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A b s t r a c t .  In this contribution we consider the stability of linearity and 
differential uniformity of vector Boolean functions under certain con- 
structions and modifications. These include compositions with affine sur- 
jections onto the input space and with aitlne surjections from the output 
space, inversions, adding coordinate functions, forming direct sums and 
restrictions to affine subspaces. As examples we consider some true round 
function and S-box constructions. More theoretical examples are offered 
by the bent and almost perfect nonlinear functions. We also include some 
facts about functions with partially bent components. 

1 Introduct ion  

Several methods of constructing S-boxes for an iterated block cipher have been 
previously presented. The most common methods are based on 

- random generation, 
- testing against a set of design criteria, 
- algebraic constructions having certain good properties, 
- or a combination of these. 

The round functions typically consist of S-boxes combined in certain ways (e.g. 
parallel or summing up) and finally the whole cipher is formed by iterating (e.g. 
DES-like or SPN) certain number of rounds. 

At each step of the design of a block cipher algebraic constructions and 
compositions are used. In this contribution we focus on algebraic properties that  
are necessary and, in some cases sufficient, to guarantee resistance against the 
differential and linear cryptanalysis. 

For example, in ciphers using small parallel S-boxes the bit permutations 
between rounds play a crucial role in the security of the cipher (cf. DES and 
subst i tut ion-permutat ion networks [9]). On the other hand, proven security based 
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only on the properties of the round functions can be achieved [18]. In both cases 
low differential uniformity and low linearity of S-boxes and round functions of 
iterated block ciphers seem to be necessary conditions and are accepted as useful 
design criteria of S-boxes and round functions. 

Different algebraic methods to combine and modify S-boxes in the construc- 
tion of a round function have been previously proposed. It is of essential im- 
portance to understand how well low differential uniformity and linearity are 
preserved under different combinations and modifications. We will consider the 
following: 

1. composition with a linear (or affine) surjective mapping onto the input space, 
2. composition w i t h a  linear (or affine) surjective mapping from the output  

space, 
3. inversion, 
4. adding coordinate functions, 
5. restriction to a linear (or affine) subspace, and 
6. sum of functions with independent inputs 

This list is not meant to be exhaustive but represents the most common con- 
structions. For example 4 and 6 are used in the CAST algorithm [2]. We will 
see that  differential uniformity can be controlled under 4, but not linearity. A 
probabilistic method to overcome these problems was presented in [8]. 

Modification 2 contains as a special case the chopping of an S-box. It gives a 
controlled way to modify S-boxes and round functions. It was used in [18] and 
received special attention in [23]. We will give a simple general treatment of 2. 
For simplicity, it is assumed that the input and output spaces are linear spaces 
over F = GF(2),  but the results can be generalized to any finite field. 

We conclude that  in general, differential uniformity and linearity behave in 
different ways under the modifications 1-6. As an application of the results on 
1-6 we give constructions of round functions of iterated ciphers with proven 
resistance against differential cryptanalysis, bu~ which can be trivially broken 
by linear cryptanalysis. Similarily, we show tha~ a cipher can be secure against 
linear cryptanalysis but easily broken using the differential method. 

2 L i n e a r i t y  a n d  N o n l i n e a r i t y  

2.1 B o o l e a n  F u n c t i o n s  

We denote by i: the finite field GF(2).  Let f : [=" --+ [= be a Boolean function. 
The nonlinearity of f is defined as follows [13]. 

A f s  = minAaff.~{x E F '~ I f ( x )  r A(x)} 

---- minLlin" min{#{x E F '~ [ f ( x )  ----- L(x)  }, 2 '~ -- # {x E F ~ ] f ( x )  --- L(x)}} 

= 2._ 1 1 2 maxzlin ' l#{x c F ~ If(x)  = L(x)} - # { x  c V ~ If(x)  # i (x)} l  

---- 2 " - 1  - -  2 n - 1  maxLlin. It(f, L ) I  



S-Boxes with Controllable Linearity and Differential Uniformity 113 

where, for L(x)  = L , ( x )  = a . x, 

c(f ,  L) = P r x ( f ( X )  = L ( X ) )  - P r x ( f ( X )  # L ( X ) )  

= 2 ( P r x ( f ( X )  = a .  X)) - 1/2) 

= 2 - " # ( a )  

measures the correlation between f and L = La, and F denotes the Walsh 
transform of f ,  

x e F  ~ 

Various measures of the linearity of a Boolean function have been previously 
used in the literature. In this contribution (see also [17]) we use the following. 

D e f i n i t i o n  1. The linearity of a .Boolean function is 

s  = maxL lin. Iv(Y, L)l. 

The relationships with the linearity measure A/ of Chabaud and Vaudenay [5] 
and with the linearity measure R] of Dobbertin [7] are 

A / =  2"-1s 
Rj = 2nZ(f). 

The linearity and nonlinearity are related as follows 

.Afs = 2 " -1  - 2 '~-1s (1) 

By Parseval's theorem 

c(S,L)2 = 1 
L lin. 

from where it follows that  

2 -n/2 _< Z( f )  _< 1. 

For n even, the lower bound of linearity is tight and is. reached by the bent 
functions. For n odd this lower bound is not reached by any functions, and the 
general tight lower bound is unknown. For some n, at least for n = 1, 3, 5 and 

7, the tight lower bound is 2- - - r - .  For n = 15, it was shown in [19] that  there 
'~ 2 7  - ~ - i  F n  exist f u n c t i o n s f : F  ' ~ - + F w i t h 2 - ~ -  < s  = ~ 2  2 . L e t  f :  ~ F b e a  

function with l inea r i ty / : ( f ) .  Then the function g : F" x F 2 ~ F, g(x, y, z) = 
f ( x )  + yz, x E F '~, y ,z  E F, has linearity s = 2s Hence for all odd 

n, n >_ 15, there exist Boolean functions f with 2 -~  < L:(f) _< ~ 2  2 . An 
impor tant  conjecture [7] is that  the lower bound is asymptotically tight. 

