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Abs t rac t .  A genera] explicit construction of bent functions is described, 
which unifies well known constructions due to Maiorana-McFarland and 
Dillon as two opposite extremai cases. Within this framework we also 
find new ways to generate bent functions. Then it is shown how the con- 
structed bent functions can be modified in order to obtain highly nonlin- 
ear balanced Boolean functions. Although their nonlinearity is the best 
known so far, it remains open whether this bound can still be improved. 

1 I n t r o d u c t i o n  

Boolean functions form important  components of various practical cryptographic 
algorithms. One basic criterion for their design is nonlinearity. The significance 
of this aspect has again been demonstrated by the recent development of linear 
cryptanalysis by Matsui [5] and others. 

Loosely speaking, bent functions are Boolean functions achieving the highest 
possible nonlinearity uniformly. In view of the: Parseval equation this definition 
implies that  they exist only for an even number of variables. 

Bent functions were introduced by Rothaus [8] in 1976. They turned out to 
be rather complicated combinatorical objects. While a concrete description of 
all bent functions is elusive, there are two well-known explicit constructions of 
special bent functions due to Maiorana-McFarland [6] and Dillon [4]. 

In the next section a general construction of normal bent functions is de- 
scribed (triple construction, see Definition 1 and Lemma 2), where we call a 
Boolean function with 2n variables normal if it is constant on a n-dimensional 
affine subspace. Within the framework of the triple construction we obtain the 
bent functions of Maiorana-McFarland and of Dillon as the two opposite ex- 
tremM cases, and we also find new ways to construct bent functions (see Theo- 
rem 4). 

Depending on the conditions of the concrete application, it has often to be 
considered as a defect from the cryptographic point of view that  bent functions 
are necessarily non-balanced. In the third section it is shown how normal bent 
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functions can be modified in order to get highly nonlinear balanced Boolean 
functions with 2n variables (see Proposition 8). We conclude that,  in the bal- 
anced case, the maximal nonlinearity for 2n variables is connected by a certain 
inequality with the maximal nonlinearity for n variables (see Theorem 9). How- 
ever, the challenging problem to determine the maximal nonlinearity of balanced 
Boolean functions precisely remains open. 

2 Normal  Bent Functions 

The W a l s h  t r a n s f o r m a t i o n  of a Boolean function g defined on a finite vector 
space V over GF(2) with a scalar product is denoted by gw: 

gW(a) = ~ ( - 1 )  g(~)+(~'~l . 
~EV 

The Walsh transformation is a very powerful tool for analyzing Boolean func- 
tions. Note that  the set of values occuring as Walsh coefficients is independent 
of the choice of the scalar product. Recall that  a b e n t  f u n c t i o n  f on a 2n- 
dimensional vector space V over GF(2) is defined by the property 

f w  (z) = •  ~ for all z E V. 

We call a Boolean function f with 2n variables n o r m a l ,  if there is an affine 
subspace with dimension n, on which f is constant. In the following we shall be 
concerned with normal bent functions. Starting point of our investigation is the 
following fact (see Lemma 7, Section 3): 

Let f be a normal bent function on a 2n-dimensional vector space V over 
GF(2) such that  the restriction of f on an affine subspace U of dimension n is 
constant. Then the restriction of f on each proper co-set of U is balanced. 

Thus if one wants to construct a normal bent function then this means essen- 
tially that  one has to construct a suitable collection (fy)yeW\{yo} (Yo E W fixed) 
of balanced Boolean functions on a n-dimensional vector space W over GF(2). 
The Boolean function on W 2 corresponding to such a collection is defined as 

l fy (x) for y # Y0 

f(x, y) = [ constant, otherwise. 

For the following the value, 0 or 1, of the constant is not important .  Hence we 
assume that  it is 0. If instead of f we consider its support T = supp f then the 
above setting means 

T =  [.J • {y}, 
yeW\{yo} 

where suppfy  -= Sy C Wund #Sy = 2 '~-1. 
It is a natural  idea to endow W with a field structure, to choose some fixed 

subset S of W with ~ S  = 2 ~-1, and to define the Sy as a permutat ion of sets 
of the form 

yS + %. 
This leads to the following construction of Boolean functions: 
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D e f i n i t l o n l  (Tr ip le  C o n s t r u c t i o n ) .  Let L be the field GF(2n). Choose 

~r : L -----+ GF(2) balanced, 

r : L ---+ L bijective, 

: L ---+ L arbitrary. 

