
Formally Embedding Existing High Level
Synthesis Algorithms

Dirk Eisenbiegler and Ramayya Kumar

Forschungszentrum Informatik
(Prof. Dr.-Ing. D. Schmid)

Haid-und-Neustrafie 10-14 76131 Karlsruhe, Germany
e-mail: eisen@fzi.de, kumar@fzi.de

Abs t rac t . This paper introduces a general scheme for formally embed-
ding high level synthesis by formulating its basic steps as transforma-
tions within higher order logic. A functional representation of a data
flow graph is successively refined by means of generic logical transforma-
tions. Algorithms that are based on logical transformations guarantee
"correctness by design". They not only construct an implementation but
also derive the proof for its formal correctness, on the fly. An extra post-
synthesis-verification step becomes obsolete. The logical transformations
presented in this paper form a framework for formally embedding exist-
ing high-level-synthesis procedures.

1 I n t r o d u c t i o n

Guaranteeing functional correctness in hardware synthesis is an essential but
demanding task. This is due to the complexity of synthesis tools and the under-
lying synthesis algorithms. Hence various forms of formal verification techniques
are employed to prove the correctness of the implementations, resulting from
the synthesis process [Melh93, ScKK93, Gupt92]. However the applicability of
formal verification tools within the synthesis context is limited, since the proof
of the goal "implementation ~ specification" is very complex.

Post-synthesis verification is an exacting goal. Full automation can only be
achieved for small sized circuits on lower levels of abstraction. For large sized
circuits, verification algorithms either run into space/ t ime hurdles or the user
has to interact and perform some proofs by hand.

Conventional synthesis algorithms just determine the implementation - - the
information on how the specification was refined into an implementation gets
lost. The loss of this information is a major bottleneck for verification. The veri-
fication process gets just two logical formulae corresponding to the specification
and the implementation. On the other hand, synthesis is split-up into a set of
well-defined steps, namely scheduling, allocation and binding, and furthermore
there exists a vast body of knowledge for solving these steps in an effective
manner [CaWo91, Paul91, RoKr91]. We therefore propose a technique for "for-
real synthesis" which closely adheres to the steps of conventional synthesis and
additionally exploits the knowledge available.

72

The idea of formal synthesis is in itself not new. One of the early attempts
dealt with the conversion of regular expressions into hardware circuits [John84].
Later, a number of techniques were proposed for interactively refining the spec-
ifications into implementations [Lars94, HaLD89, JoWB89, AHL92, MaFo91,
FoMa90]. All these above-mentioned techniques have one common drawback,
namely they do not exploit the knowledge of the algorithms which abound in
synthesis. The novelty of our current approach is that no new synthesis algo-
rithms (either formal or informal) are proposed, but a general scheme for logi-
cally embedding various existing synthesis algorithms within a formal set-up is
presented.

The outline of this paper is as follows: we first briefly examine the synthesis
problem and define the notations and scope of our work. Then we describe the
formal techniques for scheduling, allocation and binding, respectively.

2 B a s i c s o f t h e " F o r m a l S y n t h e s i s " S c e n a r i o

Starting from an algorithmic description, which does not incorporate timing
explicitly, the overall aim of high level synthesis is to extract the data path and
the controller. The major steps in synthesis are:

1. scheduling under restrained/unrestrained resource constraints
2. Mlocation
3. binding
4. determination of the RT-level implementation

2.1 Our Starting Point

The approach given in this paper deals with synthesis based on data-flow graph
representations only. We represent the given data flow graph by a typed func-
tion g, and proceed with the various steps of synthesis. The sequential circuit
corresponding to g will then repeatedly determine g(x), for the various values
of x. Since we use typed functions, a single input x is sufficient to represent any
number of inputs corresponding to any type, since they can all be bundled to-
gether into a single x. The type definition uniquely determines the set of inputs
and outputs. We will clarify this notion shortly.

2.2 An Example for g

Throughout this paper we shall illustrate the various steps of synthesis via an
example named myg. myg maps a triple (a, b, c) onto the pair (x, y) as defined
by the pseudo-procedural description in figure 1. Assuming that all the variables
used are of the type natural numbers num, the overall type of the function is

n u m x n u m x n u m - + n u m x n u m

73

As basic operat ions there are the binary operations +, - and �9 and the unary
operat ion inc. The operator inc maps some x to x + 1. Since the intermediate
results are used within the succeeding expressions, they will be named explicitly.
In our example they are named p, q, r, s and t. The da ta flow diagram which
corresponds to the procedural code is given in figure 2.

myg(
a,b,c:num;
: x,y:num)

P r o c e d u r e

i n p u t s :

outputs
begin

p=a*

q = inc
r=p*

s=b+
t=p-
X=r+

y=r*
end

b ;

(c) ;
q;
c ;

s ;

t ;

t ;

Fig. 1. Pseudo procedural code for the example g = myg

b

myg

D p \

~i~ . y

Fig. 2. Dataflow Diagram for myg

2.3 R e m a r k s a b o u t t h e N o t a t i o n

We will use A-calculus expressions to denote functions (see [Davi89] for an intro-
duction to the A-calculus). let-terms will be used for representing ~-redices. Let
x be a variable, v be an arbi t rary t e rm having the same type as x and w denote
an arb i t ra ry term, where there may be free occurrences of x. In the expression

l e t x = v in w

the variable x is used as an abbreviat ion for v in the expression w. The expression
w[v/x] is the expression, tha t can be obtained by subst i tut ing every occurrence
of x in w by v. w[v/x] is equivalent to the let-term above.