Since bent functions are not balanced, the minimal linearity is not reached by 
balanced Boolean functions. In fact, the tight lower bound is not known for the 
balanced Boolean functions. Upper bounds of the minimal linearity of balanced 
Boolean functions in even dimension can be found in [7] and [21]. 
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2.2 V e c t o r  B o o l e a n  F u n c t i o n s  

From now on we consider a vector  Boolean funct ion f : F ~ -+ Fm. Let b E F rn 
be a nonzero element ,  b = ( b l , . . . ,  bin). We denote  by b. f the Boolean  funct ion,  
which is the l inear combina t ion  blfl + ...  + bmfm of the coord ina te  funct ions  
f l ,  . . . ,  fm of  f .  Agains t  the  usual convention,  which is to use the  t e r m  component 
as a synonyme  of coordinate function, we will, t h roughou t  this paper ,  call the 
nonzero linear combinations b �9 f of the coordinate functions the components of 
f .  In [15] the  not ion of nonl inear i ty  was extended to vector  funct ions  as follows. 
T h e  nonlinearity of a vector Boolean function f is Afs = minb#0A;Z:(b �9 f ) .  
T h e  following definit ion is then in full accordance with  (1) and extends  (1) and  
the  re la t ionship  wi th  the  measure  of  C h a b a u d  and Vaudenay  to hold also for 
vector  Boolean  functions.  

D e f i n i t i o n 2 .  The  linearity of a vector Boolean function f is 

s  = maxb#0/ : (b ,  f ) .  

I t  follows immed ia t e ly  f rom the absolute  lower bound  of l inear i ty  of  Boolean  
funct ions  t ha t  s  > 2 - ~ .  I t  was proven in [14] t ha t  this lower bound  is t ight  if  
and  only if n > 2m and n is even. T h e  funct ions reaching this m i n i m u m  l inear i ty  
are called bent. In [5] C h a b a u d  and Vaudenay  proved the following lower bound  
of l ineari ty of  a vector  Boolean funct ion f : ! :~ --* F "~. 

T h e o r e m  3. [5] 

c ( f )  _>  (3.2 - 2 - 2 - - = C(n,m). (2) 

Observe  t ha t  C(n, m) is negat ive  if m = 1, except  for n = 2, and  

C(n,m) < 2-~, i f l < m < n - 1  

C ( n , m ) = 2 - ~ ,  i f m = n - 1  
n - 1  

C(n, m) = 2 - - 7 ,  if m = n 

C(n, m) > 2 - - z - ,  if m > n 

Hence the  lower bound  C(n, m) cannot  be reached if m < n (except for n = 2). 
~t Neither  is it t ight  for rn > n [5]. Indeed,  for ~ < m < n and rn > n the  m i n i m u m  

l inear i ty  is unknown.  
On the o ther  hand,  it is known (see e.g. [15] and. [16]) t ha t  for m = n, 

funct ions  (even bijective) f : F"  --+ F"  exist wi th  s  = 2 - - ~ .  Such funct ions  
are called almost bent [5]. A lmos t  bent  funct ions exist only, if  n is odd,  and  
are character ized by the p rope r ty  t ha t  their  componen t s  have an a lmos t  flat 
corre la t ion spec t rum.  More precisely, Ic(b. f ,  L)I = 0 or 2 - " ~ i  for all b E F ~, 
if  and  only if f : F n --+ F n is a lmos t  bent .  For example ,  the  power funct ions  
f(x) = x 2k+1 and f(x) = x 22k-2k+l in GF(2'~) ,  n odd and gcd(n,  k) = 1, have 
this p rope r ty  [10] and are a lmos t  bent .  
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3 D i f f e r e n t i a l  U n i f o r m i t y  

In [16] a function f : F ~ --* F n is called differentially 5-uniform if 

~ { x  E F n I f (x  + a) + f(x) -- b} < g for all a E F n, b E F m, a r 0. 

Hence the following definition is natural  (see also [22]). 

Def in i t i on4 .  Differential uniformity A(f )  of a function f : F ~ --+ F "~ is 

A ( f )  = max,#0,  b # { z  E F = ] f (x  + a) + f(x) = b}. 

Clearly A ( f )  > m a x  {2, 2~-m}. I t  was shown in [14] that  for m < n the 
min imum differential uniformity 2 n- '~  is reached if and only if 2m < n and n is 
even. Such functions are called perfect nonlinear and they are the same as the 
bent  functions. For y < m < n the min imum differential uniformity is unknown. 
If  m > n the min imum differential uniformity is 2. A function which reaches this 
bound is called almost perfect nonlinear (APN) in [18], where examples of such 
functions are given in the case where m and n are equal and odd. 

For m -- n even, the min imum differential uniformity is unknown. I t w a s  
shown in [22] that ,  for m = n even, there is no APN quadratic permutat ion.  
In the next section we generalize this result by repeating the approach of [18] 
and we show that ,  for m -- n even, there is no APN permuta t ion  with part ial ly 
bent  components.  Let us mention that  no examples of differentially 2-uniform 
functions are known for m = n even and n > 2. 

For m > n the min imum differential uniformity is 2, and can be reached by 
simple modifications of APN functions, as we will see below. Such functions may  
even have linear components.  

We may  conclude, that  for m > n differential uniformity is a weaker notion 
than  linearity. In [5] Chaband and Vaudenay show tha t  almost  bentness im- 
plies a lmost  perfect nonlinearity. If m = n odd, the permuta t ion  f : G F ( 2  ~) 
GF(2~) ,  f (x)  = x -1,  f (0)  = 0, is differentially 2-uniform without having the 
min imum nonlinearity. An interesting open question is tha t  of what is the max-  
imum linearity of an APN function when m = n. 