The Boolean function f = fa,r162 on L ~ associated to the triple (or, r 4) is defined 
as follows: 

f ( x , r  { cr(~+r ) f ~ 1 6 3  

0 otherwise. 

The support of f is 

supp f = U (us + r x {r 
yEL* 

where S = suppcr. 

We call (o, r r a b e n t  t r i p l e  if the associated Boolean function fo,r162 is a 
bent function. 

In the sequel, with respect to the Walsh coefficients of a Boolean function g, 
we refer to the scalar product 

(x, y) = Wr(xy) 

if g is defined on the field L, and to the scalar product 

((x, u), (y, v)) = m~(xy + uv) 

if g is defined on L 2. 

L e m m a 2 .  Suppose that c~, r r and f = fa,r are given as specified in the triple 
construction (Definition 1). 

1. For all b E L we have fW(O,b) = (--1)Tr(br176 '~. For a, b e L, a Gs 0 set 

l"a,b(x) = Tr (ag(x la) + br la) ) . 

Then 
fW(a,b)  = E(-1)ro ,dZ)o-W(x) .  

xEL 

2. Let T~ C L denote the affine subspace generated by supp ~w. The following 
condition implies that ((r, r r is a bent triple: 

r and ~ are a]:fine 1 on aTo for all a C L*. (1) 

1 q$ is said to be affine on a affine subspace T if there is an affine mapping which 
coincides on T with r or equivalently if r 4- r + r = r 4- v 4- w) for all 
u,v,w E T. 
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Proof. 1. We have 

fW(a 'b )  = E (--1)S(x'Y)-k((a'b)'(x'Y))= E (-x)'f(x'r162 
x , yEL  x ,y  

= E E (-1)~162 + (_l )Tr(br  
x y # 0  x 

By the substitution z = (x + r  we get 

= E 
x y ~ 0  y # 0  z 

= E(--1)Tr(a+(Y)+br w (ay) 

y#o 

Since ~ is balanced it follows that  aw(0) = 0. In the above sum over y we 
therefore can add the case y = 0, and for a = 0 we conclude 

fw(0 ,  b) = (-1)Tr(b+(~ 

In the following suppose a ~ 0. Then ~ , ( - 1 ) T r ( ~ )  = 0, and it follows that  

fw (a, b) = ~(-1)T~(~162 w (ay) 
Y 

= ~(-1)q~(< ' r162 "w (x). 

2. Let g a n d ' F  be Boolean functions on L, where F is affine. Then obviously 

~-~(-1)r(~)gW(x) = •  n. 

xEL 

Of course this equation already holds if Y is afflne on Tg, the affine subspace 
generated by supp gW. 

Condition (1) assures that  all mappings Fa,b are affine on To. From 1. it 
follows that  f w  (a, b) = • for all a, b E L. [] 

In order to state the main result of this section we need a preparing lemma. 

L e m m a 3 .  Let U be a subspace of the vector space V = G(2) n, and Yo E V.  
Then there is an onto linear mapping p : V > U such that a one-to-one 
correspondence between all Boolean functions ~r : V > G.F(2) with 

supp o "w C Y0 + U 

and all Boolean functions r on U is given by setting 

~(x) = rp(x) + (x, Yo). 

Moreover, all ~r are balanced if  and only if  yo ~ U. 
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Proof. We have the formula 

(c~A) w (a) = a ~v ((A*)-I (a)), 

where A : V ) V is.a bijective linear mapping, and A* is the adjoint of A, i.e. 
(A(x), y) = (x, A*(y)). On the other hand (r + lyo)W(a) = aW(a + Y0), for the 
linear mapping ~yo (x) = (x, Y0). Thus the first assertion Jaas to be shown only 
for the case that  U is generated by unit vectors and Y0 = 0. But  this case is 
easily verified. 

The last statement is obvious, since cr is balanced iff ~w (0) = 0. [] 

Maiorana-McFarland'and Dillon gave two different constructions of bent func- 
tions. We say these bent functions are of Maiorana-McFarland type (MM-type) 
and Dillon type (D-type), respectively. Their definitions can be found in the proof 
of the following theorem. 

T h e o r e r a 4 .  Let L -- GF(2n), and let (c~, r kb) be given as described in the triple 
construction. 

1. I f  cr is aj:fine then (a, r r is a bent triple for arbitrary r r In this case one 
obtains precisely the bent functions of MM-type. 

