
Model Checking of Non-Finite
State Processes by Finite
Approximations
N. D e Francesco*
A. Fantechi *t
S. Gnesit
P. Inverardi$

ABSTR.ACT In this paper we present a verification methodology, using an
action-based logic, able to check properties for full CCS terms, allowing also
verification on infinite state systems. Obviously, for some properties we are
only able to give a semidecision procedure. The idea is to use (a sequence
of) finite state transition systems which approximate the, possibly infinite
state, transition system corresponding to a term. To this end we define
a particular notion of approximation, which is stronger than simulation,
suitable to define and prove liveness and safety properties of the process
terms.

1 Introduction

Many verification environments are presently available which can be used
to automatical ly verify properties of reactive systems specified by means of
process algebras, with respect to behavioural relations and logical proper-
ties. Most of these environments [7, 12, 14, 21] are based on the hypothesis
tha t the system can be modelled as a finite state Labelled Transition Sys-
tems (LTS) and tha t the logic properties are regular properties. Tha t is, no
means are provided to deal with non-finite state LTS's. Usually, in these
environments, to avoid the nontermination of the generation phase a t e rm
must satisfy some finiteness syntactic conditions: in the case of CCS, for
example, terms where a process variable x occurs in a parallel composition
belonging to the definition of x are not handled [24].

We are interested here to deal with non finite-state systems; approaches

*Dipaxtimento di Ingegneria dell'lnformaz~ione, Univ. di Pisa, Italy, e-mail:
nieoQiet.unipi.it, fantechi~iet .unipi.it

tlstituto di Elaborazione dell'Informazione, C.N.R. Pisa, Italy, e-maih
gnesiQiei.pi.cnr.it

~Dip. di Matematica Applicata, Univ. dell'Aquila, Italy, e-maihinveraxd~iei.pi.cnr.it

196 N. De Francesco, A. Fantechi, S. Gnesi, P. Inverardi

have been proposed to this aim, which are not based on LTS's [1, 4, 16,
17, 18]; we consider instead LTS based verification. The idea is to use, for
proving a logical property, a sequence of finite state LTSs approximating
the, possibly infinite state, LTS corresponding to a term by the standard
CCS semantics.

In this paper we present a verification methodology to check properties
. -1 A~f~rir tT ^ ~ : ^ ~ 1.. ^..1 1~. .~ '~ r 1 1 1 g . . 1 / . . : J - L
~,uLvS~u in ~ , an ~iuiJ uas~u lu~a~ LL,j, on ,uh CCS te~s tw,u,

no syntactic restriction), thus allowing complete generality of the class of
reactive systems to be specified. We are able to carry on the verification
even though the "usual" LTS generation fails. Obviously, for some of the
properties, we are able to give only a semidecision procedure. This proce-
dure is based on a notion of approximation and on the study of the ACTL
properties preserved by the approximation. In this way, we can infer the
satisfaction of a property by the whole system from the satisfaction of the
property by a chain of approximations. In particular, we define an approx-
imation chain, denoted as {N~}, which is very expressive with respect to
liveness properties.

In order to reason on the properties that we are able to prove with ap-
proximation chains, we start giving a syntactic characterization of different
kinds of properties. Moreover, we define a criterion to compare the suit-
ability of approximation chains to prove properties. Following this notion,
we formalize the fact that a chain is "better" than another one, if its set of
provable properties is greater. Our work differs from the abstract interpre-
tation approaches for model checking of transition systems [2, 6, 8] since we
do not build an abstract (with respect to values) model on which the prop-
erties are proved, but a suitable chain of finite labelled transition systems
based on the operational semantics: when dealing with infinite systems,
this allows us to choose the approximation level case by case. Although the
main goal of the presented approach is to verify (classes) of non-finite state
systems, it can also be seen as a way to accomplish "on the fly" model
checking, similarly to the "on the fly" equivalence verification proposed in
[13].

2 Background

2.1 CCS

We summarize the most relevant definitions regarding CCS, and refer to
[23] for more details. The CCS syntax is the following:

p ::= I niz I p+p I plp I p\A I �9 I p[/]
Terms generated by p (Terms) are called process terms (called also pro-

cesses or terms); z ranges over a set {X, Y, ..}, of process variables. A pro-

cess variable is defined by a process definition x de1 P, (p is called the expan-

Model Checking of non-finite state processes by Finite Approximations 197

Act p.p2+p

Sum p 2+ p, Par
p + q--~ ff and q + p--~ p'

Corn p2.~p~, q_~_~q, Res
p[q-Y+ p'[q'

Rel
p[f] I(.~) p,[f]

Con
p p', xd 1p

x p'
p 2+ p'

P]q ~ P'lq and q]p -~ qlp'
p-~ p', I~,-fi r A

p\A 2+ p'\A

FIGURE 1. The SOS rules

sion of x). As usual, there is a set of visible actions Vis = {a, -d, b, b,...} over
which ~ ranges, while p , v range over Act = Vis U {7}, where T denotes
the so-called internal action. We denote by ~ the action complement: if

-- a, then a = a, while if a = ~, then ~ = a. By nil we denote the empty
process. The operators to build process terms are prefixing (p.p), summa-
tion (p + p), parallel composition (PIP), restriction (p\A) and relabelling
(p[]]), where A C_ Vis and f : Vis -+ Vis. Given a te rm p, an occurrence
of a process variable x is guarded in p if it is within some sub-term of the

form p.q. We assume tha t (i) Vis is finite; (ii) for each definition xde-]p,

each occurrence of each process variable is guarded in p; (iii) all terms are
dosed, i.e. all variables occurring in a te rm are defined.

