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ABSTR.ACT In this paper we present a verification methodology, using an 
action-based logic, able to check properties for full CCS terms, allowing also 
verification on infinite state systems. Obviously, for some properties we are 
only able to give a semidecision procedure. The idea is to use (a sequence 
of) finite state transition systems which approximate the, possibly infinite 
state, transition system corresponding to a term. To this end we define 
a particular notion of approximation, which is stronger than simulation, 
suitable to define and prove liveness and safety properties of the process 
terms. 

1 Introduction 

Many verification environments are presently available which can be used 
to automatical ly verify properties of reactive systems specified by means of 
process algebras, with respect to behavioural relations and logical proper- 
ties. Most of these environments [7, 12, 14, 21] are based on the hypothesis 
tha t  the system can be modelled as a finite state Labelled Transition Sys- 
tems (LTS) and tha t  the logic properties are regular properties. Tha t  is, no 
means are provided to deal with non-finite state LTS's. Usually, in these 
environments,  to avoid the nontermination of the generation phase a t e rm 
must  satisfy some finiteness syntactic conditions: in the case of CCS, for 
example,  terms where a process variable x occurs in a parallel composition 
belonging to the definition of x are not handled [24]. 

We are interested here to deal with non finite-state systems; approaches 
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have been proposed to this aim, which are not based on LTS's [1, 4, 16, 
17, 18]; we consider instead LTS based verification. The idea is to use, for 
proving a logical property, a sequence of finite state LTSs approximating 
the, possibly infinite state, LTS corresponding to a term by the standard 
CCS semantics. 

In this paper we present a verification methodology to check properties 
. . . . . .  -1 A~f~rir tT ^ ~ : ^ ~  1.. ^..1 1~. .~ '~  r 1 1 1  g . . 1  / . . : J - L  
~,uLvS~u in ~ ,  an ~iuiJ uas~u lu~a~ LL,j, on ,uh CCS te~s tw,u, 

no syntactic restriction), thus allowing complete generality of the class of 
reactive systems to be specified. We are able to carry on the verification 
even though the "usual" LTS generation fails. Obviously, for some of the 
properties, we are able to give only a semidecision procedure. This proce- 
dure is based on a notion of approximation and on the study of the ACTL 
properties preserved by the approximation. In this way, we can infer the 
satisfaction of a property by the whole system from the satisfaction of the 
property by a chain of approximations. In particular, we define an approx- 
imation chain, denoted as {N~}, which is very expressive with respect to 
liveness properties. 

In order to reason on the properties that we are able to prove with ap- 
proximation chains, we start giving a syntactic characterization of different 
kinds of properties. Moreover, we define a criterion to compare the suit- 
ability of approximation chains to prove properties. Following this notion, 
we formalize the fact that a chain is "better" than another one, if its set of 
provable properties is greater. Our work differs from the abstract interpre- 
tation approaches for model checking of transition systems [2, 6, 8] since we 
do not build an abstract (with respect to values) model on which the prop- 
erties are proved, but a suitable chain of finite labelled transition systems 
based on the operational semantics: when dealing with infinite systems, 
this allows us to choose the approximation level case by case. Although the 
main goal of the presented approach is to verify (classes) of non-finite state 
systems, it can also be seen as a way to accomplish "on the fly" model 
checking, similarly to the "on the fly" equivalence verification proposed in 
[13]. 

2 Background 

2.1 CCS 

We summarize the most relevant definitions regarding CCS, and refer to 
[23] for more details. The CCS syntax is the following: 

p ::= I niz I p+p I plp I p\A I �9 I p[/] 
Terms generated by p (Terms)  are called process terms (called also pro- 

cesses or terms); z ranges over a set {X, Y, ..}, of process variables. A pro- 

cess variable is defined by a process definition x de1 P, (p is called the expan- 
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Act  p.p2+p 

Sum p 2+ p, Par 
p + q--~ ff and q + p--~ p' 

Corn p2.~p~, q_~_~q, Res 
p[q-Y+ p'[q' 

Rel  
p[f] I(.~) p,[f] 

Con 
p p', xd 1p 

x p' 
p 2+ p' 

P]q ~ P'lq and q]p -~ qlp' 
p-~ p', I~,-fi r A 

p\A 2+ p'\A 

FIGURE 1. The SOS rules 

sion of x). As usual, there is a set of visible actions Vis = {a, -d, b, b,...} over 
which ~ ranges, while p , v  range over Act = Vis U {7}, where T denotes 
the so-called internal action. We denote by ~ the action complement: if 

-- a, then a = a, while if a = ~, then ~ = a. By nil we denote the empty  
process. The operators  to build process terms are prefixing (p.p), summa-  
tion (p + p), parallel composition (PIP), restriction (p\A) and relabelling 
(p[]]), where A C_ Vis and f : Vis -+ Vis. Given a te rm p, an occurrence 
of a process variable x is guarded in p if it is within some sub-term of the 

form p.q. We assume tha t  (i) Vis is finite; (ii) for each definition xde-]p, 

each occurrence of each process variable is guarded in p; (iii) all terms are 
dosed,  i.e. all variables occurring in a te rm are defined. 