2. Conversely if  r and r are ajyine then ((r, r r is a bent triple for arbitrary 
~r. In this case f~,r162 and fa,id 0 are affinely equivalent. The bent functions 
of D-type are precisely the functions of the form f~ id 0" 

3. Besides the two opposite extremal cases 1. and 2. 'there are further bent 
triples: 
Suppose r = x d, r  = x d' ( o r e  = O) for d, d' < 2 n -  1, and let a 
non-trivial subspace U of L and Yo E L \ U be given such that the following 
conditions are satisfied: 
(a) r is bijective, i.e. d is relatively prime to 2 n - 1, 
(b) r and r are not affine, i.e. d and d' are not powers of 2, 
(c) r and r are aj:fine on Yo + U. 
Define c~ : L ) GF(2) as a non-aLfine balanced Boolean function such that 
the support of ~vr is a subset of Yo + U. This means that cr is of the form 

= Tp(x) + 

where p : L ) U is an onto linear mapping chosen according to Lemma 3, 
and r is an arbitrary non-affine Boolean functions on U. 
Then (~r, r r is a bent triple, which is neither of D- nor of MM-type. The 
explicit definition of the corresponding bent function is 

v d) = { 
0 otherwise. 

i / y #  0, 

Two concrete examples are given after the proof of this theorem. 
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Proof. 1. Obviously ~r is affine if and only if To = supp ~r w is a singleton. Thus 
the first claim follows immediately by Lemma 2,2. 

We identify L with GF(2) n. A bent function g : L 2 ~ GF(2) is of M M -  
t y p e  if it is of the form 

g(x, y) = Ix, ~(y)) + h(y), 

where Iv is a bijection on L, h is an arbitrary Boolean function on L and (., .} is 
the canonical scalar product on GF(2) n. W.l.o.g. we can assume ~'(0) = 0 and 
h(0) = 0. 

Let ~ : L > L be the bijective linear mapping defined by the equation 

(x, Y) = ~(xe(Y))  

for all x, y ~ L. Now define r such that  the equation 

1 
r  _ ~(Y)  (y ~ L*) 

holds, and choose r with the property 

Then as desired we have 

g :" fTr,r162 

Similarly we see that  every fo,r162 with linear ~ is of MM-type. 
2. Again the first assertion follows immediately from Lemma 2.2. If r and r 

are affine then f~,id,o A = fo,r162 for the bijective afflne mapping 

A: ( x , y ) , )  (x- l - r162  . 

It remains to verify that the bent functions of D-type are precisely the fa,id,0: 

Let E = GF(22n). We consider E as field extension of L = GF(2") .  Choose 
an a E E with E = L[c~]. We set 

(x e E), 

for the Frobenius automorphism of E : L. The mapping 

h: { x ,  >~/x 
E* ~ E* 

is a multiplicative homomorphism with image 

H = { z E E *  : z ~ =  1}. 

The kernel of h is L*. Therefore H is a representation system for the elements 
of the factor group E*/L*, i.e. the sets of the form xL* (x E E*). In view of 
H ~- E*/L* we have 

~ H  = 2 '~ + 1. 
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Set H1 -" H \ {1}. The  bent functions of D - t y p e  are precisely the characteristic 
functions of sets of the form 

D(Z) : U zL*, 
zEZ 

where Z C_ H1 has exactly 2 ~-1 elements. (The condition # Z  = 2 n-1 assures 
tha t  XD(Z) is a bent function.) 

A bijection between H1 and L is defined by 

~z  + a ~  
r : z l  ) - -  

z +-5 

If we identify L 2 and E by setting (x, y) = x + y~ then for S = T[Z] 

D(Z) = D zL* = U yS • { y } = s u p p f a , i d , 0 ,  (2) 
zEZ yEL* 

where ~ is the characteristic function of S. 

Remark. As we have seen there is an interesting analogy between the field ex- 
tensions E : L and C : lR. For instance, (2) can be interpreted as the change 
f rom the representation of D in "polar coordinates" to the representation in 
"cartesian coordinates." 

3. I f  the power functions r and r are affine on To, the affine subspace generated 
by the support  of ~r w ,  then of course they are affine on aT, for all a E L*. Thus 
(cr, r r is a bent  triple by L e m m a  2.2 if the conditions (a) - (c) are satisfied. [] 

We want to give two concrete examples how the exponents d, d ~ and the affine 
subspace Y0 + U can be choosen such that  the conditions (a) - (c) in Theorem 4.3 
are satisfied. 