An operational semantics OP is a set of inference rules defining a relation
D C Terms x Act x Terms. The relation is the least relation satisfying the
rules. I f (p ,# ,q) E D, we write P2+oP q. The rules defining the semantics
of CCS [23], from now on referred to as SOS, are recalled in Figure 1.

A labelled transition system (or simply transition system) T S is a quadru-
ple (S,T,D,so), where S is a set of states, T is a set of transit ion labels,
so E S is the initial state, and D C S x T x S. A transit ion system is finite
if D is finite.

A finite computat ion of a transition system is a sequence #1#2.-#n of
labels such that:
so oP.. 'oP sn.

Given a t e rm p (and a set of process variable definitions), and an oper-
ational semantics OP, OP(p) is the transition system (Terms, Act, D,p),
where D is the relation defined by OP. For example, SOS(p) is the tran-
sition system defined by the SOS semantics for the te rm p.

Let TS1 = (S1,T1,DI,s01) and TS2 = (S2,T2, D2,s02) be transit ion
systems and let 81 E S1 and s2 E $2. sl and s2 are strongly equivalent

198 N. De Francesco, A. Fantechi, S. Gnesi, P. Inverardi

(or simply equivalent) (s~ ,,~ s~) if there exists a strong bisimulation tha t
relates sl and s2. 13 C $1 x $2 is a strong bisimulation if V(sl,s2) E B
(where/~ e T1 U T2),

�9 sl -~1 sl implies 3s~ : s~ 4 2 s'o and s (sl ,s2) e B; s2 ~2s~ implies
I I s~ ~ 1 s~ and (sl ,s2) E B

s2 simulates 82 if there exists a strong simulation tha t relates 81 and s2.
c_ $1 • $2 is a strong simulation if V(sl,s2) E Ts (where p E T1 U T2):

' and (s~ s~) ~ ~. sl -~1 s~ implies 3s~ : s2 -~2 s2
TS1 and TS2 are said to be equivalent (TS1 N TS2) if a strong bisimu-

lation exists for s0~ and s02. Two CCS terms p and q are equivalent (p ~ q)
if SOS(p) .., SOS(q).

TS2 simulates TS1 if a strong simulation Tr exists such that (Sol, So2) E

Given a state s of a transition system T S = (S ,T ,D, so), we say that
s 74 if no s' E S and # E T exist such that (s ,p , s ') e D.

CCS can be used to define a wide class of systems, that ranges from
Turing machines to finite systems [24]; therefore, in general, CCS terms
cannot be represented as finite state systems.

2.2 ACTL

We introduce now the action based branching temporal logic ACTL de-
fined in [11]. This logic is suitable to express properties of reactive sys-
texas defined by means of TS's. ACTL is in agreement with the notion of
bisimulation defined above. Before defining syntax and semantics of ACTL
operators, let us introduce some notions and definitions which will be used
in the sequel.

For A C Act, we let DA(S) denote the set {s': there exists a E A such
that (s, a , s ') E D}. We will also use the action name, instead of the corre-
sponding singleton denotation, as subscript. Moreover, we let D(s) denote
in short DAct(S) and DA, (s) denote DAuir}(s).
For A, B C Act, we let A / B denote the set A - (A A B).
Given a LTS TS=(S,T,D,so), we define:

a is a path from ro E S if either a - - r0 (the empty path from r0) or
is a (possibly infinite) sequence (ro, a~, r l) (rl , a2, r 2) . . , such that

(r i , a i+ l , r~+l) E D for each i > 0.

A path a is called maximal if either it is infinite or it is finite and its
last state r has no successor states (D(r) = ~). The set of maximal
paths from r0 will be denoted by II(ro).

�9 If a is infinite, then lal --- w.
If a -- to, then lal = 0.

Model Checking of non-finite state processes by Finite Approximations 199

If 0 ~ = (rO, al,rl)(rl,c~2,r2)...(rn,C~n+l,rn+l), n > 0, then lal =
n + 1. Moreover, we will denote the i th state in the sequence, i.e. ri,
by a(i). O

To define the logic ACTL [11], an auxiliary logic of actions is introduced.
The collection .A~ of action formulae over Vis is defined by the following
grammar where X, X ~, range over action formulae, and a E Vis:

X : := aI-~XIX A X

We write f f for s0 A -"s0, where ao is some chosen action, and ~t stands
for "-ft. Moreover, we will write X V X ~ for -'(-'X A -~X~). An action formula
permits the expression of constraints on the actions that can be observed
(along a path or after next step)~ for instance, a V/3 says that the only
possible observations are a or/3, while ~t stands for "all actions are allowed"
and f f for "no actions can be observed", that is only silent actions can be
performed.

The satisfaction of an action formula X by an action a, a ~ X, is defined
inductively by:

�9 a ~ f l i f f a = f l ; * a ~ - x i f f n o t a ~ x ; , a ~ X A X ' i f f a ~ x a n d
Ot [:= XI

Given an action formula X, the set of the actions satisfying X can be
given by the function ~ : J4~(Vis) -+ 2 yis as follows:

The syntax of ACTL is defined by the state formulae generated by the
following grammar:
r ::= ~t I r 1 6 2 [--r [E7 [A7
"r ::= x• l X,-r l C xv C l C xu• r

where X, X' range over action formulae, E and A are path quantifiers, X
and U are next and until operators respectively.

