
and "~ = C h a n s ( A ) .  

FIGURE 12. Transformation rule alternative decomposition. 

Using these decomposition rules and similiar ones a specification can be 
systematically refined into a mixed term where the trace languages of all 
occuring specifications are very simple. Here the languages consist of the 
empty word or of a single channel name. If furthermore the state part  is also 
of a simple pat tern then such specifications can be directly replaced by PL 
statements. Figure 13 shows that  certain T-specifications are equivalent 

c ? v  -- 

c? -- 

c ! e  -- 

c! ---- 

system input c write v 

trace c in c 

corn c write v then v' ~- ~c 

end 

system input c of signal 

trace c in c 

end 

system ou tpu t  c r e a d  free (e) 
trace c in c 

corn c read free(e) then ~c ---- e 

end 

system output c of signal 
trace c in c 

end 

FIGURE 13. Meaning of input and output communication statements in PL. 

to input and output  communications in PL. Other simple specifications 
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can be transformed into these patterns and are therefore automatically 
implementable, as described in the next chapter. 

TOOL SUPPORT FOR APPLICATION OF SINGLE RULES 
A transformational design step based on one rule application can be sup- 
ported by a tool with the generation of the modified system and the check of 
the side conditions. A single application of one transformation rule in a the- 
orem prover like LAMBDA on the one hand modifies the current MIX term 
and on the other hand generates proof obligations from the rule conditions. 
To reduce the necessary interaction with the tool the proof programming 
language of tactics can be used. Tactics are based on possibly guided single 
rule applications and equational rewriting which are combined by tactical 
composition constructs like sequences, if-then-else statements and repeti- 
tions to proof searching algorithms. 

Since most application conditions of our transformation rules are de- 
cidable their verification can be automated. For example all conditions 
concerning regular expressions are decidable. Many other conditions are 
provable by simple set operations. The tool only needs user guidance when 
a transformation rule modifies a MIX term in a way that cannot be gen- 
erated from the context. For example the user should describe the desired 
subspecifications when applying the parallel decomposition of figure 10. 

6 Automatic Program Synthesis 

A transformational software design requires even with tool assistance user 
support to realize creative design decisions. Nevertheless, if the designer 
has made some decision a tool should perform all necessary transformation 
steps and check their correct execution. Thus we have started to implement 
design strategies thereby exploiting the LAMBDA implementations of the 
transformation rules which arose from a formal validation of our approach 
[BR95]. 

There are two ways how to integrate strategies inside LAMBDA. The 
first one is provided by tactics. Strategies can be realized by sequential 
combinations of tactics for single transformation rules. This method allows 
a flexible combination of previously defined tactics. But reasoning about 
the strategies is impossible in LAMBDA itself because tactics are expressed 
in a meta language. E.g. termination of tactic applications cannot be proven 
in LAMBDA. 

The second way overcomes this disadvantage. Here strategies are formal- 
ized within LAMBDA as functions which implement algorithms that describe 
the design ideas. This integrated treatment allows us to prove properties of 
strategies as termination and applicability in certain situations in LAMBDA. 
While the correctness of tactical strategies follows immediately from the 
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correctness of their underlying rules the correctness of strategy functions 
has to be proved itself, although these proofs are also reducible to easier 
rules or simple statements. The correctness of a function strat realizing a 

S 

strat(S) 

provided ... 

FIGURE 14. Strategy as function. 

certain strategy is easily expressed as transformation rule (cf. figure 14) 
where " . . . "  characterize all side conditions of the strategy. The automated 
application of such a strategy in LAMBr)A is then reduced to a call of a 
simple tactic which applies the corresponding rule and afterwards expands 
the definition of strat. 

A tactical combination of several rules requires the explicit condition 
check for each rule application. Often in the context of a strategy similar 
conditions have to be checked for the various rules applications. Such over- 
lapping checks can be avoided in the case of functional strategy implemen- 
tation. Here all these checks are collected in the single strategy condition 
thereby removing redundant checks. 

