
How to Exploit the Intractabil ity of Exact TSP
for Cryptography

Stefan Lucks

Institut ffir Numerische und Angewandte Mathematik
Georg-August-UniversitKt Ghttingen

Lotzestr. 16-18, D-37083 Ghttingen, Germany
(emaih lucks@namu01, gwdg. de)

Abstract . We outline constructions for both pseudo-random generators
and one-way hash functions. These constructions axe based on the exact
TSP (XTSP), a special variant of the well known traveling salesperson
problem. We prove that these constructions axe secure if the XTSP is
infeasible. Our constructions are easy to implement, appear to be fast,
but require a large amount of memory.

1 Introduction

In some fields of modern cryptography, e.g. public key cryptography, it is com-
mon to base the security of cryptosystems on the intractability of well known
mathematical problems. Examples for these problems are the factorization of
integers and the discrete logarithm. But for the fields of one-way hash functions
and secret key cryptography there seems to be no scheme, which has a simple
mathematical description, is provably secure under a reasonable assumption and
is fast.

Merkle and Hellman [8] were the first to suggest an NP-hard problem for
cryptography. They couldn't prove their public key cipher to be as secure as
the underlying problem, and later their cryptosystem was broken. In fact it is
regarded to be very unlikely, that one can prove the equivalence of breaking a
public key cipher and computing some NP-hard problem.

Shamir [13] suggested an identification scheme based on the NP-hard per-
muted kernel problem (PKP). For a discussion of the hardness of the P K P see
[1], [5] and [11]. Other identification schemes based on NP-hard problems were
due to Stern, see [14] and [15].

What about secret key cryptography? Theoretical constructions are known
which are as hard to break as any one-way function, though these construc-
tions are too inefficient for practical applications. Furthermore Impagliazzo and
Naor [6] did discuss constructions for pseudo-random bit generators and univer-
sal one-way hash functions, which are as secure as the Subset Sum problem. This
is NP-hard.

How to Exploit the Intractability of Exact TSP for Cryptography 299

A one-way hash function very similar to Impagliazzo's and Naor's scheme
was suggested the same year by Damgs [4]. This was broken by Camion and
Patarin [2], using essentially brute force and applying the birthday paradox. We
conclude that Damgs scheme did not fall due to an inherent feasibility of the
Subset Sum problem.

Anyway the Subset Sum problem may be too easy for cryptography. The
whole theory of NP-hardness is based on worst-case complexity. Therefore NPeP
would only imply that Subset Sum is infeasible in the worst case. But even being
infeasible on average might be not enough.

Consider a problem P and assume for simplicity, that all instances of size
n are equally likely. Let P be hard on average. In other words, the expected
runtime for every probabilistic algorithm to solve P, when an instance of size n
is randomly chosen, is exponential (in n). There may exist an algorithm, such
that, say, for 50% of all instances of size n we need exponential time to solve
them, and for the remaining instances we need time n c. The expected runtime
for this algorithm is exponential, but a randomly chosen instance is easy with
probability 1/2.

In cryptography we demand for any attacker the probability of a successful
attack to be negligible. Consequently we also demand that a randomly generated
instance of the underlying problem is hard with overwhelming probability--not
only hard in the worst case or hard on average.

Empirical results on heuristics for the Subset Sum problem--e.g, by Schnorr
and Euchner [12J--raise serious doubts on the security of Impagliazzo's and
Naor's schemes. Nevertheless other NP-complete problems can be good cryp-
tographic one-way functions.

The traveling salesperson problem (TSP) is among the oldest and most
prominent problems in algorithm and computational complexity theory. It is
unsolved if we only regard an efficient algorithm as a valid solution. It has been
studied long before the theory of NP-hardness was developed, see [7] for details.

2 The Exact TSP (XTSP)

Essentially the XTSP is a variant of the TSP, where we are looking for a Hamil-
tonian path of a given length--not for the shortest one.

In the following A = (a i , j) is an n • n-matrix with ai,i = 0 and for i ~ j ai,j
randomly chosen from {0, . . . , 2 t(~) - 1}. We think of A as the distance matrix
for distances in the complete directed Graph Gn with n vertices. Therefore the
XTSP is actually a family of problems depending on the parameter l(n).

