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A b s t r a c t .  In the design and analysis of cryptographic algorithms, ex- 
ploiting the structures of such algorithms is an important aspect. In 
this paper, additive and linear structures of functions from GF'~(q) to 
GF~(q )  will be considered. A function f is said to have an additive 
structure if there is a non-zero vector a,  such that f(m + a)  - f(:~) re- 
mains invariant for all ~. Such a vector a is called aa additive translator 
of the function f .  A function f is said to have a linear structure if f 
has an additive translator a and if f(:r + ca) - f ( ~ )  = c ( f ( a )  - f (0))  
for all c in GF(q). We call this a a linear translator of f .  We show how 
to use such additive and linear structures to simplify the expression of 
the function f .  It is shown that function f has r linearly independent 
linear translators if and only if there is a non-singular linear transfor- 
mation such that the composition of this linear transformation with the 
original function gives a function that is the sum of a linear function of 
r variables and some function of the other n - r variables. In particular, 
when q is a prime, then any additive translator is a linear translator, 
which implies that f becomes a sum of an r-variable linear function and 
an n - r-variable function if and only if f has r linearly independent 
additive translators. Moreover, for an invertible function f ,  there is a 
one-to-one relationship between the linear translators of f and the linear 
translators of its inverse function. 

1. I n t r o d u c t i o n  

Linear s t ructures  of  block ciphers have been investigated for their c ryp tana ly t i c  
significance. According to Evertse [2], "a block cipher has a linear s t ructure  if 
there are subsets of  P, K and C of  plaintext  bits, key bits and ciphertext  bits 
of  this block cipher, respectively, such tha t  for each plaintext  and each key, a 
s imul taneous  change of  all plaintext  bits in P and all key bits in K has the same 
effect on the  exclusive-or sum of the bits in C of  the corresponding ciphertext ."  
One well-known example  [3] of  such linear s t ructures  is the DES funct ion for 
which the complemen ta t ion  of  all plaintext  bits and key bits results in the com- 
p lementa t ion  of  all c iphertext  bits. I t  has been pointed out  in [1, 2, 3, 6] tha t  
block ciphers with linear s t ructures  are vulnerable to a t tacks  much  faster than  
exhaust ive  key search. In [4], Meier and Staffelbach considered the nonl inear i ty  
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of Boolean functions in terms of their Hamming distance to functions having a 
linear structure and constructed Boolean functions that have maximum distance 
to functions with a linear structure. 

In this paper we consider the additive and linear structures of functions from 
an n dimensional vector space F n to an m dimensional vector space F m, where 
F = G F n ( q )  is a finite field. In Section 1, such structures will be studied in terms 
of additive and linear translators, where it is shown that the set of all additive 
translators of a function forms an additive subgroup of the domain vector space 
and that  the set of all linear translators of a function forms a linear subspace. 
The main result is in Section 3 where it is shown that the linear subspace of linear 
translators of an n-variable function has dimension r if and only if that  there is 
a non-singular linear transformation on the variables of the function such that  
the composition of this linear transformation with the original function gives a 
function that is the sum of a linear function in r variables and some function of 
n - r variables which has no linear structure. In particular, if F is a prime field, 
i.e., a field o f p  elements where p is a prime, an n-variable function has r linearly 
independent additive translators if and only if there is a nonsingular matrix 
A such that f ( ~ A )  is the sum of a linear function of r components of �9 and 
some function of the other n - r components of ~. In Section 4 it is shown that 
the dimension of the subspace of linear translators remains the same for every 
function obtained by the composition of a non-singular linear transformation and 
the original function. It is then shown that for a nonlinear function the sum of 
its nonlinear degree and the dimension of the subspace of its linear translators is 
upper bounded by the number n of variables. Finally, we show in Section 5 that  
there is a one-to-one relationship between the linear structure of an invertible 
function and the linear structure of its inverse function. An additional remark is 
made in Section 6 which interprets the additive structures in terms of differentials 
used in differential cryptanalysis. 