74

2.4 Formal Represen ta t i on of g

Using let-terms to express the auxiliary variables in figure 2, g can be described
by means of A-abstraction over a tuple consisting of all inputs. In our example the
input is a triple (a, b, c), there are 7 let-terms - - one for each auxiliary variable
- - and there is a pair of outputs (x,y) (see equation (1)).

I- myg =
)~(a, b, c).
l e tp= a * b in
let q = inc(c) in
l e t r = p . q in
l e t s = b + c in (1)
l e t t = p - s in
l e t x = r + t in
l e t y = r * t in
(~,y)

On comparing the pseudo-procedural code in figure 1 with the definition in
equation (1), a direct one-to-one correspondence can be noticed. A little bit
of formal syntactic sugaring yields the definition. This is true, if the pseudo
procedural code consists of purely basic blocks.

2.5 The Formal Synthesis Scheme

Having defined the basics we will now proceed to give a gist of the overall formal
synthesis scheme:

1. Convert the initial data flow graph into a functional representation.
2. Use an algorithm for scheduling, allocation or binding which performs the

respective task on the data flow graph and gives us a schedule, allocation or
binding, respectively.

3. Apply the pre-proven generic transformations for each task on the data flow
graph along with the results of the algorithm.

4. Obtain a transformed function which is equivalent (in the logical sense) to
the original description.

5. Derive the RT-level implementation from the transformed function.

Step 3 - the heart of the overall strategy, has been made possible by meticulous
proofs of the generic transformations. They take in a function and the results
of a specific synthesis step, and produce a new function which represents the
end product of that specific synthesis step. Thus we are able to exploit all the
optimizations that are offered by a particular algorithm and additionally, these
transformations are automated and also not time-consuming. In the following
sections, we shall show the transformed functions corresponding to the steps:
scheduling, Mlocation and binding. The entire synthesis scheme will be imple-
mented using the HOL theorem prover [GoMe93].

75

3 Scheduling

Scheduling determines the number of control steps (c-steps) for each calculation
period 1 and assigns each operat ion to one part icular c-step 0 . . . n. Given a spe-
cific n, the basic idea of the "schedule t ransformation" is to break up the original
function g into a sequence of functions gO g l . . . g~, so tha t the composit ion of
these functions yields the original function, i.e. g = g~ o g~ - ! o . . . o gO.

In our example, there are 7 operations, whose outputs are the auxiliary vari-
ables p, q, r, s, t, x and y. We will also use the names of the auxiliary variables
to denote the operat ion tha t produces this variable. Operat ion s, for example,
is the first + operat ion and the auxiliary variable s is its output .

Let us assume, tha t it is intended, tha t only two circuits are used: one multi-
plier and one mult i-purpose unit for adding +, subtract ing - and incrementing
inc. Under this hardware constraint several schedules are possible. Any arb i t ra ry
algori thm may determine the schedule.

In our example we will use the schedule sketched in figure 3: in c-step 0, s is
processed, in c-step 1, p and q are processed, in c-step 2, r and t are processed
and in c-step 3: x and y are processed. In this schedule n becomes 3. There are
also schedules for myg with n ~ 3, bu t under the given restrictions, n = 3 is the
minimum.

gO gl g2 g3

o i, ".CD ; ;N ,(D.r

c :: ~ Y

Fig. 3. Split Dataflow Diagram

The scheduled function myg will be described by means of a composit ion
of four functions myg = g a o g 2 o g 1 o g ~ where the functions g ~ g 1, g 2 and
g a perform the computat ions of c-step 0, 1, 2 and 3 respectively. The formal
representat ion of the t ransformed function (theorem (2)) is derived by means
of applications of the o operator definition, expansion of let-expressions and by
r

I t is easy to visualize tha t this t ransformat ion does not depend upon the
scheduling algori thm itself, nor do we place any undue demands on the algorithm,
except tha t it returns a schedule tha t obeys the da ta dependencies.

1 It is also possible, that the number of c-steps is already given in the specification.
Then only the assignment of operations has to be performed.

76

I - m y g =

le t

go =) , (a ,b, c). let s = b + c in (a,b,s,c) and
g l = A(a, b, s, c). let p = a * b in let q = inc(c) in (p , s , q) and
g 2 = A (p , s , q) . l e t t = p - s i n l e t r = p * q] n (r , t) and
g3 = A(r , t) . let x = r -I- t in let y = r * t in (x,y)

in
g 3 o g 2 o g l o g 0

(2)

4 Allocation of Registers

The register allocation determines the number of registers tha t is needed for the
implementation. Usually the scheduling algorithms already take the functional
resource constraints into account.