SCS: IMPLEMENTING SPF, CIFICATIONS OF SINGL~ COMMUNICATIONS 
In a last step of any transformation process simple specifications of com- 
munications and their effects to the systems state have to be implemented. 
Therefore the equivalences of input and output  communications in figure 
13 are extended to specifications with less restricted communication as- 
sertions. Figure 15 shows the implementation of a so-called SCS (Single 
Communication System) for an input channel. The new variable v, is intro- 
duced to pass the received value from the input to the effect computation. 
An analogous rule with the sequence sgq[ impl(thc[v~e/~c]), c!vc ] holds 
in the case of an output  channel. Here the communication value has to be 
computed before it can be offered to the environment. 

The mixed term derived from an SCS rule applications is transformed 
further by replacing impl(the[ve/~c]) and impl(thc[v~c/~c]), respectively. 
For a transition predicate p we use impl(p) to denote any program that  
computes this state transition and afterwards terminates. Not every transi- 
tion predicate is implementable, e.g. false. Thus the design process should 
yield then-predicates which can be treated by rules of the following kind : 

Applying SCS and impl 0 rules recursively yields a little basic strategy 
which implements specifications of which the trace par t  cannot be further 
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system input c of ty write w read r 

trace c in c 

corn c write w read r when whc then thc 

end 

IF[ who -~ var  vc of ty 

A 

SEQ[ c?vc, impl(thc[vc/~C]) ] ] 

provided vc is a fresh variable 

FIGURE 15. SCS transformation for input channel. 

impl(x' = e) 

X :--~.e 

FIGUR.E 16. Implementing a transition predicate as assignment. 

decomposed. Automating this SCS strategy as tactic would first apply the 
SCS rules and then repeatedly implO-rules. A formalization as function 
in LAMBr~A recursively walks through the structure of a mixed term and 
replaces SCS suitable systems by PL implementations as follows: 

scs( SEQ[ P,O ] ) = SEq[ SOS( P ), SCS( 0 ) ] 
SCS( ALT[ P ,Q ] ) = ALT[ SCS( P ),SCS( Q ) ] 
SCS( WHILEbdoPod ) = WHILEbdoSCS(P) od 

SCS( systemouput col tyc ... trace c in c comc.., end ) 

= IF[ who -~ var vc of tyc 
SEq[ impt(thc[vy~c]),clvo ]] 

SCS( system inputcof tyc ... trace c in c comc.., end ) 
= IF[ who --~ va t  vc of  tyc 

SEQ[ c?vc, impl(thc[vd@c]) ] ] 

All other mixed terms remain unchanged by SCS. The corresponding strat- 
egy rule is presented in figure 18. In the following SDT strategy we will use 
this SCS implementation as basic strategy. 
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impl(p A q) 

SEQ[ impl(p), impl(q[Writes(p)/Writes(p)']) ] 

provided Writes(p) N Reads(q) = 0 

FIGURE 17. Sequential decomposition of a transition predicate. 

S 

sos(s) 

provided no local variable vc occurs free in thc 

FIGURE 18. SCS strategy rule 

SDT: GENERATING SEQUENTIAL IMPLEMENTATIONS 

For restricted classes of specifications it is possible to generate a program 
structure from the trace part automatically. The idea of the Syntax Directed 
Transformation strategy (SDT) is to drive the transformation process by 
the structure of the regular expression of the only trace assertion of a 
specification. A tactical automation of this strategy would recursively apply 
the decomposition rules presented in chapter 5. This tactic would perform 
many similar checks of application conditions which are avoided by the 
following functional implementation. 

The function PCS formalizes in LAMBDA the inductive construction of a 
Program Control Structure from the operators of one regular expression and 
calls the SCS strategy to generate communication statements for channel 
names in the regular expression. 