An operational semantics OP is a set of inference rules defining a relation 
D C Terms x Act x Terms. The relation is the least relation satisfying the 
rules. I f  (p ,# ,q)  E D, we write P2+oP q. The rules defining the semantics 
of CCS [23], from now on referred to as SOS, are recalled in Figure 1. 

A labelled transition system (or simply transition system) T S  is a quadru- 
ple (S,T,D,so),  where S is a set of states, T is a set of transit ion labels, 
so E S is the initial state, and D C S x T x S. A transit ion system is finite 
if D is finite. 

A finite computat ion of a transition system is a sequence #1#2.-#n of 
labels such that:  
so  oP..  'oP sn. 

Given a t e rm p (and a set of process variable definitions), and an oper- 
ational semantics OP, OP(p) is the transition system (Terms, Act, D,p), 
where D is the relation defined by OP. For example, SOS(p) is the tran- 
sition system defined by the SOS semantics for the te rm p. 

Let  TS1 = (S1,T1,DI,s01) and TS2 = (S2,T2, D2,s02) be transit ion 
systems and let 81 E S1 and s2 E $2. sl and s2 are strongly equivalent 
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(or simply equivalent) (s~ ,,~ s~) if there exists a strong bisimulation tha t  
relates sl and s2. 13 C $1 x $2 is a strong bisimulation if V(sl,s2) E B 
(where/~ e T1 U T2), 

�9 sl -~1 sl implies 3s~ : s~ 4 2  s'o and s (sl ,s2) e B; s2 ~2s~  implies 
I I s~ ~ 1  s~ and (sl ,s2) E B 

s2 simulates 82 if there exists a strong simulation tha t  relates 81 and s2. 
c_ $1 • $2 is a strong simulation if V(sl,s2) E Ts (where p E T1 U T2): 

' and (s~ s~) ~ ~.  sl -~1 s~ implies 3s~ : s2 -~2 s2 
TS1 and TS2 are said to be equivalent (TS1 N TS2) if a strong bisimu- 

lation exists for s0~ and s02. Two CCS terms p and q are equivalent (p ~ q) 
if SOS(p) .., SOS(q). 

TS2 simulates TS1 if a strong simulation Tr exists such that  (Sol, So2) E 

Given a state s of a transition system T S  = (S ,T ,D,  so), we say that  
s 74 if no s' E S and # E T exist such that  ( s ,p , s ' )  e D. 

CCS can be used to define a wide class of systems, that  ranges from 
Turing machines to finite systems [24]; therefore, in general, CCS terms 
cannot be represented as finite state systems. 

2.2 ACTL 

We introduce now the action based branching temporal logic ACTL de- 
fined in [11]. This logic is suitable to express properties of reactive sys- 
texas defined by means of TS's. ACTL is in agreement with the notion of 
bisimulation defined above. Before defining syntax and semantics of ACTL 
operators, let us introduce some notions and definitions which will be used 
in the sequel. 

For A C Act, we let DA(S) denote the set {s': there exists a E A such 
that  (s, a ,  s ') E D}. We will also use the action name, instead of the corre- 
sponding singleton denotation, as subscript. Moreover, we let D(s) denote 
in short DAct(S) and DA, (s) denote DAuir}(s). 
For A, B C Act, we let A / B  denote the set A - (A A B). 
Given a LTS TS=(S,T,D,so),  we define: 

a is a path from ro E S if either a - - r0  (the empty path from r0) or 
is a (possibly infinite) sequence (ro, a~, r l )  (rl ,  a2, r 2 ) . . ,  such that  

( r i , a i+ l , r~+l )  E D for each i > 0. 

A path  a is called maximal if either it is infinite or it is finite and its 
last state r has no successor states (D(r) = ~). The set of maximal 
paths from r0 will be denoted by II(ro). 

�9 If  a is infinite, then lal --- w. 
If  a -- to, then lal = 0. 
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If 0 ~ = (rO, al,rl)(rl,c~2,r2)...(rn,C~n+l,rn+l), n > 0, then lal = 
n + 1. Moreover, we will denote the i th state in the sequence, i.e. ri, 
by a(i). O 

To define the logic ACTL [11], an auxiliary logic of actions is introduced. 
The collection .A~ of action formulae over Vis is defined by the following 
grammar where X, X ~, range over action formulae, and a E Vis: 

X : :=  aI-~XIX A X 

We write f f  for s0 A -"s0, where ao is some chosen action, and ~t stands 
for "-ft. Moreover, we will write X V X ~ for -'(-'X A -~X~). An action formula 
permits the expression of constraints on the actions that  can be observed 
(along a path or after next step)~ for instance, a V/3 says that  the only 
possible observations are a or/3, while ~t stands for "all actions are allowed" 
and f f  for "no actions can be observed", that  is only silent actions can be 
performed. 