4 F u n c t i o n s  w i t h  P a r t i a l l y  B e n t  C o m p o n e n t s  

4.1 Part ia l ly  Bent  Boo lean  Funct ions  

Functions with quadrat ic  components  were studied in [15] and [18] and later in 
[23]. In this section we adopt  the techniques from [5] and generalize the approach 
of [18] to functions with partially bent components.  Such functions have a simple 
and clear structure and therefore they are useful as illustrative examples of 
linearity properties. 

Def in i t ionh .  [4] A Boolean function f : F n --~ F is partially bent, if there 
exists a linear subspace U of F n such that  the restriction of f to U is affine and 
the restriction of f to any complementary  subspace V of U, V �9 U -- F '~, is 
bent,  and f can be represented as a direct sum of the restricted functions, i.e., 
f (y  + z) = f(y) + f(z),  for all z E U and y E V. 
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The space U is formed by the linear structures of f ,  that  is, vectors a E F n 
such that  f (x  + a) + f(x) is constant. The dimension s of U is called linearity 
dimension of f [15]. Bent functions exist only in even dimension, hence n - g is 
even. 

Let us briefly outline some properties of the autocorrelation function and 
the Walsh transform of partially bent functions. For more details and other 
properties we refer to [4]. 

Let us first consider the autocorrelation function ~ of a partially bent function 
f .  L e t a E U a n d ~ E V .  Then 

~GF ~ yey zeU 

= 2 = (_l)J(y+z)+J(y) 
yEV yEV 

{ 0 , i f ~ r  0, 
= ( -1 ) f (~ )+J (~  = 0. 

Hence the autocorrelation function of a partially bent function has Che following 
values 

?(s) = {0 ,  i f s  r U, 
(-1)S(~)+](~ if s E U, (3) 

where U is as in Definition 5. Conversely, if the autocorrelation function of a 
Boolean function f : F n ~ F has only values 0 and 4-2 ~, then f is partially 
bent, which can be seen as follows. The vectors a E F ", for which t?(a)] = 2 ~ 
are exactly those, for which f (x  + a) + f(x) is constant. Clearly, they form a 
linear subspace U of F '~ and the restriction of f to U is linear. Let V be any 
complementary subspace of U. Since 

f ( x  + z) = f (x )  + f (z )  + f(0) 

for all x E F ~ and z E U, this holds particularly for all y E V and z E U. It 
remains to show that  the restriction of f to V is bent. Let/~ E V be not equal 
to zero. Then ~ ~ U and thus ?(/?) = 0. Consequently, 

0 =  
xEF" yEV zEU 

= E E (-1)f(y+z)+](u) = 2t E (-1)f(y+~)+f(u). 
zEU yEV yEV 

Hence ~yey ( -1 )  f(y+z)+](y) = 0, for all /~ E V, ~ r 0, and therefore the 
restriction of f to V is bent. 

A quadratic Boolean function is partially bent. This follows from the fact 
that  then the difference f (x  + a) + f(x) is an affine function of x, for all a,  and 
hence either constant or balanced. Therefore the autocorrelation function of a 
quadratic function takes only values 4-2 ~ and 0. 
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Let us now calculate the values of the Walsh transform F of a partially bent 
function f : F n --+ F. By the Wiener-Khintchin theorem we get 

F(w)2 = Z ?(s)(-1)~~ = E Z ?((~ § ~)(-1)~0"(~+~) 

---- Z (-1)~~ = 2'~ Z (-1)](~)+](~ 
a6U a6U 

Recall that the restriction of f to the t-dimensional linear subspace U is affine. 
Hence we have 

~(w) 2 { 2 ~+~, if f ( x )  + w .  x is constant on U, 
= 0, i f f ( x ) + w  x is not  constant  on U. 

It follows that  the linearity of a partially bent function f : F ~ -+ F is 

f ( f )  = 2 -T- ,  

where t is the linearity dimension of f .  We also see that  f is balanced, i.e. 
F(0) -- 0, if and only if the restriction of f is a nonconstant ai~ne function 
on U, or equivalently, if and only if f has a linear structure ~ E F ~ such that  
f ( x  + a) + f ( x )  : l for all x c F .  

4.2 Functions with  Partially Bent Components  

The purpose of this section is to discuss some basic properties of functions with 
partially bent components. We also precisize and improve some results from [18], 
[22] and [23] and simplify their proofs. Examples of functions with partially bent 

components are offered by the power functions f ( x )  = x 2k+1, x @ GF(2~), the 
components of which are quadratic [18]. 

For a function f : F '~ --+ F "~ and vectors.,~ E F ~, a # 0, and b E F "~, we 
make the following notation. 

~s(a,b) = # { x  ~ F ~ I f (x  + a) + f(x)  = b} 

~1(a, b) = ~ (--1)bS(~+~ 

Then (see also [6]) 

?](a'c)(--1)c'b---- Z Z (--1)c$(~+a)+c'f(x)+cb 
ceF '~ ~r m 
= 2 m # { ~  ~ P t f ( ~  + a) + f (~ )  + b = o} = 2"~s (~, b). 

Applying the inverse Walsh-Hadamard transform we get 

? f (a , c )  = ~ 5f (a ,b) ( -1)  bc, 
b 6 f  m 
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and further, 

5S( ,b) 
ce F TM be F "~ 

(4) 

Let us now focus on a special case where 5] (a, b) takes at most two values, 
and the second value (if it exists) is zero. This property is a generalization of 
perfect nonlinearity and almost perfect nonlinearity, and was introduced and 
studied in [23]. 