Let T S = (S, Act, D, so) be a LTS. Satisfaction of a state formula r
(path formula 7) by a state s (path a), notation s ~ r s r (a ~TS ")') i8
given inductively by :

s ~TS ~t always"
s ~ r s C A r iff s ~ r s C a n d s ~ r s r
S ~ T S - , r iff n o t S ~ T s r
S ~TS E7 iff there exists a path a E II(s) such that a ~TS 7;
s ~TS A7 iff for all maximal paths a e II(s), a ~TS 7;
a ~TS Xxr iff lal > 1 and a(2) e Ds(x)(a(1)) and a(2) ~TS r

200 N. De Francesco, A. Fantechi, S. Gnesi, P. Inverardi

a ~TS Xrr iff -> I and ~(2) e O{r}(a(1)) and a(2) ~ws r
a ~TS r xUek' iff there exists i > 1 such that a(i) ~Ts ~b', and for all

l<__ j<__ i - l : a (j) ~ r S r
and a(j + 1) e D~(x),(a(j));

a ~ r s CxUx'r 'iff there exists i > 2 such that a(i) ~ws ~b' and
a(i) e D~(x,)(a(i - 1)), and for all
I " / j =*=" " I" IT [d/ I~-~TS W A - " �9 k d 1

and a(j) �9 D~(x),(a(j - 1)).

Several useful modalities can be defined, starting from the basic ones. In
particular, we will write:

�9 A s 1 6 2 for "~EXx-~r and EXxr for -~AXx-~ r These are called the
weak next operators.

�9 EF• for E(~ aU ~b), and AFr for A($ aU ~b); these are called the
eventually operators.

�9 EGr for -~AF-~b, and AGr for -~EF-~r these are called the always
operators.

ACTL can be used to define liveness (something good eventually happen)
and safety (nothing bad can happen) properties of reactive systems. In a
branching time logic both liveness and safety properties could be divided
into two classes: universal liveness (safety) properties and existential live-
hess (safety) properties. The former state that a condition holds at some
(all) states of all computation paths. The latter state that a condition holds
at some (all) states of one computation path. Moreover liveness properties
can be better classified as in the following [19, 22]:
Termination properties: "a good thing happens at some states of a (all)
computation(s)".
Recurrence properties: "a good thing happens at infinitely many states of
a (all) computation(s)'.
Persistence property: "a good thing happens at all but finitely many states
of a (all) computation(s)".
We can also talk of finite properties, that state some condition on the finite
initial part of the behaviour of the system.

P.3 Infinite state systems and logical properties

We know that all ACTL formulae are decidable on finite state transition
systems and the linear time ACTL model checker [10] can be used to do
this job. Hence, when we have a CCS description of a system and we want
to prove on it ACTL properties, the labeled transition system associated
to it needs to be built. This will be the model on which the satisfiability of
the formulae will be checked. Problems, obviously, arise when the system

Model Checking of non-finite state processes by Finite Approximations 201

to be modelled has an infinite state representation, due for example to the
interplay between parallel composition and recursion operators.

As an example, let us consider the CCS definition of a bag containing
two kinds of elements:

X = p l . (g l . n i l l X) + p2. (g2.ni l lX)

where pl and p2 represent insertions and gl and g2 deletions of the two
kinds of elements, respectively. It is known that X is neither finite state
nor context-free. Some typical properties of a bag could be requested to be
checked on this specification, in order to validate it:
1) The bag is not a set, therefore it is possible to put twice the same value
in the bag consecutively: AFAXpa EXpl ~t.
2) It is possible, on all (but finitely many) states to do a put action imme-
diately followed by a get action: E F E G (E X p ~ EXg~ tt).
3) There exists a computation path on which it is possible to do infinitely
often put actions: E G A F (E X p l vp2 tt).
4) It is always possible to perform a put action: AGEXplvp~tt.

3 Verification by approximations

Let us first present a syntactic characterization, as ACTL formulae, of the
logical properties we will deal with. We then introduce the general notion
of chain of finite approximations of the transition system of a term p.
Finally, we Introduce a notion of approximation suitable to prove liveness
properties.

3.1 T e m p o r a l proper t i e s

Definition 3.1 (Positive formula) We say that 7r I is a positive formula
if it is an A C T L formula without negations.

Definition 3.2 (Liveness property) We say that r is a liveness prop-
erty if one of the following holds, where ~r' is a positive formula:

�9 r = AFvr' or !b = EFTr ~ (termination property)

�9 r = AFAGTr', r = EFAGIr ' , r = AFEG~r' or !b = E F E G l d
(persistence property)

�9 r = AGAFTr', r = EGAFTr', r = AGEF1r' or r = E G E F r '
(recurrence property)

202 N. De Francesco, A, Fantechi, S. Gnesi, P. Inverardi

Def in i t ion 3.3 (Finite p r o p e r t y) We say that a is a finite property if
it can be expressed by an ACTL formula defined by the fallotoing grammar:
~ ::=ttlo Ao loV ol-~olE'ylA'~
7 ::= X x a l X ~ ~

Note that the subset of ACTL defined by this grammar corresponds to
the Hennessy-Miiner logic [15].

Defini t ion 3.4 (Posi t ive finite property) We say that rr is a positive
finite property if it is a finite property without negations.