Example 1. Assume tha t  n is not pr ime and not a power of 2, i.e. n = mr with 
r >  1 and o d d m > l .  Let d = 2  r + l , U = K = G F ( 2 r ) , a n d y 0 E L \ U . T h e n  
for all x E Y0 + U we have 

x d = ( (x  + yo) + vo) ~ + 1  

= (~ + vo) ~ + (~ + vo)vo + (~ + vo)vo 2r + vo~ 

=x2+ Yo+Yo x, 

i.e. r is linear on Y0 + U. It  remains to show tha t  2 r + 1 and 2 n - 1 are relatively 
prime. In fact 

(2 r + 1)(2 (m-1)r-1 - 2 (m-2)r-1 + . . . -  2 r-1 + 2 n-l) ---- 1 (rood 2 ~ - 1). 

Note tha t  the surjective linear mapping  p f rom L onto U = K can here be taken 
as the orthogonal  2 projection p = TrL:K, tha t  is 

~(,) = ~T~:K(~) + Tr(~Vo), 

That  i~ T~((~ + p(~))~)  = 0 fo~ a~ ~ e L, = e U. 
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where r is any non-affine mapping  on K.  To complete the definition of the bent 
triples set r = 0. 

Example 2. Assume that  n = 2r > 2 is even. Set 

d ~-- (2 r --~ 2)(1 -J[- 22 -~- 24 -~- ... --~ 22s) -~ 1. 

Then 
d - - 2  2(3+1) ( m o d 2  ~ - 1 ) ,  

and consequently the restriction of r = x d onto K = GF(2 r) is linear. Simi- 
larly set 

d' = (2 r + 2)(1  + 2 5 + 2 4 + ... + 2 2~') + 1. 

Now let U be any hyperplane of K and Y0 E K \ U. Then the conditions (b) and 
(c) of Theorem 4.3 are fulfilled..We do not know when in general r is bijective. 
But at least for s = 0 this is always the case, since 

(2 ~ + 3 ) ( 3 . 2  " - 3  - 2 r - 3 )  -- 1 (rood 2" - 1). 

To describe the surjection from L onto U for a concrete example,  suppose tha t  

U = ker WrK 

and r is odd. Then again the orthogonal projection can be taken as p, i.e. p(x) = 
Trn:g (x) -~ Tr(x),  and consequently 

~(~) = ~(TrL:K(x) + T~(x)) + T~(~0). 

I t  is easy to find further similar examples of bent triples, where r and r are 
power functibns. 

According to Theorem 4.3 we have found a new construction of bent func- 
tions. But  of course this does not mean that  the resulting bent functions are 
really new in the sense that  they cannot be derived from already known ones 
using simple modifications. For instance, the following constructions alter a given 
bent function f on V = GF(2) un into another bent function g on V: 

1. "affine modification," i.e. g = fA,  where A : V ~ V is bijective and affine, 
2. "affine addition," i.e. g = f + ~, wher~ ~ : V , GF(2) is affine, 
3. "dualizing," i.e. g = f* ,  where the dual bent function f* associated to f is 

defined by the equation 
f w  = 2 n (_1)]*,  

Also, the direct sum of bent functions is again a bent function. Another kind of 
modifications are those which require certain conditions to guarantee tha t  the 
resulting function is bent again. A lot of them are known in the literature, the 
most  simple is 

4. "skipping," i.e. setting g = f + x v ,  where f is bent function with 2n variables, 
and U is an affine subspace with dimension n such that  f is constant on U. 
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Note that  skipping can be applied precisely to normal bent functions. 
Let 7), A4 and Af denote the class of all bent functions of D-type, MM-type 

and the type constructed in Theorem 4.3, respectively. For any class B of bent 
functions let B denote its completion under equivalence (i.e. modifications of 
type 1. and 2.), and let B denote its completion under forming direct sums, the 
above modifications 1. - 3. and known "conditional" modifications such as for 
instance 4. 

The class of all explicitly known bent functions so far can now be written as 

7) U A4. 

Thus if we want to show that  the bent functions of Theorem 4.3 are new in 
the strongest sense of the word then we would have to establish that  Af is not 
included in 7) tJ Ad. However z, this seems to be a very difficult problem. The 
weaker statement A/" q~ 7) U AA is ~ desirable first step. The probably easier half 
of this s tatement is shown next. To this end we have proven by computat ion of 
explicit examples: 

L e m m a 5 .  The class Af contains bent functions with non-degenerated second 
derivation. 

