
How to Exploit  the Intractabil ity of Exact  TSP  
for Cryptography 

Stefan Lucks 

Institut ffir Numerische und Angewandte Mathematik 
Georg-August-UniversitKt Ghttingen 

Lotzestr. 16-18, D-37083 Ghttingen, Germany 
(emaih lucks@namu01, gwdg. de) 

Abstract .  We outline constructions for both pseudo-random generators 
and one-way hash functions. These constructions axe based on the exact 
TSP (XTSP), a special variant of the well known traveling salesperson 
problem. We prove that these constructions axe secure if the XTSP is 
infeasible. Our constructions are easy to implement, appear to be fast, 
but require a large amount of memory. 

1 Introduction 

In some fields of modern cryptography, e.g. public key cryptography, it is com- 
mon to base the security of cryptosystems on the intractability of well known 
mathematical  problems. Examples for these problems are the factorization of 
integers and the discrete logarithm. But for the fields of one-way hash functions 
and secret key cryptography there seems to be no scheme, which has a simple 
mathematical  description, is provably secure under a reasonable assumption and 
is fast. 

Merkle and Hellman [8] were the first to suggest an NP-hard problem for 
cryptography. They couldn't  prove their public key cipher to be as secure as 
the underlying problem, and later their cryptosystem was broken. In fact it is 
regarded to be very unlikely, that  one can prove the equivalence of breaking a 
public key cipher and computing some NP-hard problem. 

Shamir [13] suggested an identification scheme based on the NP-hard per- 
muted kernel problem (PKP).  For a discussion of the hardness of the P K P  see 
[1], [5] and [11]. Other identification schemes based on NP-hard problems were 
due to Stern, see [14] and [15]. 

What  about secret key cryptography? Theoretical constructions are known 
which are as hard to break as any one-way function, though these construc- 
tions are too inefficient for practical applications. Furthermore Impagliazzo and 
Naor [6] did discuss constructions for pseudo-random bit generators and univer- 
sal one-way hash functions, which are as secure as the Subset Sum problem. This 
is NP-hard. 
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A one-way hash function very similar to Impagliazzo's and Naor's scheme 
was suggested the same year by Damgs [4]. This was broken by Camion and 
Patarin [2], using essentially brute force and applying the birthday paradox. We 
conclude that Damgs scheme did not fall due to an inherent feasibility of the 
Subset Sum problem. 

Anyway the Subset Sum problem may be too easy for cryptography. The 
whole theory of NP-hardness is based on worst-case complexity. Therefore NPeP  
would only imply that Subset Sum is infeasible in the worst case. But even being 
infeasible on average might be not enough. 

Consider a problem P and assume for simplicity, that all instances of size 
n are equally likely. Let P be hard on average. In other words, the expected 
runtime for every probabilistic algorithm to solve P, when an instance of size n 
is randomly chosen, is exponential (in n). There may exist an algorithm, such 
that, say, for 50% of all instances of size n we need exponential time to solve 
them, and for the remaining instances we need time n c. The expected runtime 
for this algorithm is exponential, but a randomly chosen instance is easy with 
probability 1/2. 

In cryptography we demand for any attacker the probability of a successful 
attack to be negligible. Consequently we also demand that a randomly generated 
instance of the underlying problem is hard with overwhelming probability--not 
only hard in the worst case or hard on average. 

Empirical results on heuristics for the Subset Sum problem--e.g, by Schnorr 
and Euchner [12J--raise serious doubts on the security of Impagliazzo's and 
Naor's schemes. Nevertheless other NP-complete problems can be good cryp- 
tographic one-way functions. 

The traveling salesperson problem (TSP) is among the oldest and most 
prominent problems in algorithm and computational complexity theory. It is 
unsolved if we only regard an efficient algorithm as a valid solution. It has been 
studied long before the theory of NP-hardness was developed, see [7] for details. 

2 The Exact TSP (XTSP) 

Essentially the XTSP is a variant of the TSP, where we are looking for a Hamil- 
tonian path of a given length--not for the shortest one. 

In the following A = ( a i , j )  is an n • n-matrix with ai,i = 0 and for i ~ j ai,j 
randomly chosen from {0, . . . ,  2 t(~) - 1}. We think of A as the distance matrix 
for distances in the complete directed Graph Gn with n vertices. Therefore the 
XTSP is actually a family of problems depending on the parameter l(n). 

In this paper we only deal with directed graphs, but our results can easily 
be adopted to the undirected, case too. 

We regard the numbers ai,j as fixed public constants like, say, the S-boxes of 
DES. 

Any Hamiltonian cycle X for Gn can be coded as an integer with 

[log2((n- 1)!)] Bits. 
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By LengthA(X ) we mean the length of X with respect to A. Given a number 
B, the XTSP is to find a Hami!tonian cycle X with 

LengthA(X ) = B. 