L e m m a 6 .  Let f : F n -+ F m be a function and a E F ~, a # O. Let us assume 
that there is a 6 > 0 such that, for all b E F m, 5](a,b) = 0 orS.  Then 

E ~f (a 'b)2=52"+m" 

bEF ~ 

Proof. Since ~--]~be F m 5I (a, b) = 2 n, the claim follows directly from (4). [] 

L e m m a  7. Let f : F n ~ F m be a function with partially bent components and 
a ~s O. Let us assume that there is 5 > 0 such that for all b E f m, 5](a,b) = 0 
orS.  Then 5 is a power of 2, say 5 = 2 n-rn+t", n -  m + ta > 1, and 

( 5 )  

bEf ~ 

Moreover, a is a linear structure of exactly 2 ta - 1 components of f .  

Proof. The vectors c E F m such that  c.  f ( x  + a) + c .  f ( x )  is constant form a 
linear subspace of Fm. Let ta be the dimension of this subspace. Then by (3) 
and Lemma 6 

E ?](a, b) 2 = 2n-m+t~2 n+m = 2 ~+t~  

beE m 

[] 

T h e o r e m S .  Let f : F '~ ~ F m have partially bent components and gb >_ 0 be 
the linearity dimension of the component b �9 f .  I f  there is a 5 > 0 such that 
5 I (a ,b)  = 0  or 5, for a l l a E  F n, a • O ,  and for a l l b E  F m, then there is t>_ 0 
such that 5 -- 2 n-rn+t and 

~ ( 2  ~ b -  1) = (2" - 1 ) ( 2  t - 1). (6) 
br 

Proof. It follows from the assumption and Lemma 7, that  (5) holds with ta = t, 
for all a :~ 0. Then by (5) 

 1(a, - -  - = - 1 ) ,  
0r 
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for all a r 0. By summing this up over a r 0 we get 

2 2n E ( 2  'b - 1) -- E E ~ ] ( a ' b ) 2  
br br ar 

= E E ~ f ( a ' b ) ~  = 2 2 n ( 2 t -  1)(2" - 1). 
ar b#0 

[] 

We are using the same notation for n and t as in [231, Section 2.2., and our 
m corresponds to their s. Hence we can see from (6) that  the corresponding 
unproven formula in [23] is incorrect. Consequently, Theorem 2 of [23] remains 
unproven. From Theorem 8 we get the following corollary. 

C o r o l l a r y  9. Assume that n is odd. I f  there exists a function f : F" --+ F "~ with 
6] (a, b) = 0 or 2 "-re+t, for all a ~s 0 and b, then t > 1, and t and m have the 
same parity. 

Proof. It follows from (6) that  

~ ( 2  lb + 1) = (2" - 1)(2 t - 1) + 2(2 '~ - 1). 

be0 

Since n is odd, all ~b are odd, and the left hand side is divisible by 3 while 2" - 1 
is not. Consequently, 3 divides 2 t - 1 if and only if 3 divides 2 "~ - 1. [] 

In the case of odd n and t = 1 the equation (6) has exactly one solution, tha t  
is, gb = 1, for all b r 0. From this and (4) we get the following result. 

T h e o r e m l O .  Let f : F" --~ F n be an almost perfect nonlinear function with 
partially bent components and n odd. Then each component o f f  has exactly one 
nonzero linear structure and the nonzero linear structures of different compo- 
nents are distinct. 

Conversely, if each a r 0 is a linear structure of exactly one component of a 
function f with partially bent components, and m -- n, then by (4) 

(i1(a, b) 
bEF'* 

for all a r 0. Since ~-]be F" (if (a, b) - 2" it follows that  (if (a, b) = 0 or 2 for all 
a ~ 0 and for all b, that  is, f is almost perfect nonlinear. 

The case n - m + t = 1 was considered in [23] for functions with balanced 
quadratic components. Based on Theorem 8 we can replace 'quadratic '  by 'par- 
tially bent ' .  Particularly, we see that  there is no APN permutat ion with partially 
bent components in even dimension. 

In general, it is not known whether APN functions f : F '~ -+ F" with partially 
bent components exist in even dimension, except for n = 2, where for example, 

f = ( f l ,  f2), 

f l ( X l ,  x : )  = 
= 
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is clearly an A P N  function.  

For n = m even, and t = 1, we get f rom (6) t h a t  the n u m b e r  of  ben t  
c o m p o n e n t s  is at  least  2 (2 - 1). One solution of (6) is t ha t  tb = 0 for ~(22 n _ 1) 
c o m p o n e n t s  and ~b "-- 2 for 1 u ~(2 --1) components .  Do such funct ions  exist r ema ins  
an open p rob l em for n _> 4. The  o ther  ex t r eme  solut ion of (6) is t h a t  lb = n 
for one componen t ,  which is linear, and tb = 0 for all o ther  componen t s .  T h e  
existence of such funct ions would imply  the existence of  a ben t  funct ion f rom 
F '~ to  F ~ -  1 which is not  possible for n > 2. 

5 A f i i n e  S u r j e c t i o n s  o n t o  t h e  I n p u t  S p a c e  

Let  A = L + a : [:~ -+ F n be an affine surjection,  where L is a l inear surject ion.  
W h e n  composed  with a functiSii  f : F ~ --~ F '~ the l inear i ty  and differential  
un i fo rmi ty  are as follows. 

T h e o r e m  11. 

1. Z ( f  o A) -- s  

2. A ( f o A )  = ~ 28' i f  s > n ,  a n d  

z x ( f ) ,  g s = n. l 

Proof .  

