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Abs t rac t .  This paper introduces a general scheme for formally embed- 
ding high level synthesis by formulating its basic steps as transforma- 
tions within higher order logic. A functional representation of a data 
flow graph is successively refined by means of generic logical transforma- 
tions. Algorithms that are based on logical transformations guarantee 
"correctness by design". They not only construct an implementation but 
also derive the proof for its formal correctness, on the fly. An extra post- 
synthesis-verification step becomes obsolete. The logical transformations 
presented in this paper form a framework for formally embedding exist- 
ing high-level-synthesis procedures. 

1 I n t r o d u c t i o n  

Guaranteeing functional correctness in hardware synthesis is an essential but  
demanding task. This is due to the complexity of synthesis tools and the under- 
lying synthesis algorithms. Hence various forms of formal verification techniques 
are employed to prove the correctness of the implementations, resulting from 
the synthesis process [Melh93, ScKK93, Gupt92]. However the applicability of 
formal verification tools within the synthesis context is limited, since the proof 
of the goal "implementation ~ specification" is very complex. 

Post-synthesis verification is an exacting goal. Full automation can only be 
achieved for small sized circuits on lower levels of abstraction. For large sized 
circuits, verification algorithms either run into space/ t ime hurdles or the user 
has to interact and perform some proofs by hand. 

Conventional synthesis algorithms just determine the implementation - -  the 
information on how the specification was refined into an implementation gets 
lost. The loss of this information is a major  bottleneck for verification. The veri- 
fication process gets just two logical formulae corresponding to the specification 
and the implementation. On the other hand, synthesis is split-up into a set of 
well-defined steps, namely scheduling, allocation and binding, and furthermore 
there exists a vast body of knowledge for solving these steps in an effective 
manner [CaWo91, Paul91, RoKr91]. We therefore propose a technique for "for- 
real synthesis" which closely adheres to the steps of conventional synthesis and 
additionally exploits the knowledge available. 



72 

The idea of formal synthesis is in itself not new. One of the early attempts 
dealt with the conversion of regular expressions into hardware circuits [John84]. 
Later, a number of techniques were proposed for interactively refining the spec- 
ifications into implementations [Lars94, HaLD89, JoWB89, AHL92, MaFo91, 
FoMa90]. All these above-mentioned techniques have one common drawback, 
namely they do not exploit the knowledge of the algorithms which abound in 
synthesis. The novelty of our current approach is that no new synthesis algo- 
rithms (either formal or informal) are proposed, but a general scheme for logi- 
cally embedding various existing synthesis algorithms within a formal set-up is 
presented. 

The outline of this paper is as follows: we first briefly examine the synthesis 
problem and define the notations and scope of our work. Then we describe the 
formal techniques for scheduling, allocation and binding, respectively. 

2 B a s i c s  o f  t h e  " F o r m a l  S y n t h e s i s "  S c e n a r i o  

Starting from an algorithmic description, which does not incorporate timing 
explicitly, the overall aim of high level synthesis is to extract the data path and 
the controller. The major steps in synthesis are: 

1. scheduling under restrained/unrestrained resource constraints 
2. Mlocation 
3. binding 
4. determination of the RT-level implementation 

2.1 Our Starting Point 

The approach given in this paper deals with synthesis based on data-flow graph 
representations only. We represent the given data flow graph by a typed func- 
tion g, and proceed with the various steps of synthesis. The sequential circuit 
corresponding to g will then repeatedly determine g(x), for the various values 
of x. Since we use typed functions, a single input x is sufficient to represent any 
number of inputs corresponding to any type, since they can all be bundled to- 
gether into a single x. The type definition uniquely determines the set of inputs 
and outputs. We will clarify this notion shortly. 