PCS( A, re1 + re2, CA ) 
PCS( A, rel.re2, CA ) 
PCS( A,re. ,  CA ) 
PCS( A, e, CA ) 

= ALT[ PCS( A, rel, CA ),PCS( A,re2, CA ) ] 
= SEQ[ PCS( A, r e l ,CA ),PCS( A,re2, CA ) ] 
---- WHILE ... do ... o d  

---- SCS( system A]c,trace c in c , CA[c end ) 

The interface A and communication assertions CA are used for calls of the 
SCS strategy where AIc denotes the restriction of Zi and CA[c gives the 
communication assertion of channel c. Figure 19 shows the corresponding 
PCS rule which generates sequential programs for certain T-specifications. 

Basically PCS uses the rules presented in chapter 5 and the SCS function. 
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s y s t e m  A t r a c e  ~ i n  re CA e n d  

system A PCS( A, re, CA ) end 

pro~qded re is SDT statable 
and impl(thc) is defined for all c E "d = Chans(A) .  

FIGURE 19. PCS implementation of system specifications. 

The conditions of the PCS rule guarantee that all application conditions 
corresponding to the intermediate transformation steps are satisfied. SDT 
suitable regular expressions contain no nested iterations (stars). Further 
more alternative regular expressions are restricted to input channels as 
first letters. 

Now the SD T strategy is defined as follows : An S-specification is trans- 
formed by the rule in figure 9 into a T-specification with a following STOP. 
Then PCS and SCS are applied to this T-specification. Based on algebraic 
laws, the so far generated program is finally simplified by rewriting rules 
like those in figure 20. 

SEt][ WHILE true do P od, O ] -4 

ALT[ ALT[ ... ] ] -4 
IF[ b -4 SEt][ c?x,  P ] ] -4 

IF[ true -4 P ] -4 

SEt][ c?v,~ : = v  ] - 4  

SEt][ v : =e ,  c ! v ] - 4  

v~rvofty P -4 

WHILE true do P od 

ALT[ ... ] 
ALT[ b•c?x -4 P ] 

P 

SEQ[ c?z,v : = z  ] 
SEt][ v:=e,c?e  ] 
P, if v is an auxiliary var. in P 

FIGURE 20. R~writing Rules for the SDT strategy 

The SDT strategy can be applied to each of the component specifications 
WMspec, RMspec and SVspec (see figure 8) of the register example. The 
combined application of PCS, SCS, implO and simplifying rewriting rules 
yield the implementations which are shown as the three arguments of the 
PAR operator in figure 4. 

The three specifications WMspec, SVspec and RMspee satisfy the appli- 
cation conditions of the SDT strategy. Its application yields the following 
implementations of WM, S V  and R M  : 
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W M  

S V  

R M  

= v a r n e w o f  V 
WHILE t rue  do SE[~[ W ? n e w ,  u !new, A ! ] od 

----- v a t  x o f  V 
WHILE true do ALT[ u?z --~ SKIP, r? -~ d!x ] od 

= vat y of V 
WHILE t rue  do SEQ[ R? ,  r !, d?y, T ! y ] od 

FIGURE 21. Implementations of WMspec, RMspec and .,CVspec. 

7 Discussion 

We reported on a mixed term language MIX for the transformational design 
of communicating systems. Using the example of a register specifcation we 
demonstrated how to realize certain implementation ideas in a transforma- 
tional design approach. 

In the theorem prover LAMBr)A the mixed terms and transformation rules 
have been formalized in order to validate the whole approach and prove the 
rules mechanically. At a first stage this embedding provides a simple tool 
for interactive execution of transformation steps. 

In a transformational setting strategies systematically combine several 
rules in order to direct large transformation steps. To decrease the de- 
gree of user interaction in a design process the execution of such strategies 
has been automated in LAMBDA. Aspects of different realizations are dis- 
cussed on the examples SCS and PCS. These strategies are used to generate 
implementations for the sequential components of the previously parallel 
decomposed register specification. A formal treatment of strategies inside 
LAMBDA allows to prove properties like correctness, termination and ap- 
plicability to certain mixed terms. 