2. Addit ive  and linear s t r u c t u r e s  o f  f u n c t i o n s  ove r  f in i te  f ields 

Throughout  this paper, elements of F ~ will be denoted as ~ or (zl,  z2, . . . ,  z~), 
where zi E F and where xl, x2 , . . . ,  xn are the coordinates.of ~ under the canon- 
ical basis of F ~ : 

e I = ( 1 , 0 , . . . ,  0),  e 2 = (0, 1 , 0 , . . . ,  0) ,  - . . ,  en  ~- ( 0 , . . . ,  O, 1), (1) 

that  is, ~ = x le l  -4- z~e2 -4- �9 - �9 -4- z , e , .  A function f : F "  ~-+ F m will be denoted 
as f (~ )  or as f ( x l ,  z 2 , . . . ,  zn )  and will be called an n-variable function. 

Definition. A function f : F ~ ~-~ F m is said to have an additive structure if 
there is a non-zero vector a in F ", such that f (~  A- a) - f (~ )  is invariant for all 
ze in F n. Such a vector a will be called an additive translator of the function f .  
A function f is said to have a linear structure if there is a non-zero vector a in 
F ~, such that  

f(az + ca) -- f(a~) = c ( f ( a )  -- f(O)) (2) 
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for all c in F,  such a vector a will be called a l inear translator of the function 
f .  By setting c = 1, we see that  any linear translator is always an additive 
translator .  (By way of convention, we consider the all-zero vector 0 to be a 
linear t ranslator  for any function.) 

By choosing a~--0, we see that  a - ( a l , . . . ,  an) is an additive translator of 
function f if and only if 

f (x l  + a l ,  x2+a2,  . . . , xn +an)  = f ( x l ,  X2, . . . , Xn) + f ( a l ,  a s , . . . ,  an)--  f(O, O, ..., O) 

or in vector notation,  

f ( ~  + a) --- f (m)  + f ( a )  - f (O) ,  (3) 

for all ~ = ( z l , . . . ,  z~) in F ~. Similarly, we obtain from (2) tha t  

f ( c a )  = c f ( a )  - (c - 1)f(0)  (4) 

holds for all c in F if a is a linear translator of f .  

T h e o r e m  1. For a fuue t ion  f " F ~ ~-+ F r~, the set of  all additive translators 
o f f  f o r m s  an additive subgroup of  F ~, and the set of  all l inear translators of  f 
f o r m s  a linear subspace of  F n. 

P r o o f .  Let a,  b be two additive translators of function f .  Set �9 = b in (3), 
we have 

f ( a +  b) = f ( a )  + f (b )  - f (O) .  (5) 

Thus,  for all ~ in F ~, 

f ( ~  + a + b) = f ( ~  q- a) q- f ( b )  - f (O)  

-- f ( x )  + f ( a )  + f ( b )  - f (O)  - f (O)  

= + f ( a  + b) - f ( o ) ,  

so tha t  a + b is also an additive translator of f .  Thus, the set of additive trans- 
lators is an additive subgroup. 

Since a linear t ranslator  is always an additive translator,  it remains to show 
tha t  if a is a linear t ranslator  of function f then for any co in F,  b = coa is also 
a linear translator.  For any c in F,  because a is a linear translator,  

f ( ~  + cb) - f ( w )  = f ( ~  + c c o a ) -  f ( ~ )  = c[co(f(a)  - f(0))]  

= c[ f (coa)  - j~(0)] = c ( f ( b )  - f (0) )  

where the third equality is obtained from (4). Thus, b = coa is indeed a linear 
t ranslator  of  F ,  so that  the set of linear translators is a linear subspace. [] 

Now we show tha t  over a prime field additive translator, and linear t ranslator  
are the same concept. This explains the reason tha t  'addi t ive '  structure was often 
referred to as ' l inear '  s tructure in the earlier li terature because the most  often 
considered operat ion in cryptography is the bitwise-XOR, i.e., over GF(2) .  In 
part icular,  the set of additive translators forms a linear subspace for functions 
over pr ime fields. Later we will show by example that  this is not the case over a 
general finite field. 
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T h e o r e m 2 .  I f  F = G F ( p ) ,  a f inite field of  p e lements  where p is a pr ime,  
then an additive translator is also a linear translator. 