Defini t ion 3.5 (Safety p rope r ty) We say that 0 is a sa]ety property if
0 = AG~r or 0 = EGlr and ~r is a positive finite property.

The given syntactical presentation of liveness and safety properties does
not obviously cover all the liveness and safety properties expressible by
means of all the ACTL operators as the negation operator. Indeed, nega-
tion makes the syntactic classification of formulae difficult. Following this
classification, we have that properties 1) to 3) of the bag example are live-
ness properties, while 4) is a safety one.

Finite, liveness and safety properties are decidable on a finite state LTS.
In general, while finite properties are provable, liveness (including termina-
tion, persistence and recurrence) and safety properties can be undecidable
for a non-finite state term p.

8.2 Approzimation chains

Given a CCS term p, we define chains of finite LTSs which more and more
accurately simulate the behaviour of SOS(p). Since eacJa LTS in a chain is
finite proof checking methodologies for finite LTSs can be used. First we
define in the most general way the concept of approximation chain. In the
following we denote, with T and T, the set of all LTSs and a generic LTS,
respectively.

Defini t ion 3.6 (Approx ima t ion chain) Let -~ a preorder over T . We
say that T1 approximates by -4 (-<-approzimates) T2 iff T1 "4 T2. Given a
term p, a chain {Ti(p)li >_ 0} on (T, "~) is called approximation chain for
p by -d (-d-approximation chain) iff:

�9 for each i, Ti(p) is finite;

�9 for each i, Ti(p) ~_ Ti+1(p);

�9 SOS(p) is a least upper bound of (T~(p)}.

Note that, if we have a finite approximation chain {Ti(p)lr > i > 0},
then Tr(p) ~ SOS(p).

Model Checking of non-finite state processes by Finite Approximations 203

7(be
a b

TS1 TS2

FIGURE 2. Simulation vs. Be-simulation.

Definition 3.7 (Properties preserved b y -<) A preorder ~ preserves
a property r if whenever T1 verifies r and T1 ~ T2 then T2 verifies r

The above definitions allow us to define a procedure for proving the
validity of a property on an infinite state-system, by checking the property
on the elements of an approximation chain, starting from the first one, until
we find that the property is verified. The procedure is sound if the chain
preserves the property, i.e. it must happen that , if we are able to prove
r on an element of the chain, we can assert the validity of r on SOS(p).
This means that the property must be monotonic on the preorder. The
first result we show is that simulation, from now on denoted by ~s, is not
suitable to prove all liveness properties.

is possible to build different kinds of different sets of properties, and then
gradually refine result holds.

Proposit ion 3.1 "~s does not preserve all liveness properties.
Proof Let us consider the following liveness property:
Each path contains a state from which all the outcoming arcs are labelled
by a, expressed by (AFAXat t) and the transition systems TSz and TS2 in
Figure 2.
We have that TS1 "~s TS2, but TS1 verifies the property and TS2 does not.

In order to manage all liveness properties, we now introduce a stronger
notion of simulation between transition systems. This notion, in contrast
to simulation, permits the definition of approximation chains that preserve
the branching structure, that is, for each approximation, if a node has been
exploded, all its branches have been developed.

Definition 3.8 (Branching Complete Simulation) Let
TS1 = ($1, T1, D1, So~) and TS2 = ($2, T2, D2, So2) be transition systems
and let sl E $1 and s2 E $2.
s2 BC-simulates Sl if there exists a strong BC-simulation that relates sl
ands2. T~ C $1 • is a strong BC-simulation ifV(sl,s2) E T~, I~ E T1UT2,

�9 sl 4 1 s i implies 3sl2:s2 4 2 sl2 and (sl, sl2) e n .

204 N. De Francesco, A. Fantechi, S. Gnesi, P. Inverardi

�9 82 -~2 8'2 implies either 81 ~1 or 81 "~1 81 and ' ' (Sl,S2) e ~.

TS2 BC-simulates TS1 (TS1 ~.~bc TS2) if a branching complete simulation
R exists such that (sol, so2) E R.

It is easy to see that ~_bc is a preorder and that TS1 ~bc TS2 implies
TS: ~.. TS2, but the converse is not true in general. For example, TS2
does not BC-simulate TS1 in Figure 2.

The notion of approximation chain based on BC-simulation preserves
the branching structure of the transition systems all along the chain. This
allow us to prove properties not provable on a chain based on simulation.
One of the main results of the paper is the following:

Proposition 3.2 ~be preserves liveness properties.
Proof sketch By structural induction on the structure of the liveness for-
mulae and taking into account that the liveness properties are defined on
a positive fragment of ACTL and that the BC-simulation forces the simu-
lating transition system to exactly maintain all the (bisimilar) branches of
the simulated one, if any.

It is now easy to relate approximation chains, based on BC-simulation,
with liveness properties. The following proposition is the basis of our veri-
fication method.

Proposition 3.3 Let p be a term and {Ti(p)} a -4be-approximation chain
for p. If ~b is a liveness property, it holds that: if 8o ~T~(p) ~b for some i,
then So ~sos(p) r
Proof. It follows by proposition 3.$.

proving existential (E...) or universal (A...) due to the fact that BC-
simulation preserves the

Let us now consider safety properties. It is easy to convince ourselves
that we are not able to prove the satisfiability of a safety property by only
using approximations of the given system. In fact, if we consider the syntax
on which safety properties are defined, we note that each formula belonging
to this ACTL subset is constituted by next modalities, with no negations,
under a quantified always modality. Now, the evaluation of a next operator
is false on all the states of a TS that have no successor. Therefore, the
whole safety formula is false (consider for example the formula AGAXatt
on TS1).
On the other hand, if a safety property is true on a _be-approximation of
a system, then such an approximation has at least one cyclic path that
makes the formula true. This is enough to deduce that the formula is true
on the SOS representation of the system. Indeed, the following proposition
can be stated:

Proposition 3.4 Safety properties arc preserved by "~bc.