In this paper we only deal with directed graphs, but our results can easily
be adopted to the undirected, case too.

We regard the numbers ai,j as fixed public constants like, say, the S-boxes of
DES.

Any Hamiltonian cycle X for Gn can be coded as an integer with

[log2((n- 1)!)] Bits.

300 S. Lucks

By LengthA(X) we mean the length of X with respect to A. Given a number
B, the XTSP is to find a Hami!tonian cycle X with

LengthA(X) = B.

It is easy to prove the NP-hardness of the XTSP and the NP-completeness
of the corresponding existence problem.

By the following theorem we find a relationship between different members
of our problem family.

T h e o r e m 1. Let

l'(n) << l(n) << log2((n - 1)!) or l'(n) > l(n) > tog2((n - 1)!).

Then the X T S P with number length l~(n) can--with respect to probabilistic al-
gorithms and except for a polynomial factor in computation t ime--be no harder
than the X T S P with l(n).

I T Sketch of proof: For I (n) < l(n) • log2((n - 1).) we regard the difference ma-
trices A = (ai,j) and A' = (a},j) with a~, i - ai,j (mod 2 z (n)). For any random
X and B = Length A, (X) there exists with overwhelming probability a Y with
LengthA(Y) -- B. If Y exists, it is a solution with respect to A j too.

The proof for l'(n) • l(n) > l og2((n - 1)l) uses the fact, that any solution
with respect to the number length l(n) is unique with overwhelming probability.
Then any solution for the number length l~(n) is--if existing at a l l - - the same
as for l(n). []

Thus l(n) ~ log2((n - 1)i) describes the most secure cases. It seems recom-
mendable to bound l(n) by �89 log2((n - 1)!) < l(n) ~ clog2((n - 1)!) for some
c > l , e . g . c = 2 .

To get a "more uniform" output we define the modular XTSP. Given the
matrix A, the number B and the number length l(n), the problem is to find an
X with

LengthA(X) = B (mod 2t(n)) .

T h e o r e m 2 . With respect to probabilistic algorithms, and except for a polyno-
mial factor in computation time, the modular X T S P is as hard as the X T S P
itself.

Sketch of proof: Let X be random, B = LengthA(X). A random Y with
LengthA(Y) -- B modulo 2 ~('~) satisfies the equation LengthA(Y) = B with
probability 1/O(n), since B is the sum of only n numbers, hence B < 2 l(n) + n.

[]

In the following we only regard the modular XTSP, thus all computations of
the function Length A are done modulo 2 l('~), where l(n) is the number length of
A.

How to Exploit the Intractability of Exact TSP for Cryptography 301

3 One-Way Hash Functions

One-way hash functions are useful for electronic fingerprints. For m > k(m) the
functions fm: {0, 1} m ~ {0, 1} k(m) are one-way hash functions, if it is easy to
compute fro(x) when given m and x E {0, 1) m, but infeasible to find a y r x in
{0, 1} m with fro(x) = fr~(y) for random x.

T h e o r e m 3. Let I(n) < m - - [log2((n- 1)!)]; if Length A is a one-way function
then f,~(X) = LengthA(X) is a one-way hash function.

Sketch of proof: If, given a random X, we can efficiently find some Y ~ X with
LengthA(Y) = LengthA(X), then we can invert the function "Lengtha". Let a

' target number B be given, then

- we chose a random Hamiltonian cycle X and let B ~ -- Length a (X),
- we chose a random edge i* --+ j* of X and compute the matrix A' = (a~,j)

with a~,j = ai,j for (i r i* or j r j*), a ~ . , j . - - a i * , j * + B - B', consequently
Length A, (X) = B,

- and finally we compute a Y r X with LengthA,(X) = LengthA,(Y).