P r o o f .  Let a be an additive translator of f .  By choosing b --- a,  b = 2a, . . . ,  
b = (p - 1)a, it follows from Theorem 1 that  for each element c of the prime 
field F,  ca is also an additive translator of f .  By using (5) repeatedly, we obtain 

f ( c a )  = f ( (c  - 1)a + a) 

= f ( ( c  - 1)a) + f ( a )  - f (O)  

= f ( ( c  - 2)a) + 2f (a )  - 2f(O) 

= f ( a )  + ( c -  1)f (a )  - ( c -  1)f(O) 

= c f ( a )  - ( c -  1)f(0) .  

In (2) setting a~=0 and using the above equality, we have 

f(~, -4- ca) -- f ( ~ )  = f ( c a )  - f (O)  = c f ( a )  -- c f (O)  

which shows that  a is a linear translator of f .  [] 

3. U s i n g  l i n e a r  s t r u c t u r e s  t o  s imp l i fy  f u n c t i o n s  

Now we show how to use linear structures to simplify the expression of a function. 
Let Lf  denote the set of all linear translators of function f .  

T h e o r e m  3. Let f be a funct ion  f rom F n to F m .  Then there exists an n • n 
invertible matr ix  A over F such that 

g ( X l , . . . , X n )  = f ( (Xl , . . . , x ,~ )A)  = x l v l  + . "  "+ xrv~ + g * ( x ~ + l , . . . , x n )  (6) 

where vi  E F m, for  1 < i < r and g* is some non-constant  func t ion  of  n - r 
variables which has no linear structure i f  and only i f  the set o f  l inear translators 
o f f  f o r m s  an r -d imens ional  subspace o f f  n. 

P r o o f .  First, suppose that  L] is an r-dimensional subspace. Let a l ,  . . . ,  a~ 
be r linearly independent linear translators that  form a basis for L / .  a l ,  �9 �9 a~ 
can be extended to a basis of the vector space F n : a l ,  �9 �9 a t ,  a t+ l ,  . . . ,  an. Let 
A be the linear transformation from the canonical basis (1) e l , . . . ,  en to the 
basis a l , . . . ,  a~. Then A is non-singular and a i  = e iA .  We have 

g ( x l , . . . ,  x,~) = f ( ( x l , . . . ,  x ,OA ) = f ( ( x l e l  + . . . + x , ~ e n ) A )  = f ( x l a l  + "  " + X ,  an) .  

Because L /  is a subspace of F n, x l a l  is also a linear translator so we may use 
(3) and (4) to obtain 

f ( x l a l  + " . +  x n a n ) =  f ( x 2 a 2  + ' " +  Xnan) + f ( x l a l ) - f ( O )  

= x l f ( a l ) - ( x l  - 1)f(0)  - f (0 )  + f ( x 2 a 2  + . . .  + x , ,an)  

= x l ( f ( a l )  - f (0) )  + f ( x 2 a 2  + ' "  + xnan ) .  
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Proceeding similarly for the linear translators a 2 , . . . ,  a r  gives 

g ( x l ,  ..., x~) = x l v l  + - . -  + ~ v r  + g * ( x r + l , . . . ,  ~ ) ,  

where vi = f ( a i )  - f (O),  for i -- 1, ..., r, and where 

g * ( x r + l , . . . , X n )  = f ( x r+lar+l  "4-'" "4- xnan)  

is a function of n - r variables. Moreover, if (br+l , . . . ,  b,~) 5s ( 0 , . . . ,  0) is a linear 
t ranslator  of function g*, then b = ( 0 , . . . ,  0, b r + l , . . . ,  b~) is a linear t ranslator  of 
the function g, and b is linearly independent of e l , . . . ,  e~ so that  bA is linearly 
independent of a l , . . . ,  a~. But then bA will be a linear translator of f because 