1. I t  suffices to prove the c la im for the componen t s  of  f .  Hence we m a y  assume  
t h a t  m = 1. We denote  the zero space of L by KerL.  Let V be an n- d imens iona l  
l inear subspace  of F 8 such t h a t  F s = V|  KerL.  Then  the restr ict ion of A to V 
is an affine bi ject ion and every x E F ~ has a unique representa t ion  in the fo rm 
x = y + z, where y E V  and z E KerL.  Let us denote  the Walsh  t r ans fo rm of f 
and f o A by  F and G, respectively. Let w 6 F s be arb i t rary .  Then  

G(w) = E (--I)S(L'+~)+~'~ = E(--1)I(LY+')+w'Y E ( -1)~'~ 
x E F  s yE V  zEKerL 

~ - -  - - r 2 ~ - ' ~ - ~ y e y ( - 1 ) l ( L Y + a ) + ~ Y  , i f w .  z = 0, for all z E KerL ,  
= ( 0, otherwise.  

Hence i f G ( w )  # 0, then w . z  = 0, for a l l z  E KerL.  In this case there is a 
unique u E F '~ such t ha t  w �9 x = u .  L x  = L t . x ,  for all x E F 8, where we denote  
the  t ranspose  of  L by L t .  This  means  t ha t  w has a unique represen ta t ion  in the  
fo rm L t u ,  where u E [:'*, and we have 

G(w) : 2s-"(-l) "'a E(-I) ](Ly+a)+~(Ly+a) = 2~-"(-l)~"F(u). 
yEV 

So we have shown tha t  ei ther G(w)  = 0, or w = L t u  and IG(w)l : 2~- '~lF(u) l  . 
Th is  proves the  first claim. 
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2. If s > n, then there exists an a E I:*, a # 0, such that  A ( .  + a) = A(x), for 
a l l .  ~ F*. Hence A ( f  o A) = 2*. If s = n, then for all a r 0 and for all/3 

# { ,  E F* I f ( A ( *  +~) )  + f (A(x) )  =/3} 

= # { ,  C I=* I f (A (x )  + A(a) + a) + f (A(x) )  =/3} 

< zx(f), 

and the equality is achieved with a suitable choice of o4 since in this case, A is 
bijective. [] 

The pitfalls in S-box construction presented in Sections 6.1. and 6.4 of [21] 
are special cases of the preceding theorem. As far as known to this author affine 
enlargements of the input space have never been used in the design of S-boxes. 

6 A f l l n e  S u r j e c t i o n s  f r ' o m  t h e  O u t p u t  S p a c e  

Let A = L + a : F "~ --+ F* be an affine surjection, where L is a linear surjection, 
a E F* and s < m. When composed with a function f : F ~ -+ F "~ the linearity 
and differential uniformity are as follows. 

T h e o r e m  12. 

1. ~ ( A  o f )  < ~( f ) ,  with equality if s - m. 

2. zk(f) < AX(A o f )  < 2"~-'AX(f). 

Proof. 
1. The components of A o f form a subset of the components of f plus some 
constants. More precisely, 

b . (A o f )  = (ntb) . f + b . a. 

Hence the claim is true and holds with equality, if L is bijective. 

2. For/3 C I=', let B = A-l{/3 + a} denote the preimage set of fl + a under A. 
Then 

# { x  E }:'~ I A ( f ( x  + c~)) + A ( f ( . ) )  =/3} 

= ~ # { x  e F n If(a: q- c~) q- f(x) ='b}. 
bcB 

Since the cardinality of B equals 2 "~-* , the claim follows. [] 

6.1 T h e  S - B o x e s  o f  M a c G u t f i n  

Deletion of output  bits of an S-box is a special case of a surjection applied to 
the output  space of a substitution box. By the preceeding theorem the linearity 
may decrease while the differential uniformity may increase when output  bits are 
deleted. A recent example of this phenomenon is offered by the MacGuffin block 
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cipher algorithm [3], which makes use of the S-boxes of DES, chopped to the 
half, i.e., from the original four output  bits two are deleted. An analysis of this 
cipher performed by Rijmen and Preneel [20] shows that  linear cryptanalysis of 
the MacGuffin cipher is about as hard as it is for the DES, but the MacGuffin 
cipher is slightly weaker against differential cryptanalysis. 

However, chopping S-boxes does not always result in a decreased security 
level. In [18] an example of a DES-like cipher construction is given where the 
nonlinear substitution function constitutes of one large substitution box, con- 
structed from an almost perfect nonlinear permutat ion in odd dimension, say 
33, by deleting one output  bit. If such a cipher has independent round keys and 
sufficiently many rounds, so that  differentials over at least four rounds need to 
be considered in differential cryptanalysis, then the differential attack is proven 
to be in average as hard as exhaustive key search [18]. 

6.2 C h o p p i n g  o f  B e n t  a n d  A P N  F u n c t i o n s  

Let us first consider a bent function f : I =~ ~ F m, 2m < n, n even. It follows 
immediately from the definition of bent functions that  chopping t, 0 < t < m 
output  coordinates results in increase of differential uniformity by a factor of 
exactly 2 t, that  is, the upperbound of the theorem is reached. However, the 
chopped function remains perfect nonlinear and bent . 

A second example of a function, that preserves linearity and increases differ- 
ential uniformity by a factor of 2 t i f t  output  bits are deleted, is an APN function 
with partially bent components in odd dimension. 

T h e o r e m 1 3 .  Let f : I =~ --+ I =~ be an almost perfect nonlinear funct ion  and 
n odd. Then all components  of  f are partially bent i f  and only i f  A ( A  o f )  = 
2'~-~A(f) f o r  all affine surject ions A : I :~ --* F ~ and fo r  all s, 1 < s < n. 

Proof. Let us assume first, that  all components of f are partially bent. The 
components of A o f form a subset of 2 s - 1 components of f plus 0 or 1. 