With nonnegligible probability the edge i* -+ j* is no part of the Hamiltonian
cycle Y. In this the case LengthA(Y) = B. []

Universal one-way hash function were defined by Naor and Yung [9], who also
outlined their application to digital signatures and fingerprints. For m > k(m)
the collections Fm of functions f,~,i : {0, 1} TM ~ {0, 1} k('~) constitute families
of universal one-way hash functions, if given m, for any z E {0, 1} m and ran-
domly chosen fm,i E Fro, it is easy to compute fm,i (x), but with overwhelming
probability infeasible to find a y r x in {0, 1) "~ with f,~,~(x) = fm,i(y). Note
that x is not random, but it's choice does not depend on fm,i.

The LengthA-functions are families of universal one-way hash functions. Let
X* be fixed, A a random matrix and X a random Hamiltonian cycle. A is
a distance matrix of the complete directed graph Gn, and by renaming (i.e.
permuting) the vertices of G , we can compute the distance matrix A*, such that
X and X* "are the same cycle". If we can compute a Y* with LengthA. (X*) =
Length A. (Y*), this directly leads us to a Y with LengthA(X) = LengthA(Y).

4 A Pseudo-Random Generator (PRG)

A PRG uses a short, "really random" input to generate a longer, "randomly
looking" bit string S. For a cryptographic PRG it must be infeasible to distin-
guish between S and a "really random" bit string S ~, where each bit is gener-
ated independently according to the uniform distribution. I.e. there must be no
probabilistic polynomial time algorithm, to distinguish between S and S ~ with
probability significantly greater than 0.5.

Cryptographic PRGs are highly useful for many cryptographic applications.
It is straightforward to use them as (secret key) stream ciphers.

302 S. Lucks

T h e o r e m 4 . Let l(n) > 1 + log2((n - 1)!); i f Length A is a one-way function,
then g (X) = LengthA(X) is a cryptographic PRG.

Sketch of proof: Assume there exists a polynomial time algorithm D ~ to dis-
tinguish between S and S' with probability �89 + p(--~), p(n) a polynomial in n.
Then there also exists a polynomial time algorithm D to distinguish with over-
whelming probability. We will use D to find out for any B, if there is an X with
Length A(X) = B.

Since l(n) >] + log2((n - 1)!), z is unique with nonnegligible probability.
For any i, j , i r j we randomly change ai,j. As in the proof of theorem 3 we get
a new distance matrix A ~. We have Length A, (X) = B if and only if the edge
i --+ j is no part of the Hamiltonian cycle X. In the other case with significant
probability there is no Y with Length A, (Y) = B. Thus we can use D to find the
edges of X. []

5 On the Choice of A

Before one can apply our schemes, the coefficients a~,j of the matrix A must be
fixed. We consider two natural ways to do this:

1. Generate n random points in a finite plane (or some higher dimensional
space) and compute ai,j as the (e.g. Euclidean) distance between the points
i and j . In order to save space one might store the coordinates of the points
and compute the distances on demand.

2. Generate the ai,j as independent random numbers from {0, 2 I(n) - 1}, ac-
cording to the uniform distribution.

Note that the first option leads to an undirected graph, i.e. ai,j m aj,i. Though
we could cope with this, the first option is not recommendable. It is well known
(cf. [3], section 37.2), that, if the triangle inequality holds for a TSP, there is a
good deterministic approximation Mgorithm. But no such algorithm can exist
for general TSPs, if NP~P. There is no obvious way to make use of the triangle
inequality for solving the XTSP. Nevertheless such inherent structures in the
matrix A should be considered as possible weaknesses.

The second option forces us to generate and store a large number of random
bits. A very convincing way to solve the generation problem is to use the first
l (n)n 2 bits of the binary representation of ~r - 3. Other mathematical constants
would do as well, if the resulting bits appear to be uniformly distributed.

6 How Infeasible is the X T S P ?

As outlined in the introduction, we should not trust in the infeasibility of any
problem simply because it is NP-complete. The "classical" TSP minimization
problem is feasible for dimensions n ="several thousand", see Padberg and Ri-
naldi [10]. This is Marming!