Model Checking of non-finite state processes by Finite Approximations 205

(>
a

<>

TS1

~--bc
(
a

/
�9

T&

)

)

FIGURE 3. Simulation and BC-simulation.

a a b

TS4 TS5

FIGURE 4. Simulation and BC-simulation.

The same does not hold for ~s. To see this, consider the transit ion sys-
tems represented in Figure 4. The safety formula AGAXatt is true on TS4
but not on TSs, where TS4 ~, TSs.

preservazione corretto con questo esempio
A proof methodology can be derived for safety properties, start ing from

the above result. Unfortunately only a limited subclass of such proper-
ties are provable when finite approximations are considered for non-finite
state systems: for example, on a non-finite s tate system we cannot prove
any universal safety property. We can however define a proof methodology
tha t takes into account the duality existing between liveness propert ies and
safety ones. In this respect, we provide a method to prove the non-validity
of a safety proper ty on a finite approximation. To make this possible we
need to forget tha t we are working on finite approximations in which there
exist states with no successors and on which every safety formula is false.

206 N. De Francesco, A. Fantechi, S. Gnesi, P. Inverardi

This can be done considering a weaker version of the safety property un-
der study, by substituting the next modalities with weak next modalities.
Now, if this weak formula is false on one of the approximations p it will
necessarily be false on SOS(p). This idea is formalized by the following:

Definition 3.9 (Weak finite p roper ty) We say that ~r is a weak finite
property if it can be e~pressed by an ACTL formula defined by the following
 mmar" : := I A a V a I I

Definition 3.10 (Weak safety proper ty) We say thatO is a weak safety
property if 0 = AGlr or 0 = EGTr and lr is a weak finite property.

For weak safety properties, the following proposition holds :

Proposit ion 3.5 Let p be a term and {Ti(p)} a ~_bc-approximation chain
for p. I f ~b is a weak safety property, it holds that: if so ~z~ (p) ~b for some
i, then so ~SOS(p) r
Proof sketch For duality from Prop. 3.3

Let us now consider finite properties. The following holds:

Proposit ion 3.6 _~s does not preserve all finite properties.
Proof sketch Consider the finite property: Each path starts with an action
a (AXatt) , with TS1 and TS2 of Figure ~. We have that TS1 ~_, TS2, but
TS1 verifies the property and TS2 does not.

Following the same reasoning of 3.2.
Since finite properties represent a particular class of liveness properties

we have a semldecision procedure for testing the validity of these properties
by using approximation chains based on --<--be- We can do more, as one should
have expected, and provide a decision procedure for finite properties. To
this end, we furtherly constrain our chains. Let us consider, for example,
the following finite property for SOS(P) for some p:
All paths start with the action b and contain at least an action a as a second
action (AXbEXat t) .
Approximation chains based on ~_bc are not suitable to give a positive
or negative answer if SOS(P) is infinite: in fact a new path of length 2
may appear in whatever element of the chain. The property is decidable
if, instead, each transition system T/(p) of the chain grows on all possible
paths with respect to Ti-1 (2). This suggests the following notion:

Definition 3.11 (Transition system path-approximation) Let TS1
and TS2 be transition systems. We say that TS1 is an n-path-approximation
of TS2 (TS, ~_n TS2) if

�9 TS , ~_bc TS2;

�9 eitherTS1 ,~ TS2 or the paths of length <_ n ofTS1 andTS2 coincide.

Model Checking of non-finite state processes by Finite Approximations 207

We can now state the following:

Proposition 3.7 Let ~r be a finite property of depth n, that is with only n
nested next operators, and {Ti(p)} a "<be-approximation chain for a term p
such that T~(p) ~i SOS(p) for each i. Then so ~sos(p) r iff so ~r,(p) 7r.
Proof sketch We have that Tn(p) has all the paths of length n of SOS(p).

4 How to build approximations

In this section, we present some ways of constructing approximation chains.
In order to obtain correct approximations for a term p, the idea is to derive
p using the operational semantics until some stopping condition, thus ob-
taining a partial transition system, which is furtherly expanded to obtain
the successive elements of the chain. The first chain we present, described
in the following sub-secton, is based on the standard SOS semantics. In
order to obtain better approximations, we then introduce a second chain,
which is based on a different semantics, able to produce "more expressive"
transition systems.

4.1 S O S approx imat ions

Definition 4.1 ({Ui(p)}) Given a term p, the chain
{ Mi(p) = (SM, , Act, DM, , so)} /s inductively defined as follows:

�9 M0(p) = ({p},Act, {},p)

�9 Mi+l (P) = (SM,+I, Act, DM,+a ,P) where

- SM,+~ = SM, U {alP E SM, and Sp E Act : P-~xosq};

- DM,+~ =DM, U{(p, lt, q)IPeSM, a n d 3 # E A c t : p sosq} .