f ( ~ A  + cbA) = g(~ + cb) = g(~) + c(g(b) - g(O)) = f ( ~ A )  + c ( f (bA)  - f(O)) 

for all xA in F n. This contradicts the assumption that  dim L/  = r. Therefore, 

function g* has no linear structure. 
Conversely, suppose that  A is a non-singular t ransformation such tha t  

g ( x l , . . . , x , ~ )  = f ( ( x l , . . . , x , ~ ) A )  = x l v l  + . . . +  x~v~ + g*(x , .+l , . . . , x ,~)  

where g* has no linear structure. First we show that  el ,  . . . ,  e~ are linear trans- 
lators of g. For 1 < i < r and for all c in F n, 

g ( ~  "~- C e i )  : g ( X l ,  . . . , X i - I ,  X i  "~- C, X i + I ,  . . . , X n )  

= x~,~  + . . . +  ( ~  + e),~ + . . .  + ~ + g * ( ~ r + ~ , . . . , ~ o )  (7) 
= z l v l  + . . . + x ~ v ~  + g * ( x ~ + l , . . . , x ~ ) + c v i  
= g (~)  + cv~, 

By sett ing �9 -- 0 in the above equation, we obtain that  g(ce~) - g(O) + cvi. For 
c = 1, we have vi = g(ei)  - g(O). Thus, 

g ( ~  + ce~) - g ( ~ )  = c~,~ = e (g ( e~ )  - g(0)) ,  (8) 

which implies tha t  ei is a linear translator of g. 
Now we show tha t  every linear translator of function g is a linear combinat ion 

of e l , . . . , e r .  Let b = (bl, ...,bn) be a linear t ranslator  of g, then for all c in F ,  

g(x  -4- cb) = g(~)  q- c(g(b) - g(0)). (9) 

The  left side of the above equation is 

(~ + c b l ) , , 1  + . . .  + (~:~ + cb~ )v~ + g* ( ~ + ~  + cb~+~, . . . , ~:, + ~b~) 

and the right side is 

~ 1 , ~ + . . . + ~ + g *  (~+~, ..., ~ , ) + c [ b ~ + . . . + b ~ v ~ + g * ( b ~ + ~ ,  ..., b~)-g*(0,  ..., 0)]. 

Thus, (9) is equivalent to 

g* (x~+l  + cb~+~, ..., ~ ,  + cb~) = g* (~r+~, ..., ~ )+~b*  (b~+~, ..., b ~ ) - g *  (0, ..., 0)], 
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that  is, b = (b~, ..., bn) is a linear translator of function g if and only if (br+l, ..., bn) 
is a linear translator of function g*. From the assumption that  g* has no linear 
structure we obtain br+l -= "'" = bn = 0. Therefore, every linear translator of 
function g is a linear combination of e l , . . . ,  e~. This completes the proof of the 
theorem. [] 

By applying Theorem 1 and 2, Theorem 3 implies: 

C o r o l l a r y 4 .  Let F be a finite field of p elements where p is a prime. Then 
a function f : F ~ ~-+ F m has r linearly independent additive translators i f  and 
only i f  there exists an n • n invertible matrix A over F such that 

g ( x l , . . . , x , )  = f ( ( x l , . . . ,  x,)A) = x lv  I -~-...-~-XrV r -~-g*(Xr+l, . . . ,$n)  (10) 

where vi E F m, for 1 < i < r and g* is some non-constant function of n-r 
variables without additive structure. 

Example 1. Consider the case that n = 3, m = 1 and F = GF(2) .  For the 
following function of 3 variables, 

f ( x l ,  x2, x3) = x l x 2  + x l x 3  + x2x3 + x2 + x~, 

the vector (111) in F~ is a linear translator of f :  

f ( x l  + 1, x2 + 1, xa + 1) = f ( x l ,  x2, x3) + 1. 

[ 1 1 1 ]  
Let A =  1 0 1  , t h e n d e t A r  and 

1 1 0  

f ( ( x l ,  x~, x3)A) = ] ( x l  + x2 + x3, Xl + x3, Xl + x2) = Xl + x~x~. 