Let c~ E F '~ be an arbitrary nonzero vector. If ~ is not a linear structure of 
any of these components, then b. ( (A  o f ) ( x  + o~)(A o f ) ( x ) )  is balanced for all 
b E F s, b r 0. Therefore (see Appendix) 

# { x  ~ P I (A o f ) (x  + ~) + (A o f ) ( x )  = f l }  = 2 ~-8 

for all fl E F s. Note that  by Theorem 10 there are 2 ~ - 2 8 such a.  The other 
2 8 - 1 vectors are the linear structures of the components of A o f .  

If c~ is a linear structure of a component, say gl of A o f ,  then there are s - 1 
components g2, �9 �9 g8 of A o f such that  the vector equation 

(A o f )  (x + a) + (A o f )  (x) : / ~  

is a linear transformation of the system 

gi (x+~)+g~(x)  = ~ ,  i =  1,2,. . . ,s.  (7) 
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By Theorem 10 c~ is not a linear structure of any of g 2 , . . . , g s .  Hence gi(x  § 
c~) ~- g~(x) is a balanced function of x for all i = 2, 3 , . . . ,  s. Consequently (see 
Appendix),  the number of solutions of (7) is either 2 ~-s+l  or zero. So we have 
proved that  A(A o f )  = 2 n-~+l = 2n-~A(f) .  

To prove the converse, let us assume that  A(A o f )  = 2~-~A(f)  for all affine 
surjections A : ! :~ -+ 1=8 and for all s, 1 <_ s _< n. In fact, we need this only 
for s -- 1 and s = 2. Applying the assumption in the case where the dimension 
of the output  space of A is one, we get that  A(A o f )  = 2 ~, which means that  
every component of f has a linear structure. By Lemma 6 the linear structure 
is unique for each component.  

Let f0 be an arbitrary component of f .  It suffices to show that  f0 ( x §  (x) 
is a balanced function of x if a is not a linear structure of f0. Let f~ be the 
component  of f whose linear structure is a. Then by the assumption the system 

f0 (x -t- ~) ~- ./Co (x) -- j30 

f . (x + . )  + f.(x) = Z. 

has at most 2 ~-1 solutions. Since the second equation holds either never or 
always, depending only on the value o f / ~ ,  it follows that  the first equation has 
always 2 ~-1 solutions, that  is, f o (x  § a)  + fo(x)  is balanced. Therefore, f0 is 
partially bent. [] 

In the view of this theorem we might extend the definition of APN function 
to the case m < n saying that  a function f : F ~ --+ F m, m < n, is almost perfect 
nonlinear, if A ( f )  _< 2 ~-m+l.  

7 Affine Bijections to the Input Space and from the 
Output Space 

As a corollary of Theorems 11 and 12 we get the following (see also [15] and 
[16]). 

C o r o l l a r y  l 4 .  Let f : F n --* F m be a funct ion and let A : F m ~ F m and 
B : [:n ~ [:n be linear (or  ajfine) bijections. Then 

1. f-.(A o f o B )  -- f~(f) ,  
2. A ( A  o f o B)  = A ( f ) .  

8 In v e r te d  Funct ion  

The following results were given in [15] and [16] but  the proofs were omitted. 
We take this opportuni ty to present the simple proofs. 

T h e o r e m  15. I f  a funct ion f : I :'~ -*  i :~ is invertible then 
1. f.(f-~) =,C(f), 
2. A(f -I) ---- A(f). 
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Proof. 
1. Let fb and Gc be the Walsh transforms of b.f,Ab ~ 0, and c .  f - l ,  c ~s 0, 
respectively. Since f is bijective, we have Fb(0) ~ Go(0 )=  0 for all b ~: 0 and 
c r 0. Hence it suffices to consider the values of Fb and Gc outside the zero. Let 
b and c be nonzero v6ctors in F n. The claim follows from the following equality. 

Fb(c) = ~ ( -1)  b'/(~)+~'~ = ~ (-1)  b'y+~']-'(y) = Go(b). 
~ei z~ yEF ~ 

2. Since f is a permutation, we have ~{x  e I =~ I f ( z + a ) + f ( x )  = 0} = 0, for all 
a E I =~, a r 0. Further, f ( z + a ) + f ( x )  = / ?  if and only i f f ( f - l ( y ) + a )  = Y+Z, 
or what is equivalent; f - l ( y  + Z) + f - l ( y )  = a, for all a r 0 and /?  r 0. This 
proves the second claim. [] 

9 A d d i n g  C o o r d i n a t e  F u n c t i o n s  

Given a function f : F '~ -+ F m with coordinate functions f l , . . . , f m  and a 
function g : F n --+ F, we set / =  ( f l , . . . ,  fro,g). As a corollary of.Theorem 12 
we get the following. 

T h e o r e m  16. 

1. ~( / )  >_ max {s  >_ s  

2. A(I )  ~ A(])  ~ I A ( f ) .  

This method has been previously used in the CAST algorithm [2], in which 
S-boxes of 8 input bits and 32 output bits are constructed by selecting 32 bent 
Boolean functions in ! =s as coordinate functions. It is exactly as hard for the 
designer to prove upperbounds to the linearity of such S-box as it is to the 
cryptanalyst to find the best linear approximation. In [8] the probability that  
the linearity of such an m • n S-box is below a given bound is estimated under the 
assumption "that the 2 n functions determined from all linear combinations of the 
n output functions of an S-box may be considered independently in an analysis 
of their nonlinearities and the probability distribution of the nonlinearity of each 
function is the same as that of a randomly generated function". The estimated 
probabilities are encouragingly large, but the relevance of the assumption about 
independence remains an open problem. 