The satisfaction of an action formula X by an action a, a ~ X, is defined 
inductively by: 

�9 a ~ f l i f f a = f l ;  * a ~ - x i f f n o t a ~ x ;  , a ~ X A X ' i f f a ~ x a n d  
Ot [:= XI 

Given an action formula X, the set of the actions satisfying X can be 
given by the function ~ : J4~(Vis) -+ 2 yis as follows: 

The syntax of ACTL is defined by the state formulae generated by the 
following grammar: 
r ::= ~t I r 1 6 2  [--r [ E7 [ A7 
"r ::= x• l X,-r l C xv  C l C xu• r 

where X, X' range over action formulae, E and A are path quantifiers, X 
and U are next and until operators respectively. 

Let T S  = (S, Act, D, so) be a LTS. Satisfaction of a state formula r 
(path formula 7) by a state s (path a), notation s ~ r s  r (a ~TS ")') i8 
given inductively by : 

s ~TS ~t always" 
s ~ r s C A r  iff s ~ r s C a n d s ~ r s r  
S ~ T S - , r  iff n o t S ~ T s r  
S ~TS  E7 iff there exists a path a E II(s) such that  a ~TS  7; 
s ~TS  A7 iff for all maximal paths a e II(s), a ~TS 7; 
a ~TS  Xxr iff lal > 1 and a(2) e Ds(x)(a(1)) and a(2) ~TS r 
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a ~TS Xrr iff -> I and ~(2) e O{r}(a(1)) and a(2)  ~ws r 
a ~TS r xUek' iff there exists i > 1 such that a(i) ~Ts  ~b', and for all 

l<__ j<__ i - l : a ( j )  ~ r S  r 
and a(j + 1) e D~(x),(a(j)); 

a ~ r s  CxUx'r 'iff there exists i > 2 such that a(i) ~ws ~b' and 
a(i) e D~(x,)(a(i - 1)), and for all 
I " / j  =*=" " I" IT [d/ I~-~TS W A - "  �9 k d  1 

and a(j) �9 D~(x),(a(j - 1)). 

Several useful modalities can be defined, starting from the basic ones. In 
particular, we will write: 

�9 A s 1 6 2  for "~EXx-~r and EXxr  for -~AXx-~ r These are called the 
weak next operators. 

�9 EF• for E(~ aU ~b), and AFr  for A($ aU ~b); these are called the 
eventually operators. 

�9 EGr  for -~AF-~b, and AGr for -~EF-~r these are called the always 
operators. 

ACTL can be used to define liveness (something good eventually happen) 
and safety (nothing bad can happen) properties of reactive systems. In a 
branching time logic both liveness and safety properties could be divided 
into two classes: universal liveness (safety) properties and existential live- 
hess (safety) properties. The former state that a condition holds at some 
(all) states of all computation paths. The latter state that a condition holds 
at some (all) states of one computation path. Moreover liveness properties 
can be better classified as in the following [19, 22]: 
Termination properties: "a good thing happens at some states of a (all) 
computation(s)". 
Recurrence properties: "a good thing happens at infinitely many states of 
a (all) computation(s)'. 
Persistence property: "a good thing happens at all but finitely many states 
of a (all) computation(s)". 
We can also talk of finite properties, that state some condition on the finite 
initial part of the behaviour of the system. 

P.3 Infinite state systems and logical properties 

We know that all ACTL formulae are decidable on finite state transition 
systems and the linear time ACTL model checker [10] can be used to do 
this job. Hence, when we have a CCS description of a system and we want 
to prove on it ACTL properties, the labeled transition system associated 
to it needs to be built. This will be the model on which the satisfiability of 
the formulae will be checked. Problems, obviously, arise when the system 
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to be modelled has an infinite state representation, due for example to the 
interplay between parallel composition and recursion operators. 

As an example, let us consider the CCS definition of a bag containing 
two kinds of elements: 

X = p l . ( g l . n i l l X )  + p2. (g2.ni l lX ) 

where pl and p2 represent insertions and gl and g2 deletions of the two 
kinds of elements, respectively. It is known that X is neither finite state 
nor context-free. Some typical properties of a bag could be requested to be 
checked on this specification, in order to validate it: 
1) The bag is not a set, therefore it is possible to put twice the same value 
in the bag consecutively: AFAXpa EXpl  ~t. 
2) It is possible, on all (but finitely many) states to do a put action imme- 
diately followed by a get action: E F E G ( E X p ~  EXg~ tt). 
3) There exists a computation path on which it is possible to do infinitely 
often put actions: E G A F ( E X p l  vp2 tt). 
4) It is always possible to perform a put action: AGEXplvp~tt.  