It is easy to prove the NP-hardness of the XTSP and the NP-completeness 
of the corresponding existence problem. 

By the following theorem we find a relationship between different members 
of our problem family. 

T h e o r e m  1. Let 

l'(n) << l(n) << log2((n - 1)!) or l'(n) > l(n) > tog2((n - 1)!). 

Then the X T S P  with number length l~(n) can--with respect to probabilistic al- 
gorithms and except for a polynomial factor in computation t ime--be no harder 
than the X T S P  with l(n). 

I T Sketch of proof: For I (n) < l(n) • log2((n - 1).) we regard the difference ma- 
trices A = (ai,j) and A' = (a},j) with a~, i - ai,j (mod 2 z (n)). For any random 
X and B = Length A, (X) there exists with overwhelming probability a Y with 
LengthA(Y ) -- B. If Y exists, it is a solution with respect to A j too. 

The proof for l'(n) • l(n) > l og2( (n -  1)l) uses the fact, that  any solution 
with respect to the number length l(n) is unique with overwhelming probability. 
Then any solution for the number length l~(n) is--if  existing at a l l - - the same 
as for l(n). [] 

Thus l(n) ~ log2((n - 1)i) describes the most secure cases. It seems recom- 
mendable to bound l(n) by �89 log2((n - 1)!) < l(n) ~ clog2((n - 1)!) for some 
c >  l , e . g . c = 2 .  

To get a "more uniform" output we define the modular XTSP. Given the 
matrix A, the number B and the number length l(n), the problem is to find an 
X with 

LengthA(X ) = B (mod 2t(n)) . 

T h e o r e m 2 .  With respect to probabilistic algorithms, and except for  a polyno- 
mial factor in computation time, the modular X T S P  is as hard as the X T S P  
itself. 

Sketch of proof: Let X be random, B = LengthA(X ). A random Y with 
LengthA(Y ) -- B modulo 2 ~('~) satisfies the equation LengthA(Y ) = B with 
probability 1/O(n), since B is the sum of only n numbers, hence B < 2 l(n) + n. 

[] 

In the following we only regard the modular XTSP, thus all computations of 
the function Length A are done modulo 2 l('~), where l(n) is the number length of 
A. 
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3 One-Way Hash Functions 

One-way hash functions are useful for electronic fingerprints. For m > k(m) the 
functions fm:  {0, 1} m ~ {0, 1} k(m) are one-way hash functions, if it is easy to 
compute fro(x) when given m and x E {0, 1) m, but infeasible to find a y r x in 
{0, 1} m with fro(x) = fr~(y) for random x. 

T h e o r e m  3. Let I(n) < m - -  [ log2((n-  1)!)]; if Length A is a one-way function 
then f,~(X) = LengthA(X ) is a one-way hash function. 

Sketch of proof: If, given a random X, we can efficiently find some Y ~ X with 
LengthA(Y) = LengthA(X ), then we can invert the function "Lengtha".  Let a 

' target number B be given, then 

- we chose a random Hamiltonian cycle X and let B ~ -- Length a (X), 
- we chose a random edge i* --+ j* of X and compute the matrix A' = (a~,j) 

with a~,j = ai,j for (i r i* or j r j*), a ~ . , j .  - -  a i * , j *  + B - B', consequently 
Length A, (X) = B, 

- and finally we compute a Y r X with LengthA,(X ) = LengthA,(Y ). 

With  nonnegligible probability the edge i* -+ j* is no part of the Hamiltonian 
cycle Y. In this the case LengthA(Y ) = B. [] 

Universal one-way hash function were defined by Naor and Yung [9], who also 
outlined their application to digital signatures and fingerprints. For m > k(m) 
the collections Fm of functions f,~,i : {0, 1} TM ~ {0, 1} k('~) constitute families 
of universal one-way hash functions, if given m, for any z E {0, 1} m and ran- 
domly chosen fm,i E Fro, it is easy to compute fm,i (x), but with overwhelming 
probability infeasible to find a y r x in {0, 1) "~ with f,~,~(x) = fm,i(y). Note 
that  x is not random, but it's choice does not depend on fm,i. 

The LengthA-functions are families of universal one-way hash functions. Let 
X* be fixed, A a random matrix and X a random Hamiltonian cycle. A is 
a distance matrix of the complete directed graph Gn, and by renaming (i.e. 
permuting) the vertices of G ,  we can compute the distance matrix A*, such that  
X and X* "are the same cycle". If we can compute a Y* with LengthA. (X*) = 
Length A. (Y*), this directly leads us to a Y with LengthA(X ) = LengthA(Y ). 