10  D i r e c t  S u m  o f  F u n c t i o n s  

The full substitution function of the CAST algorithm takes 32 input bits and 
outputs 32 bits, and is constructed by forming the direct sum of four 8 • 32 S- 
boxes. The design method of the S-boxes was discussed in the previous section. 
In this section we discuss the linearity and differential uniformity of direct sums 
of functions. 
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Let f l  : F ' h  "--* F m and f2 : F n2 "-~ F "~ be two functions. The direct sum 
of f l  and f2 is the function f : [:~ x F n2 --. F m, f ( x , y )  = f l (x)  + f2(y). We 
denote f = f l  + f2. 

T h e o r e m  17. 

1. /~(fl  + f2) _< ~(fl)~-,(f2), 
2. A( f l  + f~) < min {2'~2A(fl), 2'h A(f2), 2mA(fl )A(f2)) .  

Note that  if m = 1 then 1. is satisfie,d with equality and is the same as what 
sometimes is called the "piling-up lemma". 
Proof. 
1. Let b �9 I :'~ be nonzero and let us denote the Walsh transform of b. (f l  + f2), 

b. f l  and b. f2 by Fb, Gb and G~, respectively. It is welt known and easy to check 

that  Fb(U, v) = Gb(u)G~b(V), for all u �9 F 'h and v �9 F "2. 
2. Let/3 �9 F n~ and 7 �9 [:n2 be nonzero, and let 5 �9 Fm. Then 

#{ (y ,z )  l f l ( y + / 3 )  + fl  (Y) + f2(z + 7) + f2(z) = 6} 

= ~ # { y  �9 F '~ I f l ( y + / 3 )  + f l (y)  -- f 2 ( z §  3') §  §  
z e F  "2 

zeF"~ 

This gives the first upper bound. The second is obtained from this by changing 
the roles of f l  and f2. We get the third upperbound as follows. 

#{(y ,  z ) ] f l ( y  + /3) + fl(Y) + f2(z + "y) + f2(z) ---- (f) 

I : l ( y  +/3) + f l (y)  = b} = # { u � 9  

b f i F  '~ 

• # { z  �9 I + %) +/2(z )  = + b} 

[] 

If f l  and f2 are bent functions, then their direct sum is a bent function and 
s  + f~) = s163 Morever, all three upperbounds in 2. are reached and 
are hence equal. Note that  in this case m is small compared to nl and n2. 

With  the CAST algorithm the situation is different. The round function is 
a direct sum of four S-boxes fi : F "~ --+ F '~, i = 1, 2, 3, 4. Since m = nl + n2 + 
n3 § n4, the third upperbound can never be reached. Therefore 

A(f l  + f2 § f3 + f4) _< mini 2EJ*~nJA(fi).  

Hence the upperbound only depends of the S-box with least differential unifor- 
mity. With the parameters ni = 8 and m = 32 this gives the upperbound of 
2 -7 to the probability of the most likely one round differential (characteristic), 
assuming that  the best S-box is differentially 2-uniform. 
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However, it does not seem likely that  the differential uniformity of the round 
function is as high as indicated by Theorem 17. The reason is the large number 
of zero entries on the rows of the difference distribution tables. From the proof 
of the theorem we see that  the upperbound is reached if there is a permutat ion 
of F m originating from a translation (by the vector 5, see above) such that  
after permuting the columns of the difference distribution table of one function 
there is a row in this difference distribution table which has nonzero entries 
exactly at the same locations as some row in the difference distribution table 
of the second function. This kind of coincidence may be rare. More generally, it 
might be possible to estimate the expected differential uniformity of the CAST 
f-function by estimating the expected number of coincidences of locations of 
nonzero entries. 

11 Restrictions to Linear (or Affine) Subspaces 

Given a function f : F n ~ F m let g : F ~ --+ F m be the restriction of f to an 
s-dimensional affine subspace a q- V. 

Let first m = 1. By the linearity s of the restriction g of a Boolean function 
f to a + V we mean the maximum value taken over all w E F n of 

2 -~1 # {~  e a + v I f (~)  = w .  ~1 - # { ~  E ~ + V I f (~)  # w .  x}l 
1 

= 2-"1 ~ ]  (-1)s(~)+~ ~1 = 2lPrx~a+y(f(X) = w . X )  - -~1. 
x E a T V  

For m > 1 we set s -- maxb#0s g). 

T h e o r e m  18. 

1. s  < 2 n - " s  

2. zx(a) < A( f ) .  

Proof. 
1. Since the components of g are restrictions of the components of f ,  it suffices 
to prove the claim for Boolean functions. Let ff be the Walsh transform of f .  
Then taking the Walsh-Hadamerd transform of F we have 

(-1)1(~) = 2-n E F ( t ) ( - 1 )  t'x" 

tel z~ 

Using this we get 

E ( -1)f(~)+w'~ = E (  -1)/(~+a)+w'+~~ 
xEa+V xEV 

= ~-- ~ ~ ~(~)( -1)~  (~+~ ~ ~ + ~ ~  
xEV t E F  ~ 

= 2-~(--1)~'a E /~(t)(--1)t'~ E (-1)(t+w)'~ 
tEF '~ xEV 
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= r - " ( - 1 )  ?( t ) ( - l?  ~ 
t E w + V  • 

where V • is the orthogonal subspace of V formed by v C [=n such tha t  v �9 x -- 0 
for all x E V. Then the dimension of V • is n - s. Consequently, 

x E a + V  t E w + V  • 

which proves the claim. 
2. The proof  of the second claim follows directly from the definition of differential 
uniformity. 

Again, bent functions offer examples of functions satisfying the equality. Let 
us consider the bent function 

f ( x l , . . . , x 2 , )  = x l x , + l  + . . . +  x , x 2 , .  