3 Verification by approximations 

Let us first present a syntactic characterization, as ACTL formulae, of the 
logical properties we will deal with. We then introduce the general notion 
of chain of finite approximations of the transition system of a term p. 
Finally, we Introduce a notion of approximation suitable to prove liveness 
properties. 

3.1 T e m p o r a l  proper t i e s  

Definition 3.1 (Positive formula) We say that 7r I is a positive formula 
if it is an A C T L  formula without negations. 

Definition 3.2 (Liveness property) We say that r is a liveness prop- 
erty if one of the following holds, where ~r' is a positive formula: 

�9 r = AFvr' or !b = EFTr ~ (termination property) 

�9 r = AFAGTr',  r = EFAGIr ' ,  r = AFEG~r' or !b = E F E G l d  
(persistence property) 

�9 r = AGAFTr', r = EGAFTr', r = AGEF1r' or r = E G E F r '  
(recurrence property) 
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Def in i t ion  3.3 (Finite  p r o p e r t y )  We say that a is a finite property if  
it can be expressed by an ACTL formula defined by the fallotoing grammar: 
~ ::=ttlo Ao loV  ol-~olE'ylA'~ 
7 ::= X x a l X ~ ~  

Note that the subset of ACTL defined by this grammar corresponds to 
the Hennessy-Miiner logic [15]. 

Defini t ion 3.4 (Posi t ive  finite property)  We say that rr is a positive 
finite property if it is a finite property without negations. 

Defini t ion 3.5 (Safety  p rope r ty )  We say that 0 is a sa]ety property if 
0 = AG~r or 0 = EGlr and ~r is a positive finite property. 

The given syntactical presentation of liveness and safety properties does 
not obviously cover all the liveness and safety properties expressible by 
means of all the ACTL operators as the negation operator. Indeed, nega- 
tion makes the syntactic classification of formulae difficult. Following this 
classification, we have that properties 1) to 3) of the bag example are live- 
ness properties, while 4) is a safety one. 

Finite, liveness and safety properties are decidable on a finite state LTS. 
In general, while finite properties are provable, liveness (including termina- 
tion, persistence and recurrence) and safety properties can be undecidable 
for a non-finite state term p. 

8.2 Approzimation chains 

Given a CCS term p, we define chains of finite LTSs which more and more 
accurately simulate the behaviour of SOS(p). Since eacJa LTS in a chain is 
finite proof checking methodologies for finite LTSs can be used. First we 
define in the most general way the concept of approximation chain. In the 
following we denote, with T and T, the set of all LTSs and a generic LTS, 
respectively. 

Defini t ion 3.6 (Approx ima t ion  chain) Let -~ a preorder over T .  We 
say that T1 approximates by -4 (-<-approzimates) T2 iff T1 "4 T2. Given a 
term p, a chain {Ti(p)li >_ 0} on (T, "~) is called approximation chain for 
p by -d (-d-approximation chain) iff: 

�9 for each i, Ti(p) is finite; 

�9 for each i,  Ti(p) ~_ Ti+1(p); 

�9 SOS(p)  is a least upper bound of (T~(p)}. 

Note that, if we have a finite approximation chain {Ti(p)lr > i > 0}, 
then Tr(p) ~ SOS(p).  
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7(be 
a b 

TS1 TS2 

FIGURE 2. Simulation vs. Be-simulation. 

Definition 3.7 (Properties preserved b y  -<) A preorder ~ preserves 
a property r if whenever T1 verifies r and T1 ~ T2 then T2 verifies r 

The above definitions allow us to define a procedure for proving the 
validity of a property on an infinite state-system, by checking the property 
on the elements of an approximation chain, starting from the first one, until 
we find that  the property is verified. The procedure is sound if the chain 
preserves the property, i.e. it must happen that ,  if we are able to prove 
r on an element of the chain, we can assert the validity of r on SOS(p).  
This means that  the property must be monotonic on the preorder. The 
first result we show is that  simulation, from now on denoted by ~s, is not 
suitable to prove all liveness properties. 

is possible to build different kinds of different sets of properties, and then 
gradually refine result holds. 

Proposit ion 3.1 "~s does not preserve all liveness properties. 
Proof  Let us consider the following liveness property: 
Each path contains a state from which all the outcoming arcs are labelled 
by a, expressed by (AFAXat t )  and the transition systems TSz and TS2 in 
Figure 2. 
We have that TS1 "~s TS2, but TS1 verifies the property and TS2 does not. 

In order to manage all liveness properties, we now introduce a stronger 
notion of simulation between transition systems. This notion, in contrast 
to simulation, permits the definition of approximation chains that  preserve 
the branching structure, that  is, for each approximation, if a node has been 
exploded, all its branches have been developed. 