R e m a r k .  We have proved in Theorem 2 that':if F is a prime field, then the set 
of additive translators of a function forms a linear subspace. It was shown in [5, 
Proposition 3] that,  for a quadratic function f ,  the set of additive translators is 
a linear subspace of F n for any finite field F.  In general, however, this result is 
not true. The following example due to Nyberg shows that  there exist functions 
for which the set of additive translators is not a linear subspace. 

Example 2. Consider the following function from (GF(22)) 3 to GF(22): 

f iX ,  Y, Z] : f [ (x l ,  x2) , (yl, y2), (Zl, z2)] : (xlx2yl  -~ y2, ZlZ2) 

where x~, y~, z~ are in GF(2) .  f has only one nonzero additive translator 

[(0, 0), (0,1), (0, 0)]. 

Thus, the set of additive translators cannot be a subspace because any non-zero 
subspace contains at least four elements. D 
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R e m a r k .  The result of Theorem 3 implies that  it is not always possible to 
transform a function with r linearly independent additive translators into the 
form as the sum of a linear function of r variables and some function of (n - r) 
variables even if the set of additive translators is a subspace, as shown by the 
following example. [This example further implies that Proposition 4 in [5] is not 
true.] 

Example  3. Consider again the function 

f ( x l , x 2 ,  x3) = x lx2  + x l x 3 + x 2 x 3 + x ~  + x 3 ,  

which is of the same form as in Example 1 but is over the field F = GF(2~). It 
is easy to verify that  the vectors a(111), a E F are the only additive translators 
of f and that  they form a linear subspace. However, for a E GF(2 2) such that  
C~ 2 r C~,  

f (~ ( ] ,  1, 1)) -- f(o~, c~, a) -- a 2 • a --- o~f(1, 1, 1), 

so that  a is not a linear translator of f .  Theorem 3 then implies that  the function 
f cannot be transformed into the form 

g ( x l , x 2 , x 3 )  : x l a l T g * ( x 2 ,  x3). 

4. L inear  S t r u c t u r e s  a n d  n o n l i n e a r i t y  

Theorem 3 implies that  for any function g obtained from a function f by a 
non-singular linear transformation on the variables of f ,  dim(Lg) = dim(L]).  
Tha t  is, dim(L ]) is invariant under linear transformations on the variables of f .  
Thus, dim(L]) provides a useful measure of the "partial" linearity of function f .  
Another such invariance is the nonlinear degree (or nonlinear order) of f .  For a 
function from F ~ to F "~, its component functions (from F ~ to F) can be written 
in the form of multivariable polynomials. We define the degree of monomial 

il i~ to be ~ ij and the degree of a polynomial as the maximum of the X 1 �9 . . X n 

degrees of the monomials occurring in the polynomial. The (total) degree of f 
is then defined as the maximum of the degrees of its component polynomials. 
The following Lemma shows that  the nonlinear degree (or nonlinear order) of f 
is also invariant under nonsingular linear'transformations on its variables. 

L e m m a  5. Let 

' g ( x l , . . . , x ~ )  = f ( ( x l , . . . , x ~ ) A )  

where A is a nonsingular n • n matrix  over F ,  then deg(/) = deg(g). 

P roo f .  We show first that  deg(g) < deg(f),  the equality then follows from the 
�9 ' Tt �9 invertibility of A. Let x] 1 . . .  x~ ~ be a monomial of f with degree ~-'~-1 zj. Under 

the transformation A = {ai j}  , the monomial becomes 

(a l lx l  -~- a21x2 -[- " "  q- anl xn) i . . . .  (alnxl -[- a2nx2 -k " "  -[- annxn)  i~ �9 
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Using the fact that  deg(fl  + f2) _< max(deg(fl) ,deg(f2))  and deg(flf2)  < 
deg(fl)  + deg(f2), we obtain 

deg [(allxl -F...-I- anlxn)  i1" " " (alnXl -~- " . -~- annxn)  in] 