2.2 An Example  for g 

Throughout this paper we shall illustrate the various steps of synthesis via an 
example named myg. myg maps a triple (a, b, c) onto the pair (x, y) as defined 
by the pseudo-procedural description in figure 1. Assuming that all the variables 
used are of the type natural numbers num, the overall type of the function is 

n u m  x n u m  x n u m  - +  n u m  x n u m  
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As basic operat ions there are the binary operations +,  - and �9 and the unary  
operat ion inc. The operator  inc maps  some x to x + 1. Since the intermediate 
results are used within the succeeding expressions, they will be named explicitly. 
In our example they are named p, q, r, s and t. The da ta  flow diagram which 
corresponds to the procedural  code is given in figure 2. 

myg( 
a,b,c:num; 
: x,y:num) 

P r o c e d u r e  

i n p u t s :  

outputs 
begin 

p=a* 

q = inc 
r=p* 

s=b+ 
t=p- 
X=r+ 

y=r* 
end 

b ;  

(c) ; 
q; 
c ;  

s ;  

t ;  

t ;  

Fig. 1. Pseudo procedural code for the example g = myg 

b 

myg 

D p \ 

~i~ . y 

Fig. 2. Dataflow Diagram for myg 

2.3 R e m a r k s  a b o u t  t h e  N o t a t i o n  

We will use A-calculus expressions to denote functions (see [Davi89] for an intro- 
duction to the A-calculus). let-terms will be used for representing ~-redices. Let 
x be a variable, v be an arbi t rary  t e rm having the same type as x and w denote 
an arb i t ra ry  term, where there may be free occurrences of x. In the expression 

l e t  x = v in w 

the variable x is used as an abbreviat ion for v in the expression w. The expression 
w[v/x] is the expression, tha t  can be obtained by subst i tut ing every occurrence 
of x in w by v. w[v/x] is equivalent to the let-term above. 
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2.4 Formal  Represen ta t i on  of g 

Using let-terms to express the auxiliary variables in figure 2, g can be described 
by means of A-abstraction over a tuple consisting of all inputs. In our example the 
input is a triple (a, b, c), there are 7 let-terms - -  one for each auxiliary variable 
- -  and there is a pair of outputs (x,y) (see equation (1)). 

I- myg = 
)~(a, b, c). 
l e tp= a * b  in 
let q = inc(c) in 
l e t r =  p . q  in 
l e t s =  b + c  in (1) 
l e t t  = p - s  in 
l e t x =  r + t  in 
l e t y =  r * t  in 
(~,y) 

On comparing the pseudo-procedural code in figure 1 with the definition in 
equation (1), a direct one-to-one correspondence can be noticed. A little bit 
of formal syntactic sugaring yields the definition. This is true, if the pseudo 
procedural code consists of purely basic blocks. 

2.5 The  Formal  Synthesis  Scheme 

Having defined the basics we will now proceed to give a gist of the overall formal 
synthesis scheme: 

1. Convert the initial data flow graph into a functional representation. 
2. Use an algorithm for scheduling, allocation or binding which performs the 

respective task on the data flow graph and gives us a schedule, allocation or 
binding, respectively. 

3. Apply the pre-proven generic transformations for each task on the data flow 
graph along with the results of the algorithm. 

4. Obtain a transformed function which is equivalent (in the logical sense) to 
the original description. 

5. Derive the RT-level implementation from the transformed function. 

Step 3 - the heart of the overall strategy, has been made possible by meticulous 
proofs of the generic transformations. They take in a function and the results 
of a specific synthesis step, and produce a new function which represents the 
end product of that specific synthesis step. Thus we are able to exploit all the 
optimizations that are offered by a particular algorithm and additionally, these 
transformations are automated and also not time-consuming. In the following 
sections, we shall show the transformed functions corresponding to the steps: 
scheduling, Mlocation and binding. The entire synthesis scheme will be imple- 
mented using the HOL theorem prover [GoMe93]. 
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3 Scheduling 

Scheduling determines the number  of control steps (c-steps) for each calculation 
period 1 and assigns each operat ion to one part icular  c-step 0 . . .  n. Given a spe- 
cific n, the basic idea of the "schedule t ransformation" is to break up the original 
function g into a sequence of functions gO g l . . .  g~, so tha t  the composit ion of 
these functions yields the original function, i.e. g = g~ o g~ - !  o . . .  o gO. 

In our example,  there are 7 operations, whose outputs  are the auxiliary vari- 
ables p, q, r, s, t, x and y. We will also use the names of the auxiliary variables 
to denote the operat ion tha t  produces this variable. Operat ion s, for example,  
is the first + operat ion and the auxiliary variable s is its output .  

Let us assume, tha t  it is intended, tha t  only two circuits are used: one multi- 
plier and one mult i-purpose unit for adding +,  subtract ing - and incrementing 
inc. Under this hardware constraint several schedules are possible. Any arb i t ra ry  
algori thm may  determine the schedule. 