Definition 3.8 (Branching Complete Simulation) Let 
TS1 = ($1, T1, D1, So~) and TS2 = ($2, T2, D2, So2) be transition systems 
and let sl E $1 and s2 E $2. 
s2 BC-simulates Sl if there exists a strong BC-simulation that relates sl 
ands2. T~ C $1 • is a strong BC-simulation ifV(sl,s2) E T~, I~ E T1UT2, 

�9 sl 4 1  s i implies 3sl2:s2 4 2  sl2 and (sl, sl2) e n .  
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�9 82 -~2 8'2 implies either 81 ~1  or 81 "~1 81 and ' ' (Sl,S2) e ~.  

TS2 BC-simulates TS1 (TS1 ~.~bc TS2) if a branching complete simulation 
R exists such that (sol, so2) E R. 

It is easy to see that ~_bc is a preorder and that TS1 ~bc TS2 implies 
TS: ~.. TS2, but the converse is not true in general. For example, TS2 
does not BC-simulate TS1 in Figure 2. 

The notion of approximation chain based on BC-simulation preserves 
the branching structure of the transition systems all along the chain. This 
allow us to prove properties not provable on a chain based on simulation. 
One of the main results of the paper is the following: 

Proposition 3.2 ~be preserves liveness properties. 
Proof sketch By structural induction on the structure of the liveness for- 
mulae and taking into account that the liveness properties are defined on 
a positive fragment of ACTL and that the BC-simulation forces the simu- 
lating transition system to exactly maintain all the (bisimilar) branches of 
the simulated one, if any. 

It is now easy to relate approximation chains, based on BC-simulation, 
with liveness properties. The following proposition is the basis of our veri- 
fication method. 

Proposition 3.3 Let p be a term and {Ti(p)} a -4be-approximation chain 
for p. If  ~b is a liveness property, it holds that: if 8o ~T~(p) ~b for some i, 
then So ~sos(p) r 
Proof.  It follows by proposition 3.$. 

proving existential (E...) or universal (A...) due to the fact that BC- 
simulation preserves the 

Let us now consider safety properties. It is easy to convince ourselves 
that we are not able to prove the satisfiability of a safety property by only 
using approximations of the given system. In fact, if we consider the syntax 
on which safety properties are defined, we note that each formula belonging 
to this ACTL subset is constituted by next modalities, with no negations, 
under a quantified always modality. Now, the evaluation of a next operator 
is false on all the states of a TS that have no successor. Therefore, the 
whole safety formula is false (consider for example the formula AGAXatt 
on TS1). 
On the other hand, if a safety property is true on a _be-approximation of 
a system, then such an approximation has at least one cyclic path that 
makes the formula true. This is enough to deduce that the formula is true 
on the SOS representation of the system. Indeed, the following proposition 
can be stated: 

Proposition 3.4 Safety properties arc preserved by "~bc. 
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FIGURE 3. Simulation and BC-simulation. 

a a b 

TS4 TS5 

FIGURE 4. Simulation and BC-simulation. 

The same does not hold for ~s. To see this, consider the transit ion sys- 
tems represented in Figure 4. The safety formula AGAXatt is true on TS4 
but  not on TSs, where TS4 ~, TSs. 

preservazione corretto con questo esempio 
A proof  methodology can be derived for safety properties, start ing from 

the above result. Unfortunately only a limited subclass of such proper-  
ties are provable when finite approximations are considered for non-finite 
state systems: for example, on a non-finite s tate  system we cannot prove 
any universal safety property. We can however define a proof  methodology 
tha t  takes into account the duality existing between liveness propert ies and 
safety ones. In this respect, we provide a method to prove the non-validity 
of a safety proper ty  on a finite approximation.  To make this possible we 
need to forget tha t  we are working on finite approximations in which there 
exist states with no successors and on which every safety formula is false. 
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This can be done considering a weaker version of the safety property un- 
der study, by substituting the next modalities with weak next modalities. 
Now, if this weak formula is false on one of the approximations p it will 
necessarily be false on SOS(p). This idea is formalized by the following: 

Definition 3.9 (Weak finite p roper ty )  We say that ~r is a weak finite 
property if it can be e~pressed by an ACTL formula defined by the following 
 mmar" : :=  I A a V a I I 

Definition 3.10 (Weak safety proper ty)  We say thatO is a weak safety 
property if 0 = AGlr or 0 = EGTr and lr is a weak finite property. 

For weak safety properties, the following proposition holds : 

Proposit ion 3.5 Let p be a term and {Ti(p)} a ~_bc-approximation chain 
for p. I f  ~b is a weak safety property, it holds that: if so ~z~ (p) ~b for some 
i, then so ~SOS(p) r  
Proof  sketch For duality from Prop. 3.3 

Let us now consider finite properties. The following holds: 

Proposit ion 3.6 _~s does not preserve all finite properties. 
Proof  sketch Consider the finite property: Each path starts with an action 
a (AXatt) ,  with TS1 and TS2 of Figure ~. We have that TS1 ~_, TS2, but 
TS1 verifies the property and TS2 does not. 