How to Exploit the Intractability of Exact TSP for Cryptography 303

On the other hand there are some reasons to believe that algorithms like
Padberg's and Rinaldi 's--which seams to be typical for all approaches to solve
large-scale TS P s - - a r e of few help for attacks against our cryptographic schemes:

1. The triangle inequality does hold for all solved problems.
2. The number representation for distances is limited. Padberg and Rinaldi

used at most 64 bits; these were floating point numbers.
3. The results are achieved by branch-and-cut or branch-and-bound algo-

rithms. The basic b ranch -and- . . , principle can roughly be described as fol-
lows:

- Let a solution space S be given.
- Divide S into subsets $1, $ 2 , . . . , Sk.
-- Compute lower and/or upper bounds for all solutions in Si.
- For all S~ do:

�9 If the lower bound is too large (or the upper bound too low) then
discard Si

�9 else apply b ranch-and- . . , on the solution space Si.
Clearly this is efficient if we can discard many subsets Si at a high level of
the recursion tree. In our case the target number B is computed as the length
of some random Hamiltonian cycle X. Hence we can expect a nonnegligible
fraction of all Hamiltonian cycles to be shorter than X and a nonnegligible
fraction to be longer. Thus nearly all large subsets S~ of the solution space
will contain both longer and shorter Hamiltonian cycles and we can discard
almost none.
So the XTSP appears to be a variant of the TSP, where b ranch -and - . . .
works exceptionally bad.

Nevertheless some further research is necessary before we can suggest "prob-
ably secure" values for the parameters n and l(n). The size of these parameters
is, of course, essential for the speed of our schemes and for the size of the required
memory.

Much more research is necessary before we can recommend our schemes for
practical use. Any effort in attacking the schemes is appreciated!

R e f e r e n c e s

1. T. BARITAUD, M. CAMPANA, P. CHAUVAUD, H. GILBERT, On the security of the
Permuted Kernel Identification Scheme, in: Proc. Crypto '92, Springer LNCS 760,
305-311.

2. P. CAMION, J. PATARIN, The Knapsack Hash Function proposed at Crypto '89
can be broken, in: Proc. EuroCrypt '91, Springer LNCS 547, 39-53.

3. T. H. CORMEN, C. E. LEISERSON, R. L. RIVEST, Introduction to Algorithms,
McGraw-Hill, 1990.

4. I. DAMG~.RD, Design Principles for Hash Functions, in: Proc. Crypto '89, Springer
LNCS 435, 416-427.

5. J. GEORGIADES, Some Remarks on the Security of the Identification Scheme Based
on Permuted Kernels, in: J. Cryptology (1992), Vol. 5, 133-137.

304 S. Lucks

6. R. IMPAGLIAZZO, M. NAOR, Efficient Cryptographic Schemes Provably as Secure
as Subset Sum, in: Proc. FOCS '89, 236-241.

7. E. L. LAWLER, J. K. LENSTRA, A. H. G. RINNOY KAN, D. B. SHMOYS (eds.),
The Traveling Sedesmam Problem, Wiley, 1985.

8. R. C. MERKLE, M. HELLMAN, Hiding information and Signature in Trapdoor
Knapsack, in: IEEE Trans. on Inf. Theory 24 (1978), 525-530.

9. M. NAOR, M. YUNG, Universal One Way Hash Functions and Their Cryptographic
Applications, in: Proc. STOC '89, 33-43.

10. M. PADBERG, G. X~INALDI, A Branch-and-Cut Algorithm for the Resolution of
Large-Scale Symmetric Traveling Salesman Problems, in: Siam Review 33, No. 1
(1991), 60-100.

11. J. PATARIN, P. CHAUVAUD Improved Algorithms for the Permuted Kernel Prob-
lem, in: Proc. Crypto '93, Springer LNCS 773,391-402.

12. C. P. SCI~NORR, M. EUCHNER, Lattice Basis Reduction: Improved Practical Al-
gorithms and Solving Subset Sum Problems, in: Proc. FCT '91, 68-85.

13. A. S~IAMm, An Identification Scheme based on Permuted Kernels, in: Proc. Crypto
'89, Springer LNCS 435, 606-609.

14. J. STERN, A new identification scheme based on syndrome decoding, in: Proc.
Crypto '93, Springer LNCS 773, 13-20.

15. J. STERN, Designing Identification Schemes with Keys of Short Size. in: Proc.
Crypto '94, Springer LNCS 839, 164-173.