_K deg[(allXl q - ' " - f f  anlxn)  ~1] q- . . " q- deg[(alnxl q-- . .  q- annxn)  ~]  

< it deg(al lz l  + ' " + a n l x n )  + ' " + i n  d e g ( a l n x l  + . . . +  a~nxn)  
n 

= = d e g ( x l l  x o), 
1 

that  is, the degree of each monomial will not increase under the transformation 
A. Thus, the degree of each component polynomial of f will not increase un- 
der the transformation A, which implies that  deg(g) _ deg(f).  On the other 
hand, f ( x l , . . . ,  xn) = g ( ( x l , . . . ,  x , ) d  -1)  because A is invertible, so the above 
argument implies that  deg(f) _ deg(g). Therefore, deg(f) = deg(g). [] 

Now applying Theorem 3 to a nonlinear function f with r = dim(L/) ,  we 
know that  f can be transformed into the form: 

g ( X l , . . . , X n )  ---- XlVl"~- ' ' ' -~XrVr  - ~ g * ( X r + l , . . . , X n ) .  

Therefore, 

deg(f) = deg(g) = deg(g*) _< n - r = n - dim(L]).  

Thus, we obtain the following result. 

T h e o r e m  6. For a nonlinear funct ion f : F n ~ F rn, 

deg(f) + dim(L/)  < n. 

In particular, a nonlinear funct ion  of  ful l  degree has no linear structure.  Note  
that for  a linear funct ion  f ,  deg(f) = 1 and dim(L/)  -- n. 

Example  ~. Consider again the Boolean function in Example 1. Because that  
the function f has non-linear degree 2, the above result implies that  

1 < dim(L/)  < 3 - deg(f) = 1. 

Thus, (1, 1, 1) is the only non-zero linear translator of the function f .  

5. L i n e a r  s t r u c t u r e s  o f  i n v e r t i b l e  f u n c t i o n s  

In cryptography, invertible functions are of special interest. For example, a block 
cipher with a given key is an invertible function. Another example is that  the 
S-boxes in the DES consist of invertible functions from F 4 to F 4. The next result 
shows the relationship between the linear structures of an invertible function and 
that  of the inverse function. 
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T h e o r e m 7 .  Let f : F n, ~-+ F '~ be an invertible function,  where F is an ar- 

bitrary f ini te  field. Then a is a linear (additive) translator of  f i f  and only i f  
d = f ( a )  - f (O)  is a linear (additive) translator of  f - 1 .  Moreover, the func-  
t ion f and its inverse f - 1  have the same number  of  linearly independent  linear 

translators.  

P r o o f .  For the first part  of Theorem, we show first the case for linear transla- 
tors. Denote y = f ( z ) ,  then x = f - l ( y ) ,  and denote z0 = f - l ( 0 ) .  For a linear 
translator a of function f ,  we have a + :r o = f -  1 ( f ( a ) - f ( O ) ) = f -  ~ ( d) because 

f ( a  + :to) = f ( a )  + f ( ~ o )  - f (O)  = f ( a )  - f (O)  - d. 

Thus, for any c in F ,  a is a linear translator of f 

f ( x )  + c ( f ( a )  - f (0) )  = f ( ~  + ca) V;r E F n 
y +  ed = f ( ~  + ca) V~ E F ~ 
f - l ( y + c d )  =a:  + c a =  f - l ( y )  + c [ a +  ~ o - ~ o ]  

= f- l(y) + e [ f - l ( d )  _ Vy e F n 

d = f ( a )  - f (O)  is a linear translator of f - 1 .  

Let c = 1 in the above proof, we obtain the proof for the case of additive 
translators. 

To show the second part  of the Theorem, let a and b be linear translators of 
f .  Equation (4) and (5) implies that  for any c~, c2 in F,  

f ( c l a  + c2b) = c l f ( a )  - (el - 1)f(O) + c2f (b)  - (c2 - 1)f(O) - f(O) 

= c i ( f ( a )  - f(O)) + c2( f (b)  - f(O)) + f(O). 