Following the same reasoning of 3.2. 
Since finite properties represent a particular class of liveness properties 

we have a semldecision procedure for testing the validity of these properties 
by using approximation chains based on --<--be- We can do more, as one should 
have expected, and provide a decision procedure for finite properties. To 
this end, we furtherly constrain our chains. Let us consider, for example, 
the following finite property for SOS(P) for some p: 
All paths start with the action b and contain at least an action a as a second 
action (AXbEXat t ) .  
Approximation chains based on ~_bc are not suitable to give a positive 
or negative answer if SOS(P) is infinite: in fact a new path of length 2 
may appear in whatever element of the chain. The property is decidable 
if, instead, each transition system T/(p) of the chain grows on all possible 
paths with respect to Ti-1 (2). This suggests the following notion: 

Definition 3.11 (Transition system path-approximation) Let TS1 
and TS2 be transition systems. We say that TS1 is an n-path-approximation 
of TS2 (TS, ~_n TS2) if 

�9 TS ,  ~_bc TS2; 

�9 eitherTS1 ,~ TS2 or the paths of length <_ n ofTS1 andTS2 coincide. 
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We can now state the following: 

Proposition 3.7 Let ~r be a finite property of depth n, that is with only n 
nested next operators, and {Ti(p)} a "<be-approximation chain for a term p 
such that T~(p) ~i SOS(p) for each i. Then so ~sos(p) r iff so ~r,(p) 7r. 
Proof  sketch We have that Tn(p) has all the paths of length n of SOS(p).  

4 How to build approximations 

In this section, we present some ways of constructing approximation chains. 
In order to obtain correct approximations for a term p, the idea is to derive 
p using the operational semantics until some stopping condition, thus ob- 
taining a partial transition system, which is furtherly expanded to obtain 
the successive elements of the chain. The first chain we present, described 
in the following sub-secton, is based on the standard SOS semantics. In 
order to obtain better approximations, we then introduce a second chain, 
which is based on a different semantics, able to produce "more expressive" 
transition systems. 

4.1 S O S  approx imat ions  

Definition 4.1 ({Ui(p)}) Given a term p, the chain 
{ Mi(p) = ( SM, , Act, DM, , so)} /s inductively defined as follows: 

�9 M0(p) = ({p},Act, {},p) 

�9 Mi+l (P) = (SM,+I, Act, DM,+a ,P) where 

- SM,+~ = SM, U {alP E SM, and Sp E Act : P-~xosq};  

- DM,+~ =DM, U{(p, lt, q)IPeSM, a n d 3 # E A c t  : p sosq} .  

Informally, Mo(p) has the only state p without transitions and Mi+l(p), 
i _> 0, is obtained from Mi(p), by adding to the states (and the related 
transitions) of Mi09) all those states reachable from them with only one 
action. The following proposition holds: 

Proposition 4.1 Given a term p, the chain {Mi(p)} /s a 
~bc-approximation chain for p. 
Proof  sketch. By induction on the length o] the chain and by definig 
suitable BC-simulations. 

Actually, the chain {Mi(p)} is the simplest chain derivable from SOS(p) 
which is a ~bc-approximation chain. In fact the simpler approximation 
chain which at any step adds a single new transition to the previous element 
of the chain, is not a --4bc-approximation chain. 
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FIGtrRE 5. M~ (X) 

FIGUKE 6. M2(X) 

Example 4.1 Let us now reconsider the bag example of section 2.3, and 
try to prove the properties on the chain {Mi(X)}. Since {MI(X)} is a 
-~bc-approximation chain, it preserves all properties from 1) to 3) and does 
not preserve the safety property 4). Thus, if we find that an approximation 
Mi(X) verifies a property among 1) and 3), we prove that the property 
holds for the bag (i.e. SOS(X)). Mo(X) is given by a transition system 
with only one state, i.e. X itself, while MI(X) and M2(X) are represented 
in Figures 5 and 6 respectively. 

We have that property 1) is not satisfied by MI(X), it is satisfied by 
M2(X) and thus it is true for the bag. Moreover, property 4) is not verified 
by MI(X) and M2(X); on the other hand, its weak version (AGEXpavp2~) 
is verified by both MI(X) and M2(X); this does not allow us to deduce 
anything about the satisifiability of the safety property for the bag. Prop- 
erties 2) and 3) are not verified by M1 (X) neither by M2 (X). It is easy to 
see that these properties are not verified by any Mi(X), for each i. In fact 
their satisfiability implies detecting a cycle in the transition system: this 
cycle will never appear in the chain {Mi(X)}. 
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Thus, if we use this chain to approximate SOS(X), these properties are 
not provable, while they hold for SOS(X). Nothing can instead be asserted 
about  property 4). The following proposition states that  each Mi is a -'<i- 
approximation of SOS(p), i.e. the size of the transition system grows. 