Informally, Mo(p) has the only state p without transitions and Mi+l(p),
i _> 0, is obtained from Mi(p), by adding to the states (and the related
transitions) of Mi09) all those states reachable from them with only one
action. The following proposition holds:

Proposition 4.1 Given a term p, the chain {Mi(p)} /s a
~bc-approximation chain for p.
Proof sketch. By induction on the length o] the chain and by definig
suitable BC-simulations.

Actually, the chain {Mi(p)} is the simplest chain derivable from SOS(p)
which is a ~bc-approximation chain. In fact the simpler approximation
chain which at any step adds a single new transition to the previous element
of the chain, is not a --4bc-approximation chain.

208 N. De Francesco, A. Fantechi, S, Gnesi, P. Inverardi

FIGtrRE 5. M~ (X)

FIGUKE 6. M2(X)

Example 4.1 Let us now reconsider the bag example of section 2.3, and
try to prove the properties on the chain {Mi(X)}. Since {MI(X)} is a
-~bc-approximation chain, it preserves all properties from 1) to 3) and does
not preserve the safety property 4). Thus, if we find that an approximation
Mi(X) verifies a property among 1) and 3), we prove that the property
holds for the bag (i.e. SOS(X)). Mo(X) is given by a transition system
with only one state, i.e. X itself, while MI(X) and M2(X) are represented
in Figures 5 and 6 respectively.

We have that property 1) is not satisfied by MI(X), it is satisfied by
M2(X) and thus it is true for the bag. Moreover, property 4) is not verified
by MI(X) and M2(X); on the other hand, its weak version (AGEXpavp2~)
is verified by both MI(X) and M2(X); this does not allow us to deduce
anything about the satisifiability of the safety property for the bag. Prop-
erties 2) and 3) are not verified by M1 (X) neither by M2 (X). It is easy to
see that these properties are not verified by any Mi(X), for each i. In fact
their satisfiability implies detecting a cycle in the transition system: this
cycle will never appear in the chain {Mi(X)}.

Model Checking of non-finite state processes by Finite Approximations 209

Thus, if we use this chain to approximate SOS(X), these properties are
not provable, while they hold for SOS(X). Nothing can instead be asserted
about property 4). The following proposition states that each Mi is a -'<i-
approximation of SOS(p), i.e. the size of the transition system grows.

Proposition 4.2 Given a terra p, for each i >_ O, Mi(p) ~i SOS(p).
P r o o f . By proposition 4.1 it holds that Mi(p) ~--bc SOS(p). Moreover, by
induction on the length of {M~(p)}, we have by definition that Mi(p) has
all the paths of length less or equal to i.

As a consequence, using {M~(p)} we can decide any finite property of
depth n of a term p: it sufficies to check the property on Mn(p).

4.2 SS Approximations

In this section, we present a way of approximating SOS(p) based on a
different operational semantics, which allows us to prove a greater set of
properties than those proved by {Mi(p)}. In [9] the semantics SS was de-
fined, which is more abstract than SOS, since the SS rules have built in
some behavioural equivalence axioms, i.e. they accomplish some simplifica-
tions on the terms during the derivations, with the purpose of obtaining, if
possible, a finite-state transition system for p. The rules of SS are such that
SS(p) is strongly equivalent to SOS(p). The definition of SS, whose rules are
shown in Figure 7, is based on the following considerations. Given the CCS
syntax, those operators that, in presence of recursion, would give rise to the
derivation of growing terms (and therefore to an infinite number of deriva-
tions) are parallel composition, restriction and relabelling. For restriction
and relabelling, in a language with finite action set, the unlimited growth
of terms can be prevented by using suitable inference rules. In fact, succes-
sive, possibly intermixed, occurrences of restriction and relabelling can be
reduced to only one restriction, followed by only one relabelling. Moreover,
the parallel operator can be deleted as soon as one of the two arguments
terminates, i.e. is equivalent to nil. The SS inference rules accomplish these
strong equivalence preserving simplifications during the derivation. The fol-
lowing notation is used in the rules:

p\ \A =

p[[f]]=

p\A, i f p ~ q\B,p ~ q[f]
q\A U B, if p = q\B
q\fl(A)[f], if p = q[f], q # r \B
q\fl(A) U B[f], if p = q\B[f]

p[l], if p # q[g]
q[f o g], if p = q[g]

210 N. De Francesco, A. Fantechi, S. Gnesi, P. Inverardi

S-Act=Act S -Con=Con S - S u m = S u m

S-Par~

S-Par2

S-Coml

S-Com2

S-Res

S-Rel

p', not v' 74
P[q-~ P'lq and q~-% qlP'

qlp~q ~,a q ~ q
p _o~ pl, q ~ q, not pl/rightarrow and not q' 7t~

plq Z+ p~lq~

p-~ p~, q -~ q', p~ 74
p[q .~ qt and q[p Z+ ql

p-~ f ,p,'fi f~ A
p \ A ~ q ackslash\A

p ~ q

p[f] Y(-~) q[[f]]
FIGURE 7. The SS rules

FIGUR~ 8. m (X)

Defini t ion 4.2 ({Ni(p)}) Given a term p, the chain
{Ni(p) -- (S~v,,Act, DN,,So)} is inductively defined in the same way as
{Mi(p)}, but using -~ ss instead of-~sos.

If we reconsider the bag example, Figures 8, 9 show NI(X) and N2(X),
respectively.

The following proposition holds:

P ropos i t ion 4.3 Given a term p,

�9 the chain {Ni(p)} is a -~_bc-approximation chain for p;

�9 for each i >_ O, Ni(p) ~_i SOS(p)

P r o o f sketch Analogous to the proof of propasition ~.1 and 4.~ and since
SOS(p) ~ SS(p).