In our example we will use the schedule sketched in figure 3: in c-step 0, s is 
processed, in c-step 1, p and q are processed, in c-step 2, r and t are processed 
and in c-step 3: x and y are processed. In this schedule n becomes 3. There  are 
also schedules for myg with n ~ 3, bu t  under the given restrictions, n = 3 is the 
minimum. 

gO gl g2 g3 

o i, ".CD ; ;N  ,(D.r 

c :: ~ Y 

Fig. 3. Split Dataflow Diagram 

The scheduled function myg will be described by means of a composit ion 
of four functions myg = g a o g 2 o g 1 o g ~ where the functions g ~ g 1, g 2 and 
g a perform the computat ions  of c-step 0, 1, 2 and 3 respectively. The formal 
representat ion of the t ransformed function ( theorem (2)) is derived by means 
of applications of the o operator  definition, expansion of let-expressions and by 
r 

I t  is easy to visualize tha t  this t ransformat ion does not depend upon the 
scheduling algori thm itself, nor do we place any undue demands on the algorithm, 
except tha t  it returns a schedule tha t  obeys the da ta  dependencies. 

1 It is also possible, that the number of c-steps is already given in the specification. 
Then only the assignment of operations has to be performed. 
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I -  m y g  = 

le t  

go = ) , (a ,b,  c). let s = b +  c in (a,b,s,c) and 
g l  = A(a, b, s, c). let p = a *  b in let q = inc(c) in ( p , s , q )  and 
g 2 = A ( p , s , q ) . l e t t  = p - s i n  l e t r = p * q ] n  ( r , t )  and 
g3 = A(r , t ) .  let x = r -I- t in let y = r * t in (x,y) 

in 
g 3 o g 2 o g l o g 0  

(2) 

4 Allocation of Registers 

The register allocation determines the number of registers tha t  is needed for the 
implementation. Usually the scheduling algorithms already take the functional 
resource constraints into account. 

When functions g 0 , g l , . . ,  g~ are composed in the mathematical  world, the 
output  of a function gJ is the input of the function gj+l,  given 0 _< j < n. How- 
ever, in the hardware context, registers are needed to store the values between 
two control steps. The total  number of registers always equals the maximum 
number of outputs  produced by any g J, 0 < j < n. This implies tha t  when any 
of the functions gJ have lesser number of outputs, then some extra variables are 
added to the outputs of gJ and the inputs of gj+l,  so that  the overall number is 
m. These variables can carry any arbitrary values since they are never used. 2 

In our example four variables have to be buffered after c-step 0, three after 
c-step 1 and two after c-step 2. Therefore, we add one auxiliary variable z 1 after 
c-step 1 and two auxiliary variables z e and z 3 after c-step 2 (see figure 4). The 
formal representation is given in theorem (3). 

5 Binding of Registers 

During register binding, variables are tied onto specific registers. The register 
binding is represented as the ordering of the variables within the tuples - -  i.e. 
register binding will be formally expressed by giving the variables a specific 
order. 

In our example four registers are needed. They are named r 1, r 2, r 3 and 
r 4. After c-step 0 they are used for storing a, b, s and c, after c-step 1 they 
are used for storing p, s, q and z 1 and after c-step 2 they are used for storing 
r,  t, z 2 and z 3. The mapping between the variables and the registers has to 
be optimized in order to avoid unnecessary variable transfers between registers. 
Such optimizations can be done by conventional synthesis algorithms outside the 
logic, and then be integrated within our formal synthesis environment. 

The determination of register binding is performed again outside the logic. 
The result of register binding is a table describing the mapping between variables 

2 In general, there may be auxiliary variables with different types. Different sizes of 
registers will be needed to store them and optimization during register allocation 
may become more complex. 
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gO gl g2 g3 

ii p . i!i 

b ::i 

Fig.  4. Allocation of Registers 

I-- myg = 
let 
gO : a(a,  b,c). let s : b-{- c in (a,b, s,c) and 
gl = A(a, b, s, c). let p = a *  b in let q ---- ]nc(c) in (p , s ,q , z  1) and 
g2 __ A(p, s, q, z l ) . ] e t t _ ~ p _ s i n l e t r ~ _ p . q i n ( r , t , z  2,z 3) and 
g 3 _ _ ~ ( r , t , 2 , z 3 ) . l e t x _ _ r + $ [ n [ e t y : r . t i n  (x ,y)  

in 
g 3 o g 2 o g l  o g O  

(3) 

and  registers  and  this table  is the  basis for our  nex t  logical t r a n s f o r m a t i o n  step.  
Let  us assume,  t h a t  the  register  b inding of table  1 is to  be  applied.  