Then •( f )  : 2 - s  , and the linearity of the restricted function to the s-dimensional 
subspace Xl = x2 = . . .  = xs = 0 is equal to 1 = 22s - s s  

Restricted functions occur in DES-like ciphers, where the input da ta  to the 
round is first expanded, then added to the round key, and then taken as input 
to the substi tut ion function. Let f : F n --+ I =rn be the substi tution function 
of a DES- like cipher with nonlinearity Afs  Let E : I =~ --+ [=n be a linear 
expansion mapping.  Let k be a fixed round key, and we denote by Vk the affine 
subspace of F ~ consisting of elements of the form E(x)  + k, x E I ='n and by flk 
the restriction of f to Vk. Then 

[ P r x { b - f ( E ( X ) + k ) : a - X } - ~ l < _  s  2 '~ -mg( f )  

2 - X z : ( f )  
2m 

to replace an unproven formula in [11], page 152, by a correct one. 

1 2  E x a m p l e s  

Applying the results discussed above let us first show that  for all n < m there 
exists a differentially 2-uniform function f : [:'~ --+ Fm. If n is odd we can take 
any APN function from [~  to I =n and add sufficiently many  new coordinate 
functions. Then the differentiM uniformity can only decrease, even if the new 
coordinates were linear or the same as old components.  If n is even, we s tar t  
with an APN function f rom IF ~+1 to I =n+l, restrict it to [=n, and then add new 
coordinate functions if necessary. 

The  second example is a function g : I =" --+ [=~ such tha t / : ( g )  is low but  g has 
a linear structure. Let us s tar t  with any function f : F ~ --+ [~  such tha t  s  
is small. We denote by ] a modification of f which is obtained by deleting one 
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input coordinate. Then l:(f) < 2s  B y  composing f with a linear projection 
L : I =n ~ F n-1 we get a function g = f o L, such that  

Z(#) = Z(]  o L) < C(/) < 2s 

n(g)  = 2 

Since s is small, a round function of a DES-like cipher can be based on g to 
guarantee proven resistance against linear attacks [17]. But as it is easy to see, 
such a cipher has an iterative characteristic with probability 1, that  is, a linear 
structure over the whole cipher, which can be exploited to reduce the complexity 
of exhaustive key search by a factor of 2. 

It is not any harder to give an opposite example, that  is, a function g : 1=~ --* 
F n such that  Z(g) = i and A(g) = 4. Let us start with any function f : I ='~ --~ I =n 
such that  A(f )  is small. We denote by ] a modification o f f  which is obtained by 
deleting one output  coordinate.: Then A ( / )  < 2A(f).  By replacing the deleted 
component by the all zero Boolean function, we get a function g such that  

Z(g) = 1 and A(g) < 2A(f) .  

Since A(g) is small, a round function of a DES-like cipher can be based on g to 
guarantee proven resistance against differential attacks [18]. But as it is .easy to 
see, such a cipher has an iterative linear approximation over all rounds of the 
cipher with probability 1, which can be exploited to determine one bit of the 
unknown key. 

Without  going into the details let us mention that  it is possible to modify 
the first example in such a way that the linearity does not increase significantly 
while the probability of the one-round differential to be iterated is strictly less 
than one, but is still large enough to give a substantial differential over all but 
the last round. Then the differential cryptanalysis method can be exploited to 
search for the last round key exhaustively. Note that if the last round differential 
holds with probability 1, then there is no way to make distinction between wrong 
and correct candidates for the last round key. 

A similar modification of the second example gives a round function of a 
DES-like cipher, which is resistant against differential cryptanalysis, but where 
the last round key can be determined by the linear crypta.nalysis method. 
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A p p e n d i x :  On  the  D i s t r i b u t i o n  o f  Va lues  o f  a V e c t o r  B o o l e a n  
F u n c t i o n  

It is well known that a function f = ( f l ,  . . ., fin) : F n ~ F ~n, 1 < m < n, over 
any finite field f of order q takes all values in F m equally many, i.e., qn-m times, 
if and only if each component b �9 f ,  b r 0, takes each value in F equally many 
times (see e.g. [12]). In this appendix we give a short proof of this fact in the 
special case of F = GF(2) .  For "concrete" proofs in the case of F = GF(2)  and 
m = n we refer to [1], and the appendix of the Eurocrypt version of [22]. 

Let f : F n ---* F "~ be a function and F = GF(2) .  According to [5] we denote 
by 0/ the characteristic function of f ,  

1, i f y  = f ( x ) ,  
01(x,y) = 0, otherwise. 

Let b E F m and Fb be the Walsh transform of b. f .  Then 

E OI(x'Y)(--1)a'=+b'Y = E (--1)a'=+b'Y(x) = s  (8) 

~,y ~EF ~ 

Applying the inverse Walsh-Hadamard transform with respect to the second 
variable in F '~, we get 

E t~f(x'Y)(-1)~'~ = 2-m E Fb(a)(--1)b'Y" (9) 
~ F  '~ be F" '  

As an easy application of (8) and (9) we get the proof of the result about  uniform 
distribution of values: 

A function f : F n ---+ F m, 1 < m < n, takes each value in F m equally many 
times if and only i f  each component of f is balanced. 

Proof. First, let us observe that  by (9) we have for all y E F "~ 

• { x E F n l f ( x ) = y } =  E O / ( x , y ) = 2  -m E Fb(O)(--1)bY" 

~eF ~ b~F '~ 

If each component is balanced, then /~b(0) = 0, for all b r 0, and we get 

# { x  E F " l f ( z )  = y }  = 2-'~F0(0) = 2 € 

for all y E F m �9 
To prove the converse, let us assume that 

# { x E F " f f ( z ) = y } =  ~ 0 / ( z , y ) = 2  "-m,  

for all y E Fm. Then by (8) 

F b ( 0 ) =  E ( - 1 ) b y  E O ] ( z , y ) =  {2,~,0, if ifbb=r 
ye F "  =eF ~ 

[3 