Model Checking of non-finite state processes by Finite Approximations 211

FIGURE 9. N2 (X)

If we check the properties 1) . . . 4) on the chain {Ni(p)}, we have the
same results as with {Mi(p)} for 1) and 4), but N2(X) satisfies properties 2)
and 3), which are then true for the bag, while their validity is not provable
on the chain {Mi(X)}.

The following proposition relates the two chains we have introduced.

Proposition 4.4 Given a CCS term p, for each i > O, 3j such that
M~(p) ~_bc gj(p) .
P r o o f . The finite paths are equal in Mi(p) and Ni(p), since they are both
~_i SOB(p). Moreover, it holds that: Vs e SM,, 3s' e SN, such that s ,~ s ~
and length(s j) < lengh(s), where length(t) denotes the number of opera-
tors occurring in the term t. This holds since terms generated by S S are
"shorter" than terms generated by SOS. Consider an infinite path in Mi(p),
i.e. a path leading from a state s �9 SM~ to itself and take n equal to the
number of terms t equivalent to s and such that length(t) < lengh(s). Take
j = i + n .

Note that the converse of the above proposition is not true: if we consider
the bag example, no Mi(X) exists which is ~bc N2(X).

5 Suitability of approximation chains

Let us consider a liveness property r and a _be-approximation chain (Ti(p)}
for a term p. Proposition 3.3 above ensures that, if we are able to prove
r on an element of the chain, we can assert the validity of r on SOS(p).
Thus an algorithm to check the validity of a liveness property is tha t of
checking it on the elements of the chain, starting from the first one, until we
find that the property is verified. B u t the converse of proposition 3.3 is not
t rue in general: if a liveness property ~b is verified on SOS(p), this does not

212 N. De Francesco, A. Fantechi, S. Gnesi, P. Inverardi

imply that it is true for some {T/(P)}. Thus, given an approximation chain,
the above algorithm (which checks a liveness property on the elements of
the chain) is not in general a semidecision procedure for the validity of a
formula. This is the case of the chain {Mi(P)} and the properties 2) and
3) of our example above. Moreover, different approximation chains for the
same term can be used to check different sets of properties, in the sense that,
given a property ~b, it is possible that the above algorithm is a semidedsion
procedure for r if using a chain, while it cannot be used to semidecide the
validity ~b with another chain. This suggests a comparison criterion on the
suitability of approximation chains for proving liveness properties.

Definition 5.1 (Checkable proper t ies) Let be given a term p and a "<be
approximation chain {Ti(p) }. We say that a liveness property ~b is checkable
by {Ti(P)} if

�9 either 4? is not verified by SOS(p) or

�9 (Tr(p) �9 {Ti(P)}) exists such that so ~r,(v) r

The set of checkable properties of p by {TI(P)} is denoted as 7)T~(p).

Thus PT~ (P) includes the properties for whose validity there is a semide-
cision procedure using {TI(P)}.

Defini t ion 5.2 (Suitabil i ty of approx imat ion chains) Let be given a
term p and two "~bc approximations chains {Ti(p)} and {S/(P)}, We say
that {TI(P)} is more suitable or equal for p than {Si(p)} if 7)s, (p) C_ ~VT~ (p).
Moreover, {Ti(p)} /s strictly more suitable for p than {Si(P)} if "Psi(P) C
;VT,(p).

Note that the notion of suitability of approximation chains is different
from a notion considering the "growing rate" of the chains. Given, for exam-
ple, an approximation chain {Ti(p)}, let us consider the chain containing a
subset of the elements of {Ti(p)}, for example the elements of even position,
i.e. {Si(p)} = {To(P),T2(p),T4(P), . . .} . We have that {Si(p)} grows faster
than {Ti(p)}, but it is not more suitable. As a consequence of the above
definitions and propositions 4.4, we can state the following propositions:

Proposition 5.1 For each term p, PMi (29) C 7~Ni (p).
Proof sketch. By proposition J.J.

The following proposition states that the converse of proposition 5.1 is
not true in general.

Proposition 5.2 Given a termp, 7)M~ (p) C 7)N~(p), i.e. {Ni(p)} is strictly
more suitable than {Mi(p)).
Proof sketch Properties ~) and 3) in the bag ezample are checkable by
{Ni(p)} but not by {Mi(p)}.

Model Checking of non-finite state processes by Finite Approximations 213

6 Implementation in the JACK environment

The JACK system [3] is a verification environment for process algebra de-
scription languages. It is able to cover a large extent of the formal software
development process, such as rewriting techniques, behavioural equivalence
proofs, graph transformations, and (ACTL) logic verification. In JACK a
particular description format is used to represent TSs, the so called]ormat
commun fc2, that has been proposed as standard format for automata [20].
The ACTL model checker was built on the basis of an algorithm similar to
that of the EMC model checker [5], so it guarantees model checking of an
ACTL formula on a TS in a linear time complexity [10].

The JACK environment has been extended with a tool to build the chain
{Ni(p)}. We now describe the methodology for proving properties. Let be
given a CCS term p and a list of ACTL formulae to be checked on it. A
verification session has the following steps:

1. The term is input to JACK. If the term satisfies the finiteness condi-
tion of the transition system generator inside JACK, a corresponding
transition system T S is built and the list of ACTL formulae is checked
on it. The session terminates.