Registers after c-step 0 after c-step 1 after c-step 2 
r 1 a p r 
r 2 b q t 
r 3 8 S Z 2 

r 4 C Z 1 Z 3 

T a b l e  1. Register Binding 

From now on, we will not  use the  auxi l iary  var iable  names  p, q, r , . . .  any  
more  bu t  replace  t h e m  by register  names  r 1, r 2, r 3 , . . . .  In  each of the  funct ions  
gO, g l . . .  the  names  r 1, r 2, r 3 , . . ,  are used to represent  the  register  values before  

11 2 [ 3 r the  eva lua t ion  of the  funct ion and  r , r , r , . . .  are used to  indicate  the  regis ter  
values af ter  the  eva lua t ion  of the  function.  Variable  r enaming  is pe r fo rmed  by a -  
conversion (see [DaviS9]). T h e  fo rmal  r ep resen ta t ion  of the  result  of  the  regis ter  
b inding in t h e o r e m  (4) is achieved by  expans ion  of the  o ope ra to r s  and let- 
expressions and/~- reduc t ions .  
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gO 91 g2 g3 

::: .. 

........................................................ A ................................................... :i!i .................................. ,iii .................................................... �9 

F ig .  5. Binding of Registers 

I- myg = 
let 
gO = a(a, b, e). 

let r 1' =- a and r 2' = b and r a' = b + c and r 4' -- c in 
(r 1' ' r ~' ' r 3', r 4') 

and 
gl = ~ ( r l ,  r 2  ra, r4). 

l e t r  l ' = r  l * r  2 a n d r  2 ' = i n c ( r  4) a n d r  a ' = r  3 a n d r  4 ' = z  1 in 
(r 1' ' r 2' ' r 3' ' r 4') 

and 
g2  ---- ~ ( r l , r 2 , r 3  r 4 ) .  

l e t  r 1' = r I * r 2 a n d  r 21 ---- r 1 - r 3 a n d  r 3 '  ---- z 2 a n d  r 41 = z 3 ill 

( r  1 ' ,  r 2 ' ,  r 3 ' ,  r 4 ' )  

and 
g3 = A(rl  r2 ra,r4) .  

let x = r I + r 2 in let y = r I * r 2 in 
(x,u) 

in 
g 3 o g 2 o g l  o g 0  

) X  

) Y  

(4) 

6 A l l o c a t i o n  a n d  B i n d i n g  o f  F u n c t i o n a l  U n i t s  

I n  th i s  s t ep  of t h e  a l g o r i t h m ,  we c o n s t r u c t  a c o m p o u n d  f u n c t i o n a l  u n i t  F U  pro-  
v i d i n g  t h e  o p e r a t o r s  for i m p l e m e n t i n g  t h e  o p e r a t i o n s  of  each  c-s tep  ( a l loca t ion ) ,  

a n d  we use  t he  c o m p o u n d  f u n c t i o n a l  u n i t  F U  to  i m p l e m e n t  t he  o p e r a t i o n s  of 

t he  da ta f low g r a p h  (b ind ing ) .  

As a l r e a d y  m e n t i o n e d  ear l ier ,  o n l y  two o p e r a t i o n  u n i t s  a re  n e e d e d  in  ou r  

e x a m p l e :  one  m u l t i p l i e r  ( n a m e d  multiplier) a n d  one  m u l t i - p u r p o s e  u n i t  ( n a m e d  
mul t ipurpose)  for a d d i n g ,  s u b t r a c t i n g  a n d  i n c r e m e n t i n g .  T h e i r  f o r m a l  specif ica-  
t i ons  are  g iven  as below.  Such  desc r ip t i ons  a re  a s s u m e d  to  b e  g iven  in  a l i b r a r y  
wh ich  def ines  t h e  a b s t r a c t  RT- leve l  c o m p o n e n t s .  T h e  co r r ec tnes s  of  such  c o m p o -  
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nents is beyond the scope of this paper and can be performed using conventional 
verification techniques. 