Proposition 4.2 Given a terra p, for each i >_ O, Mi(p) ~i SOS(p). 
P r o o f .  By proposition 4.1 it holds that Mi(p) ~--bc SOS(p). Moreover, by 
induction on the length of {M~(p)}, we have by definition that Mi(p) has 
all the paths of length less or equal to i. 

As a consequence, using {M~(p)} we can decide any finite property of 
depth n of a term p: it sufficies to check the property on Mn(p). 

4.2 SS  Approximations 

In this section, we present a way of approximating SOS(p) based on a 
different operational semantics, which allows us to prove a greater set of 
properties than those proved by {Mi(p)}. In [9] the semantics SS was de- 
fined, which is more abstract than SOS, since the SS rules have built in 
some behavioural equivalence axioms, i.e. they accomplish some simplifica- 
tions on the terms during the derivations, with the purpose of obtaining, if 
possible, a finite-state transition system for p. The rules of SS are such that  
SS(p) is strongly equivalent to SOS(p). The definition of SS, whose rules are 
shown in Figure 7, is based on the following considerations. Given the CCS 
syntax, those operators that,  in presence of recursion, would give rise to the 
derivation of growing terms (and therefore to an infinite number of deriva- 
tions) are parallel composition, restriction and relabelling. For restriction 
and relabelling, in a language with finite action set, the unlimited growth 
of terms can be prevented by using suitable inference rules. In fact, succes- 
sive, possibly intermixed, occurrences of restriction and relabelling can be 
reduced to only one restriction, followed by only one relabelling. Moreover, 
the parallel operator can be deleted as soon as one of the two arguments 
terminates, i.e. is equivalent to nil. The SS inference rules accomplish these 
strong equivalence preserving simplifications during the derivation. The fol- 
lowing notation is used in the rules: 

p\ \A  = 

p[[f]]= 

p\A, i f p  ~ q\B,p ~ q[f] 
q\A U B, if p = q\B 
q\fl(A)[f], if p = q[f], q # r \B 
q\fl(A) U B[f], if p = q\B[f] 

p[l], if p # q[g] 
q[f o g], if p = q[g] 
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S-Act=Act  S -Con=Con  S - S u m = S u m  

S-Par~ 

S-Par2 

S-Coml 

S-Com2 

S-Res 

S-Rel 

p', not v' 74 
P[q-~ P'lq and q~-% qlP' 

qlp~q ~,a q ~ q  
p _o~ pl, q ~ q, not pl/rightarrow and not q' 7t~ 

plq Z+ p~lq~ 

p-~ p~, q -~ q', p~ 74 
p[q .~ qt and q[p Z+ ql 

p-~ f ,p,'fi f~ A 
p \ A ~ q ackslash\A 

p ~ q  

p[f] Y(-~) q[[f]] 
FIGURE 7. The SS rules 

FIGUR~ 8. m (X) 

Defini t ion 4.2 ({Ni(p)}) Given a term p, the chain 
{Ni(p) -- (S~v,,Act, DN,,So)} is inductively defined in the same way as 
{Mi(p)}, but using -~ ss instead of-~sos. 

If we reconsider the bag example, Figures 8, 9 show NI(X) and N2(X), 
respectively. 

The following proposition holds: 

P ropos i t ion  4.3 Given a term p, 

�9 the chain {Ni(p)} is a -~_bc-approximation chain for p; 

�9 for each i >_ O, Ni(p) ~_i SOS(p) 

P r o o f  sketch Analogous to the proof of propasition ~.1 and 4.~ and since 
SOS(p) ~ SS(p). 
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FIGURE 9. N2 (X) 

If  we check the properties 1) . . .  4) on the chain {Ni(p)}, we have the 
same results as with {Mi(p)} for 1) and 4), but  N2(X) satisfies properties 2) 
and 3), which are then true for the bag, while their validity is not provable 
on the chain {Mi(X)}.  

The following proposition relates the two chains we have introduced. 

Proposition 4.4 Given a CCS term p, for each i > O, 3j such that 
M~(p) ~_bc gj(p) .  
P r o o f .  The finite paths are equal in Mi(p) and Ni(p), since they are both 
~_i SOB(p). Moreover, it holds that: Vs e SM,, 3s' e SN, such that s ,~ s ~ 
and length(s j) < lengh(s), where length(t) denotes the number of opera- 
tors occurring in the term t. This holds since terms generated by S S  are 
"shorter" than terms generated by SOS. Consider an infinite path in Mi(p), 
i.e. a path leading from a state s �9 SM~ to itself and take n equal to the 
number of terms t equivalent to s and such that length(t) < lengh(s). Take 
j = i + n .  