P r o p o s i t i o n 6 .  The class A/" is not contained in .s 

Proof. To seperate 7) from Ad, Dillon [4] showed that  the bent functions of MM- 
type have a degenerated second derivation, while this in general is not true for 
bent functions of D-type. In view of Lemma 5 we can argue in the same way. [] 

Remark. Carlet [2] has shown that  a generalized form of skipping applied to 

bent functions of MM-type leads out of P S  U A/l, where P S  denotes the class of 
all bent functions, which are "partial spreads." (PS includes 7) as the subclass 
of its concretely known examples.) 

3 Balanced Boolean Functions 

The s p e c t r a l  r a d i u s  of a Boolean function f : GF(2) m ~ GF(2) is 

= max{ I / w ( a ) l :  a 

R / c a n  be considered as a measure for the linearity of f .  Thus if we are interested 
in Boolean functions with high nonlinearity then we have to look for f ' s  with 
small R I . 

The  P a r s e v a l  e q u a t i o n  states that  the square sum over the Walsh coeffi- 
cients of a Boolean function with m variables equals to 2 2"m. Hence we have 

R/ > 2 rn/2, 

and in the even case m = 2n this lower bound is achieved by bent functions, 
which can be characterized by the property that  their Walsh spectrum consists 
only of the values 4-2 n. (The odd case is known to be difficult; see [7].) 
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However, bent functions are not balanced. Thus if we ask for balanced func- 
tions with high nonlinearity then it is a natural idea to obtain them by "making 
a bent function balanced," where the spectral radius is increased as less as pos- 
sible. In the following it will be shown that  this idea works for all normal bent 
functions. In this way we can construct balanced functions with almost the same 
nonlinearity as bent functions. 

First we prove the following lemma (el. [2], Lemma 1): 

L e m m a 7 .  Let W = GF(2) ~ and V = W 2. Let f be a normal bent function 
on V. That is w.l.o.g, f(x,O) = 0 for all x E W. Then 8 f w ( 0 ,  b) = 2 n for all 
b E W. Moreover for each fixed y E W \ {0} the function 

W ) GF(2) 

f y :  / 
is balanced. 

Proof. Set for y E W 

{ f~'r = ~ ( - 1 V ( ~ , ~ )  for V # 0 

F(V) = 

0 otherwise. 

We compute 

E f w ( 0 '  b) = E (-1)](z'v)+(b'y) 
b b,x,y 

=E(- - i ) ] ( z 'O)+(b 'O}+EF(Y) (~( - - l ) (b 'V)  ) 
b,x y#O 

= 2 2'~ + 0 = 2 2n. 

In view of f w  (0, b) = 4-2 n we conclude f w  (0, b) = 2 n. Hence 

2 ~ = W ( 0 ,  b) = 2 ~ + ~ F (y ) ( -1 ) (b ,~ ,  
y#o 

and therefore F(b) = )-'~y F(y)(-1)(b,y) = 0 for all b E W. Consequently F 

2 - n F  = 0. [] 

3 We use the canonical scMar product to define the Walsh coefficients. 
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Remark. Lemma 7 shows that  if f is a normal bent function then also its dual 
f* is normal.  

P r o p o s i t i o n S .  Let W = GF(2) ~ and V = W ~. Let f be a normal bent function 
on V.  That is w.l.o.g, f (x ,O) = 0 for all x E W.  Furthermore let a balanced 
function O : W ~ GF(2) be given. Set for x, y E W 

o(x,y) = { f(x'Y)' ify#o 

~(x), otherwise. 

Then 0 is balanced and we have 

0 w ( a , b ) =  l f W ( a ' b ) + O W ( a ) '  i fa~s 

( O, otherwise. 

In particular it follows that 

R e  = 2 ~ + Re. 

Proof. We have 

0 W (a, b) = Z ( - 1 )  e(='y)+(a'=)+(b'y) 
X~y 

= ~(- l )e(=)+( ' ,  ") + ~ ( - i )  J(=,y)+(',=)+(b,y) _ Z ( - I ) ( " , ' )  

= On(a) -b fW(a ,b )  - Z ( - 1 )  (a'=). 

This proves the first assertion, since f w  (0, b) = 2 n by Lemma 7. 
If we apply Lemma 7 to the dual bent function of f then in particular we see 

that  for each fixed a E W \  {0} both values 2 n and - 2  ~ are attained by f w  (a, b). 
This implies Ro = 2" + Re. [3 

In order to discuss the implications of Proposition 8 we introduce the nota- 
tions 

R(m) = min{Rf I f :  GF(2) TM 

RB(m) = min{R] I f :  GF(2) m 

, GF(2)}, 

, GF(2) balanced}. 