4 A Pseudo-Random Generator (PRG) 

A PRG uses a short, "really random" input to generate a longer, "randomly 
looking" bit string S. For a cryptographic PRG it must be infeasible to distin- 
guish between S and a "really random" bit string S ~, where each bit is gener- 
ated independently according to the uniform distribution. I.e. there must be no 
probabilistic polynomial time algorithm, to distinguish between S and S ~ with 
probability significantly greater than 0.5. 

Cryptographic PRGs are highly useful for many cryptographic applications. 
It is straightforward to use them as (secret key) stream ciphers. 
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T h e o r e m 4 .  Let l(n) > 1 + log2((n - 1)!); i f  Length A is a one-way function,  
then g ( X )  = LengthA(X ) is a cryptographic PRG.  

Sketch of proof: Assume there exists a polynomial time algorithm D ~ to dis- 
tinguish between S and S' with probability �89 + p(--~), p(n) a polynomial in n. 
Then there also exists a polynomial time algorithm D to distinguish with over- 
whelming probability. We will use D to find out for any B, if there is an X with 
Length A(X) = B. 

Since l(n) > ] + log2((n - 1)!), z is unique with nonnegligible probability. 
For any i, j ,  i r j we randomly change ai,j. As in the proof of theorem 3 we get 
a new distance matrix A ~. We have Length A, (X) = B if and only if the edge 
i --+ j is no part of the Hamiltonian cycle X. In the other case with significant 
probability there is no Y with Length A, (Y) = B. Thus we can use D to find the 
edges of X. [] 

5 On the Choice of A 

Before one can apply our schemes, the coefficients a~,j of the matrix A must be 
fixed. We consider two natural ways to do this: 

1. Generate n random points in a finite plane (or some higher dimensional 
space) and compute ai,j as the (e.g. Euclidean) distance between the points 
i and j .  In order to save space one might store the coordinates of the points 
and compute the distances on demand. 

2. Generate the ai,j as independent random numbers from {0, 2 I(n) - 1}, ac- 
cording to the uniform distribution. 

Note that  the first option leads to an undirected graph, i.e. ai,j m aj,i. Though 
we could cope with this, the first option is not recommendable. It is well known 
(cf. [3], section 37.2), that,  if the triangle inequality holds for a TSP, there is a 
good deterministic approximation Mgorithm. But no such algorithm can exist 
for general TSPs, if NP~P.  There is no obvious way to make use of the triangle 
inequality for solving the XTSP. Nevertheless such inherent structures in the 
matrix A should be considered as possible weaknesses. 

The second option forces us to  generate and store a large number of random 
bits. A very convincing way to solve the generation problem is to use the first 
l (n )n  2 bits of the binary representation of ~r - 3. Other mathematical  constants 
would do as well, if the resulting bits appear to be uniformly distributed. 

6 How Infeasible is the X T S P ?  

As outlined in the introduction, we should not trust in the infeasibility of any 
problem simply because it is NP-complete. The "classical" TSP minimization 
problem is feasible for dimensions n ="several thousand", see Padberg and Ri- 
naldi [10]. This is Marming! 
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On the other hand there are some reasons to believe that  algorithms like 
Padberg's  and Rinaldi 's--which seams to be typical for all approaches to solve 
large-scale TS P s - - a r e  of few help for attacks against our cryptographic schemes: 

1. The triangle inequality does hold for all solved problems. 
2. The number representation for distances is limited. Padberg and Rinaldi 

used at most 64 bits; these were floating point numbers. 
3. The results are achieved by branch-and-cut  or branch-and-bound algo- 

rithms. The basic b ranch -and- . . ,  principle can roughly be described as fol- 
lows: 

- Let a solution space S be given. 
- Divide S into subsets $1, $ 2 , . . . ,  Sk. 
-- Compute lower and/or  upper bounds for all solutions in Si. 
- For all S~ do: 

�9 If the lower bound is too large (or the upper bound too low) then 
discard Si 

�9 else apply b ranch-and- . . ,  on the solution space Si. 
Clearly this is efficient if we can discard many subsets Si at a high level of 
the recursion tree. In our case the target number B is computed as the length 
of some random Hamiltonian cycle X. Hence we can expect a nonnegligible 
fraction of all Hamiltonian cycles to be shorter than X and a nonnegligible 
fraction to be longer. Thus nearly all large subsets S~ of the solution space 
will contain both longer and shorter  Hamiltonian cycles and we can discard 
almost none. 
So the XTSP appears to be a variant of the TSP, where b ranch -and - . . .  
works exceptionally bad. 

Nevertheless some further research is necessary before we can suggest "prob- 
ably secure" values for the parameters n and l(n). The size of these parameters 
is, of course, essential for the speed of our schemes and for the size of the required 
memory. 

Much more research is necessary before we can recommend our schemes for 
practical use. Any effort in attacking the schemes is appreciated! 
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