Ideas for further strategies reveals in the context of parallel implementa- 
tions concerning the systematic treatment of shared variables and methods 
of data refinement. Building up these strategies together with their inte- 
gration in a design tool yields improved support of important design tasks. 

8 REFERENCES 

[Bac90] R.J.R. Back. Refinement calculus, Part II: Parallel and Reactive 
Programs. In J.W. de Bakker, W.P. de Roever, and G. Rozen- 
berg, editors, Stepwise Refinement of Distributed Systems - Mod- 
els, Formalisms, Correctness, LNCS 430, pages 67-93. Springer- 
Verlag, 1990. 

[BH94] J. Bohn and H. Hungar. Traverdi - Transformation and Verifica- 
tion of Distributed Systems. In M. Broy and S. J~ichen,  editors, 



236 Jiirgen Bohn, Stephan B/issig 

[BR95] 

[CM88] 

KORSO Correct Software by Formal Methods, LNCS. Springer- 
Verlag, 1995. to appear. 

J. Bohn and S. R5ssig. Towards a design assistant for communi- 
cating systems. ProCoS Doc. Id. OLD JB 2/1, Univ. Oldenburg 
- FB Informatik, 1995. URL: 
fgp ://ftp. informatik, uni-oldenburg, de/pup/procos/Ja-L- L.p. Z 

K.M. Chandy and J. Misra. Parallel Program Design- A Foun- 
dation. Addison-Wesley, 1988. 

[FFHM93] M. Frands, S. Finn, R.B. Hughes, and E. Mayger. LAMBDA 
Version 4.3, Documentation Set. Abstract Hardware Limited, 
London, 1993. 

[FM91] M. Fourman and E. Mayger. Integration of formal methods with 
system design. In Proe. VLSI'91, Edingburgh, 1991. 

[INM88] INMOS Ltd. occam 2 Reference Manual. Prentice Hall, 1988. 

[JROR90] K.M. Jensen, H. Rischel, E.-R.. Olderog, and S. RSssig. Syntax 
and informal semantics of the ProCoS specification language level 
0. Technical Report ESPRIT Basic Research Action ProCoS, 
Doc. Id. ID/DTH KMJ 4/2, Technical University of Denmark, 
Lyngby, Dept. Comput. Sci., 1990. 

[Lam86] L. Lamport. On interprocess communications Part II. Distributed 
Comp., 1:86-101, 1986. 

[Lam94] L. Lamport. The temporal logic of actions. TOPLAS, 16(3):872- 
923, 1994. 

[LG89] N.A. Lynch and K.J. Goldman. Distributed algorithms. Techni- 
cal Report MIT/LCS/RSS 5 6.852 Fall 1988, MIT, 1989. 

[OH86] E.-R. Olderog and C.A.R. Hoare. Specification-oriented seman- 
tics for communicating processes. Aeta Inform., 23:9-66, 1986. 

[Old91] E.-R. Olderog. Towards a Design Calculus for Communicating 
Programs. In J.C.M. Baeten and J.F. Groote, editors, Proc. 
CONCUR '91, LNCS 527, pages 61-77. Springer-Verlag, 1991. 

[OR93] E.-R. Olderog and S. R6ssig. A case study in transformational 
design of concurrent systems. In M.-C. Gaudel and J.-P. Jouan- 
naud, editors, TAPSOFT'93: Theory and Practice of So ,  ware 
Development, LNCS 668, pages 90-104. Springer-Verlag, 1993. 



On Automatic and Interactive Design of Communicating Systems 237 

[R6s94] 

[spi89] 

S. Rfssig. A 7~ans[ormational Approach to the Design oJ Com- 
municating Systems. PhD thesis, Tech. report 4-94, Univ. Old- 
enburg-  FB Laformatik, 1994. URL: 
ftp://ftp, informatik, uni-oldenburg, de/pub/proeos/ 
PhD-roessig. ps. gz 

.].M. Spivey. The Z Notation: A Reference Manual. Prentice Hall, 
London, 1989. 