I- mul t ip l i e r (a ,  b) = a * b 

t- mult ipurpose((d, e), Add) = d + e 
mult ipurpose((d, e), Sub) = d - e 
mult ipurpose((d, e), Inc) = d + 1 

The multi-purpose unit has ((d, e), c) as input, d and e are data  inputs and c is 
a control input for selecting the function, c may have one of the values Add, Sub 
and Inc and the corresponding output is d + e, d - e and d + 1, respectively. 

In theorem (5) the functional unit FU is provided. It consists of one multiplier 
and one multi-purpose unit. It 's input (((a, b), (d, e)), c) consists of two parts: a 
data  input ((a, b), (d, e)) and a control input c. The result is a pair consisting of 
the product of a and b and the result of applying d and e to the multi-purpose 
unit, where the control of the multi-purpose unit is c. 

In general there may be several operations of each type and optimizations in 
the binding between operations and functional units may reduce communication 
costs. In our small example the binding is unambiguous, since in each c-step 
there is always no more than one operation of each type. 

Remark: In c-step 0, the multiplier unit remains unused. Arbitrary values z 5 
and z 6 are its input and the output (named z 7) is not connected to the output 
of gO. Since there is only one operand needed during the inc-operation in c-step 
1, one of the data  inputs becomes redundant. An arbitrary value z s is assigned 
to this input. 

Theorem (5) is derived by applying the definitions of FU and the specifications 
of the multiplier and the multipurpose component. 

7 D e r i v a t i o n  o f  t h e  R T - L e v e l  I m p l e m e n t a t i o n  

This section describes, how the preprocessed algorithmic description is converted 
into a RT-level description. Before this step can be performed, we must describe 
the temporal relationships between the algorithmic and RT-levels, i.e. we must 
describe, how the circuit evaluating g interfaces with its environment. We will 
call these relations as communication schemes. 

7.1 C o m m u n i c a t i o n  Schemes  

The datapath oriented synthesis algorithm described until now is an adequate 
basis for deriving implementations for different kinds of simple communication 
schemes. All hardware descriptions, that  may be implemented by our approach 
must have a fixed number of c-steps 0 . . .  n for each evaluation cycle. In c-step 0, 
the circuit reads x from the input i, in the succeeding c-steps it calculates g(x) 
and at c-step n it assigns g(x) to the output  o. 

We present two possible communication schemes describing the behavior of 
the circuit in an entirely different manner. 
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F" myg = 
let 

F U  = A(((a,  b), (d, e)),  c). (mul t ip l ier (a ,  b), mul t ipurpose((d ,  e), c)) 
in 
let 
gO = ~(a, b, c). 

let (z ~, T 3') = FU(((zL z~ (b, e)), Add) and 
r 1' = a and r 21 = b and r 41 = C in 
(r lr, r 21, r al ' r 41 ) 

and 
g l  : )~(r l ,  r2, r 3, r4) .  

let  ( r  1', r 2,) : F U ( ( ( ' F  1 , ?~2), ( r4 ,  z8) ) ,  Inc) and 

r 3t - -  r 3 and r 41 : z 1 in 
( r  II,  r 21, r 31, r 41) 

and  
g2 = A ( r l , r 2 , r 3 , r 4 ) .  

let  ( r l / , ' F  21) = F U ( ( ( / ' I ,  T2), (~ '1, / '3)) ,  S u b )  and  
r 31 - -  z 2 and  r 41 - -  z 3 in 
(r 11 ' r 21 ' r 31, r 41) 

and  
ga = )~(rl, r 2, r 3, r4). 

let (x,y) -= F U ( ( ( r l , r 2 ) ,  (r l , r2)) ,Add) in 
(~,y) 

in 
g3 o g2 o g l  o gO 

(5) 

S p e c i f i c a t i o n  A:  s e l f - s t a r t i n g  e v a l u a t i o n  T h e  circuit  s t a r t s  its first compu-  
t a t ion  cycle a t  t ime  O. I t  immedia t e ly  res ta r t s  a new c o m p u t a t i o n  whenever  
the  old calculat ion cycle has  finished. Such a circuit  will a lways be  busy. 
Formal iza t ion:  

specA(g, n, i, o) = 
( Vx. o((n + 1) �9 (x + 1) - 1) = g( i ( (n + 1) �9 x)) ) 

Remark :  g s the  funct ion to  be  evaluated,  n is the  n u m b e r  of  c-steps,  i 
is the  input  and o is the  ou tpu t .  Given such a formal iza t ion ,  the  overall  
specification can be wr i t t en  as: 