Note that  the converse of the above proposition is not true: if we consider 
the bag example, no Mi(X)  exists which is ~bc N2(X). 

5 Suitability of approximation chains 

Let us consider a liveness property r and a _be-approximation chain (Ti(p)} 
for a term p. Proposition 3.3 above ensures that,  if we are able to prove 
r on an element of the chain, we can assert the validity of r on SOS(p).  
Thus an algorithm to check the validity of a liveness property is tha t  of 
checking it on the elements of the chain, starting from the first one, until we 
find that  the property is verified. B u t  the converse of proposition 3.3 is not 
t rue in general: if a liveness property ~b is verified on SOS(p), this does not 
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imply that it is true for some {T/(P)}. Thus, given an approximation chain, 
the above algorithm (which checks a liveness property on the elements of 
the chain) is not in general a semidecision procedure for the validity of a 
formula. This is the case of the chain {Mi(P)} and the properties 2) and 
3) of our example above. Moreover, different approximation chains for the 
same term can be used to check different sets of properties, in the sense that, 
given a property ~b, it is possible that the above algorithm is a semidedsion 
procedure for r if using a chain, while it cannot be used to semidecide the 
validity ~b with another chain. This suggests a comparison criterion on the 
suitability of approximation chains for proving liveness properties. 

Definition 5.1 (Checkable proper t ies)  Let be given a term p and a "<be 
approximation chain {Ti(p) }. We say that a liveness property ~b is checkable 
by {Ti(P)} if 

�9 either 4? is not verified by SOS(p)  or 

�9 (Tr(p) �9 {Ti(P)}) exists such that so ~r,(v) r 

The set of checkable properties of p by {TI(P)} is denoted as 7)T~(p). 

Thus PT~ (P) includes the properties for whose validity there is a semide- 
cision procedure using {TI(P)}. 

Defini t ion 5.2 (Suitabil i ty of  approx imat ion  chains) Let be given a 
term p and two "~bc approximations chains {Ti(p)} and {S/(P)}, We say 
that {TI(P)} is more suitable or equal for p than {Si(p)} if 7)s, (p) C_ ~VT~ (p). 
Moreover, {Ti(p)} /s strictly more suitable for p than {Si(P)} if "Psi(P) C 
;VT,(p). 

Note that the notion of suitability of approximation chains is different 
from a notion considering the "growing rate" of the chains. Given, for exam- 
ple, an approximation chain {Ti(p)}, let us consider the chain containing a 
subset of the elements of {Ti(p)}, for example the elements of even position, 
i.e. {Si(p)} = {To(P),T2(p),T4(P), . . .} .  We have that {Si(p)} grows faster 
than {Ti(p)}, but it is not more suitable. As a consequence of the above 
definitions and propositions 4.4, we can state the following propositions: 

Proposition 5.1 For each term p, PMi (29) C 7~Ni (p). 
Proof  sketch. By proposition J.J. 

The following proposition states that the converse of proposition 5.1 is 
not true in general. 

Proposition 5.2 Given a termp,  7)M~ (p) C 7)N~(p), i.e. {Ni(p)} is strictly 
more suitable than {Mi(p)). 
Proof  sketch Properties ~) and 3) in the bag ezample are checkable by 
{Ni(p)} but not by {Mi(p)}. 
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6 Implementation in the JACK environment 

The JACK system [3] is a verification environment for process algebra de- 
scription languages. It is able to cover a large extent of the formal software 
development process, such as rewriting techniques, behavioural equivalence 
proofs, graph transformations, and (ACTL) logic verification. In JACK a 
particular description format is used to represent TSs, the so called ]ormat 
commun fc2, that has been proposed as standard format for automata [20]. 
The ACTL model checker was built on the basis of an algorithm similar to 
that of the EMC model checker [5], so it guarantees model checking of an 
ACTL formula on a TS in a linear time complexity [10]. 

The JACK environment has been extended with a tool to build the chain 
{Ni(p)}. We now describe the methodology for proving properties. Let be 
given a CCS term p and a list of ACTL formulae to be checked on it. A 
verification session has the following steps: 

1. The term is input to JACK. If the term satisfies the finiteness condi- 
tion of the transition system generator inside JACK, a corresponding 
transition system T S  is built and the list of ACTL formulae is checked 
on it. The session terminates. 

2. If the syntactic finiteness conditions are not satisfied, then we call 
the chain generator of JACK. Once obtained the first approximation 
N109), we put T S  := Na 09). 

3. The list of ACTL formulae is input to the model checker which checks 
them on TS.  If Ni+l(p) = TS ,  the session terminates, since T S  
SOS(p).  Otherwise, the results of the model checker are analyzed 
according to propositions 3.3, 3.5 and 3.7. This means that, possibly, 
a new approximation is built, i.e. T S  := Ni+l (/9) and we repeat step 
3. 
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