2. If the syntactic finiteness conditions are not satisfied, then we call
the chain generator of JACK. Once obtained the first approximation
N109), we put T S := Na 09).

3. The list of ACTL formulae is input to the model checker which checks
them on TS. If Ni+l(p) = TS , the session terminates, since T S
SOS(p). Otherwise, the results of the model checker are analyzed
according to propositions 3.3, 3.5 and 3.7. This means that, possibly,
a new approximation is built, i.e. T S := Ni+l (/9) and we repeat step
3.

Acknowledgement

We wish to acknowledge Luigi Polverini and Salvatore Larosa for their
work on the implementation of the NSS approximation generator, Rocco
De Nicola and Gioia Ristori for interesting discussions about the topics of
this paper.

7 REFERENCES

[1] J. C. M. Baeten, J. A. Bergstra, J. W. Klop. Decidability of bisim-
ulation equivalence for processes generating context-f~ee languages.
Journal of ACM 40,3,1993, pp. 653-682.

214 N, De Francesco, A. Fantechi, S. Gnesi, P. Inverardi

[2] G. Bruns. A practical technique for process abstraction. CONCUR'93,
LNCS 715, pp. 37-49.

[3] A. Bouali, S. Gnesi, S. Larosa. The integration Project for the JACK
Environment. Bulletin of the EATCS, n.54, October 1994, pp.207-223.

[4] O. Burkart, B. Steffen. Pushdown processes: Parallel Composition
and Model Checking. Proceedings, CONCUR. 94, LNCS 836, 1994,
pp.98-113.

[5] E.M. Clarke, E.A. Emerson, A.P. Sistla. Automatic Verification of
Finite State Concurrent Systems using Temporal Logic Specifications.
ACM Toplas, 8 (2), 1986, pp. 244-263.

[6] E.M.Clarke, O,Grumberg, D.E.Long. Model Checking and Abstrac-
tion. ACM Toplas, 16 (5), 1994, pp.1512-1542.

[7] R. Cleaveland, ,]. Parrow, B. Stetfen. The Concurrency Workbench.
Proceedings of Automatic Verification Methods for Finite State Sys-
tems. Lecture Notes in Computer Science 407, Springer-Verlag, 1990,
pp. 24-37.

[8] D.Dams, O.Grumberg, R.Gerth. Automatic Verification of Abstract
Interpretation of l~.eactive Systems: Abstractions Preserving VCTL*,
3CTL*, CTL*. IFIP working conference on Programming Concepts,
Methods and Calculi (PROCOMET'94), 1994.

[9] N. De Francesco, P. Inverardi. Proving Finiteness of CCS Processes by
Non-standard Semantics. Acta Informatica, 31 (1), 1994, pp. 55-80.

[10] R. De Nicola, A. Fantechi, S. Gnesi, G. RJstori. An action-based frame-
work for verifying logical and behavioural properties of concurrent sys-
tems. Computer Network and ISDN systems, Vol. 25, No.7, 1993, pp
761-778.

[11] R. De Nicola, F. W. Vaandrager. Action versus State based Logics for
Transition Systems. Proceedings Ecole de Printemps on Semantics of
Concurrency. LNCS 469, 199{}, pp. 407-419.

[12] J.C. Fernandez, H. Garavel, L. Mounier, A. Rasse, C. R.odriguez, J.
Sifakis, A Toolbox for the Verification of LOTOS Programs. 14th
ICSE, Melbourne, 1992, pp. 246-261.

[13] J.C. Fernandez, L. Mounier. Verifying Bisimulations "On the Fly".
Formal Description Techniques, III, Elsevier Science Publisher, pp.
95-110, 1991.

[14] J. C. Godskesen, K. G. Larsen, M. Zeeberg. TAV Users Manual. In-
ternal Report, Aalborg University Center, Denmark, 1989.

Model Checking of non-finite state processes by Finite Approximations 215

[15] M. Hennessy and R. Milner. Algebraic Laws for Nondeterminism and
Concurrency. Journal of ACM, 32, 1985, pp. 137-161.

[16] H. Hungar, B. Steffen. Local Model Checking for Context-Free Pro-
cesses. Proceedings, ICALP 93, LNCS 700, 1993, pp.593-605,

[1?] H. Hungar. Local Model Checking for Parallel Composition of
Context-Free Processes. Proceedings, CONCUR 94, LNCS 836, 1994,
pp.114-128.

[18] H. Huttel, C Stifling. Actions speak louder than words: Proving Bisim-
ilarity for Context Free Processes. LICS 91, IEEE Computer Society
Press, 1991, pp. 3?6-386.

[19] E. Kindler. Safety and Liveness Properties: A Survey. Bulletin of the
EATCS, 53, 1994, pp.268-272.

[201 E. Madelaine. Verification Tools from the Concur Project. Bulletin of
EATCS 47, 1992, pp. 110-120.

[21] E. Madelaine, D. Vergamini. AUTO: A Verification Tool for Dis-
tributed Systems Using Reduction of Finite Automata Networks.
FORTE '89, North-Holland, 1990, pp. 61-66.

[22] Z. Manna, A. Pnueli. The Anchored Version of the Temporal Frame-
work, Linear Time, Branching Time and Partial Order in Logics and
Models for Concurrency. Lecture Notes in Computer Science 354,
Springer-Verlag, 1989, pp. 201-284.

[23] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[24] D. Taubner. Finite Representations of CCS and TCSP Programs by
Automata and Petri Nets. LNCS 369, 1989.