3n. specA(g, n, i, o) 
S p e c i f i c a t i o n  B:  e v e n t - d r l v e n  e v a l u a t i o n  At  t ime  0, the  circuit  s ta r t s  in a 

nonbusy  s tate .  T h e  circuit  begins  a c o m p u t a t i o n  cycle whenever  it is not  
busy  and  gets a specific s t imulus  f rom an  input  signal s tar t .  
Requi rements :  

- the  circuit  is not  busy  a t  t ime  0 
- if a t  t ime  t the  circuit  is not  busy  and  there  is no s t a r t  signal a t  t ime  t, 

t hen  the  circuit  will not  be  busy  at  t ime  t + 1. 
- if a t  t ime  t the  circuit  is not  busy  and  there  is a s t a r t  signal a t  t ime  t, 

t hen  the  circuit  will be  busy  dur ing It + 1, t + n], p roduce  the  required 
ou tpu t  at  t ime  t + n and be ready  for new input  a t  t ime  t + n + 1. 

Formal iza t ion:  
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specB(g, n, i, o) = 
3n. 

( busy(0)) ^ 

( Yt.  -~busy(t) A -~start(t) ~ -~busy(t + 1) ) A 

(vt.  busy(t) A st t(t) 
Vm : t + 1 <_ m < t + n. busy(m)  A 
o(t + n) = g(i( t ))  A 
-~busy(t + ~ + 1) ) 

The overall specification for such circuits is: 
3n. specB(g, n, i, o) 

7.2 Implementation Templates 

For a given function g and a communication scheme such as specA(g, n, i, o) or 
specB(g, n, i, o) an RT-level implementation is to be derived. It is assumed that  
g has already been preprocessed according to the synthesis steps described in 
sections 3 through 6 so that  g has the form given in (5). 

It is not our intention to t ry and find an implementation and prove its cor- 
rectness whenever we have successfully processed synthesis steps 3 through 6. 
Instead we use generic implementation descriptions for given communication 
schemes and prove a theorem stating that  the generic implementation descrip- 
tions fulfills the communication scheme. During synthesis, this theorem is just 
instantiated and thereby the correct implementation is derived from the specifi- 
cation. 

For lack of space, we cannot give a complete description on how the imple- 
mentation is described within higher order logic and how the correctness proof 
is performed. Figure 6 gives a sketch of how a general implementation of the 
specification specA(g, n, i ,o)  looks like. It is assumed that  g has the shape as 
in (5). The controller is a simple modulo-n-counter with n being the number 
of c-steps. In the middle there is the functional unit as described in section 6. 
The MUX-circuits on the left and right of the functional unit determine the 
data  flow between input, output, registers and functional unit according to the 
c-step the circuit is in. Since there may also be multi-purpose units within the 
functional unit, the operations to be performed may also depend on the c-step 
and is therefore steered by the controller. 

8 C o n c l u s i o n  

We have described, how high level synthesis can be performed by a sequence of 
logicM transformations. Starting from the functional descriptions of data  flow 
graphs, we have been able to successfully refine them into an RT-level hardware 
description. The novelty of our approach lies in the exploitation of the existing 
knowledge in synthesis in a logically correct manner. 
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Controller I 
I I ] 
I I I 

i ~ - - - -  I 

:, ...x H HM xl 
Registers [ 

Fig. 6. Abstract implementation for general type A specifications 

This style of formal synthesis will be acceptable to most users since they 
can proceed with their designs in a customary manner and yet have correct- 
ness without getting into the hardship of logic. In the post-synthesis verification 
approach, however, the proof has to be "guessed" rather than constructed by 
derivation. 

We have shown, that  formal synthesis is an appropriate approach in high level 
synthesis and that  it is possible to formally embed existing synthesis algorithms. 
We believe, that  also in other areas of hardware design, formal synthesis can be a 
good alternative to the classical synthesis/post-synthesis-verification approach. 
Still, our approach of formally embedding the synthesis process has only been 
applied to particular synthesis algorithms in order to prove its applicability. It 
is our intention to provide a formal synthesis toolbox containing formally based 
synthesis procedures that  cover the entire synthesis from the algorithmic level 
down to the logical level. We still have a long way to go, but we believe, that  we 
have an interesting starting point. 
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