Theorem9. RB(2n) _< 2" + RB(n). 

Proof. Use Proposition 8 with some 0 such that  Ro = RB(n). O 

For even m = 2Su, u odd, one concludes by an inductive application of Theo- 
rem 9: 

C o r o l l a r y  10. RB(m) < 2 m/2 + 2 m/4 -k 2 m/s + ... -F 2 u -b RB(u). 
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On the other hand one easily verifies that  

RB(u) _< z ~ . 

Using this fact and a'lower bound basically derived from the Parseval equation 
we obtain for m > 4 

~ ~__+A. 2 m l 2 + 4 < R B ( m ) _ < 2  m / 2 + 2  m / 4 + 2  re~s+. . .+2 u + z  2 . (3) 

Independently the upper bound of (3) has been found by Seberry, Zhang and 
Zheng (see Theorem 1 of [9]). For instance it yields 

132 _< RB(14) _< 144. (4) 

For u = 1, 3, 5 and 7 it is known that  R(u) = RB(u) = 2( "+i)/2. But in 1983 
Patterson and Wiedemann [7] showed that  

27 ~ !~+! 
R(15)_<216=~-~z ~ . (5) 

We can derive from this fact a similar result for balanced Boolean functions (cf. 
Theorem 2 of [9]). In fact note that  for the spectral radius of the direct sum of 
Boolean functions f and g we have the formula Rj~g = R/Rg. Hence 

RB(n 4- m) < RB(n) R(m) (6) 

for all n and m, since f |  is balanced if f is balanced. Thus by (4), (5) and (6) 

243 29r 
- -  " 2 2 RB(29) < RB(14) R(15) < 144 216 = ~ . 

More generally this implies 

RB(u) < 2 ~-+)- for all odd u > 29, 

since RB(u + 2) _< RB(u)R(2) = 2 RB(u). Note that  therefore Corollary 10 is 
stronger than the upper bound of (3). We close our investigation with two con- 
jectures: 

C o n j e c t u r e  A. 

C o n j e c t u r e  B. 

The recursive inequality given in Theorem 9 is sharp: 

RB(2n) = 2 '~ + RB(n). 

For odd m we have the asymptotic formulas 

RB(m) ,~ R(m) ~, 2 m/2. 
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4 Applications 

Theorem 4 unifies and extends the known constructions of bent functions. Propo- 
sition 8 describes how we can get balanced Boolean functions with highest non- 
linearity known so far. On the other hand, the generation of bent functions with 
2n variables by Theorem 4 requires a balanced Boolean function cr with n vari- 
ables. If n is even, one can choose c~ highly nonlinear accor~iing to Proposition 8, 
and then use Theorem 4.2. That  is, applications of Theorem ~ and Proposition 8 
can be linked together inductively. 

Adding also the forming of direct sums, affine modifications, affine addition, 
dualizing and (generalized) skipping as ingredients, all this can be considered as 
a cooking book for both, the generation of bent functions and of highly nonlinear 
balanced Boolean functions with an even number of variables. 

C o n c l u d i n g  R e m a r k s  

1. There are certainly more ways to construct "non-standard" bent triples 
(c~, r r than those given in Theorem 4.3. The smaller the st/pport of the 
Walsh transformation of c~ becomes, the more freedom we get for r and r 
We have restricted ourselves to power functions, because this seems to be 
the simplest non-trivial case. 

2. Another class of explicitly constructable bent functions has recently been 
found by Cadet  [3]. This class can also be derived from a slightly modified 
version of the triple construction, as will be shown in a forthcoming paper. 

3. Simon Blackburn [1] mentioned a simple counting argument showing that  
there are non-normal Boolean functions with 2n variables for n > 6. In fact, 
for each affine subspace S of dimension n there are precisely 

bn -- 2 �9 222"-2'~ 

Boolean functions, which are constant on S. On the other hand it is well- 
known that  there are exactly 

n - 1  22 n __ 2i 

i=0 

subspaces of dimension n, i.e. the number of affine subspaces of dimension 
n is a,~ = 2ns,. Thus an upper bound for the number of normal Boolean 
functions on GF(2) 2'~ is given by 

Un : anbn --  2 2 2 " - 2 ~ + n + l s n  ~-~ 2 2 2 u - 2 ~ + n 2 + n + l .  

However, as one easily verifies, u .  is smaller than 222", the number of all 
Boolean functions on GF(2) 2~, for n > 6. It remains open whether there are 
non-normal bent functions. 
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