Thus, 

f ( c l a  + c~b) = f (0 )  if and only if c l ( f ( a )  - f (0 ) )  + c2( f (b)  - f (0 ) )  = 0. 

Because f is invertible, we see that  

c l a  + c2b = 0 if and only if c l ( f ( a )  - f(O)) + e2( f (b)  - f(O)) = O. 

Thus, we have shown that  a and b are linearly independent linear translators of 
function f if and only if f ( a )  - f (O)  and f ( b )  - f (O)  are linearly independent 
linear translators of the inverse function f - 1 .  Therefore, L/  and L ] - I  have the 
same dimension. [] 

Similar to Theorem 3, we consider the "normal" form of an invertible function 
having linear structures. A function f : F ~ ~-+ F n will be expressed as 

Y2 f2(xl ,  X2, , Xrt) 
y : r  = . , 

tha t  is, f maps row vector ( x l , . . . ,  x , )  to column vector (Yl , . . . ,  Y~). 
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Theorem 8. Let f : F '~ ~-+ F ~ be an invertible function, then f has r linearly 
independent linear translators if  and only if  there exist n x n invertible matrices 
A and M over F such that 

"xl+ g~(xr+l,..., x.) 

g(z )  = M f ( x A )  = xr+g*(x~+l , . . . , x ,~ )  g ; - l - l (Xr+ l ' ' ' "  Xn) (11) 

g* x,) 

Let as, i -- 1, ..., r be r linearly independent linear translators of f .  By P r o o f .  
Theorem 7, f ( a i )  - f (0 ) ,  i = 1, ..., r, are r linear translators of f - l ,  and they 
are linearly independent because f is invertible. Let A be an invertible matr ix  
such that  e iA  = as, by Theorem 3 function f ( ~ A )  will have the form shown in 
(6): ! 

f ( ( x l , . . . ,  x , ) A )  = XlVl -[- ' ' ' -~- XrVr + g (Xr-I-1,..., Xn) (12) 

where vi = f ( a i ) - f ( O ) .  Now let M be an invertible matr ix  such that  i ( f ( a i ) -  
f(O)) T = e T, then the function g(x)  = M f ( x A )  will have the form in (11). 

Conversely, suppose (11) holds, then Theorem 3 implies that  the vectors ai = 
ei A, i = 1,..., r, are r linearly independent linear translators of function f .  [] 

In cryptographic practice, the methods of confusion and diffusion, introduced 
by Shannon [7], are fundamental.  A function will be said to achieve complete dif- 
fusion if each of its output  variable depends on every input variable. The follow- 
ing result is a direct consequence of Theorem 8. It shows a relationship between 
the complete diffusion and the nonlinearity with respect to linear structures for 
an invertible function. 

C o r o l l a r y  9. Let ~ F ~ ~-+ F ~, n > 3, be an invertible function such that, 
for any n • n invertible matrices g and M,  the ]u~ction g(~) = M f ( ~ A )  achieves 
complete diffusion, then the function f has no linear structure. 

A r e m a r k  on  a d d i t i v e  t r a n s l a t o r s  a n d  d i f f e r en t i a l  c r y p t a n a l y s i s  
The basic concept used in differential cryptanalysis [8] is that  of 'differentials' 

and their probabilities [8, 9]. A differential of a function f can be defined as a 
couple (a,b) such that,  if a pair of inputs of f has difference A x  = ~1 - ~ = a, 
then b is a possible value of the difference of the pair of outputs of f :  Ay  = 
f ( x l )  - f ( x )  = f ( x  + a) - f ( x ) .  It then follows from (3) that  a is an additive 
translator o f f  if  and only i f (a ,  f ( a ) - f ( O  ) ) is a differential o f f  with probability 
one. 

6. Summary 

In this paper we have considered additive and linear structures of functions over 
a finite field in terms of their additive and linear translators. The main result 
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was tha t  an n-variable function has r linearly independent linear translators if 
and only if there is a non-singular linear t ransformation on the variables of the 
function such tha t  the resulting function is the sum of a linear function of r 
variables and a function of the other n - r variables. 
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