When functions g 0 , g l , . . , g~ are composed in the mathematical world, the
output of a function gJ is the input of the function gj+l, given 0 _< j < n. How-
ever, in the hardware context, registers are needed to store the values between
two control steps. The total number of registers always equals the maximum
number of outputs produced by any g J, 0 < j < n. This implies tha t when any
of the functions gJ have lesser number of outputs, then some extra variables are
added to the outputs of gJ and the inputs of gj+l, so that the overall number is
m. These variables can carry any arbitrary values since they are never used. 2

In our example four variables have to be buffered after c-step 0, three after
c-step 1 and two after c-step 2. Therefore, we add one auxiliary variable z 1 after
c-step 1 and two auxiliary variables z e and z 3 after c-step 2 (see figure 4). The
formal representation is given in theorem (3).

5 Binding of Registers

During register binding, variables are tied onto specific registers. The register
binding is represented as the ordering of the variables within the tuples - - i.e.
register binding will be formally expressed by giving the variables a specific
order.

In our example four registers are needed. They are named r 1, r 2, r 3 and
r 4. After c-step 0 they are used for storing a, b, s and c, after c-step 1 they
are used for storing p, s, q and z 1 and after c-step 2 they are used for storing
r, t, z 2 and z 3. The mapping between the variables and the registers has to
be optimized in order to avoid unnecessary variable transfers between registers.
Such optimizations can be done by conventional synthesis algorithms outside the
logic, and then be integrated within our formal synthesis environment.

The determination of register binding is performed again outside the logic.
The result of register binding is a table describing the mapping between variables

2 In general, there may be auxiliary variables with different types. Different sizes of
registers will be needed to store them and optimization during register allocation
may become more complex.

77

gO gl g2 g3

ii p . i!i

b ::i

Fig. 4. Allocation of Registers

I-- myg =
let
gO : a(a, b,c). let s : b-{- c in (a,b, s,c) and
gl = A(a, b, s, c). let p = a * b in let q ----]nc(c) in (p , s ,q , z 1) and
g2 __ A(p, s, q, z l) .] e t t _ ~ p _ s i n l e t r ~ _ p . q i n (r , t , z 2,z 3) and
g 3 _ _ ~ (r , t , 2 , z 3) . l e t x _ _ r + $ [n [e t y : r . t i n (x ,y)

in
g 3 o g 2 o g l o g O

(3)

and registers and this table is the basis for our nex t logical t r a n s f o r m a t i o n step.
Let us assume, t h a t the register b inding of table 1 is to be applied.

Registers after c-step 0 after c-step 1 after c-step 2
r 1 a p r
r 2 b q t
r 3 8 S Z 2

r 4 C Z 1 Z 3

T a b l e 1. Register Binding

From now on, we will not use the auxi l iary var iable names p, q, r , . . . any
more bu t replace t h e m by register names r 1, r 2, r 3 , In each of the funct ions
gO, g l . . . the names r 1, r 2, r 3 , . . , are used to represent the register values before

11 2 [3 r the eva lua t ion of the funct ion and r , r , r , . . . are used to indicate the regis ter
values af ter the eva lua t ion of the function. Variable r enaming is pe r fo rmed by a -
conversion (see [DaviS9]). T h e fo rmal r ep resen ta t ion of the result of the regis ter
b inding in t h e o r e m (4) is achieved by expans ion of the o ope ra to r s and let-
expressions and/~- reduc t ions .

78

gO 91 g2 g3

::: ..

.. A ... :i!i ,iii .. �9

F ig . 5. Binding of Registers

I- myg =
let
gO = a(a, b, e).

let r 1' =- a and r 2' = b and r a' = b + c and r 4' -- c in
(r 1' ' r ~' ' r 3', r 4')

and
gl = ~ (r l , r 2 ra, r4).

l e t r l ' = r l * r 2 a n d r 2 ' = i n c (r 4) a n d r a ' = r 3 a n d r 4 ' = z 1 in
(r 1' ' r 2' ' r 3' ' r 4')

and
g2 ---- ~ (r l , r 2 , r 3 r 4) .

l e t r 1' = r I * r 2 a n d r 21 ---- r 1 - r 3 a n d r 3 ' ---- z 2 a n d r 41 = z 3 ill

(r 1 ' , r 2 ' , r 3 ' , r 4 ')

and
g3 = A(rl r2 ra,r4) .

let x = r I + r 2 in let y = r I * r 2 in
(x,u)

in
g 3 o g 2 o g l o g 0

) X

) Y

(4)

6 A l l o c a t i o n a n d B i n d i n g o f F u n c t i o n a l U n i t s

I n th i s s t ep of t h e a l g o r i t h m , we c o n s t r u c t a c o m p o u n d f u n c t i o n a l u n i t F U pro-
v i d i n g t h e o p e r a t o r s for i m p l e m e n t i n g t h e o p e r a t i o n s of each c-s tep (a l loca t ion) ,

a n d we use t he c o m p o u n d f u n c t i o n a l u n i t F U to i m p l e m e n t t he o p e r a t i o n s of

t he da ta f low g r a p h (b ind ing) .

As a l r e a d y m e n t i o n e d ear l ier , o n l y two o p e r a t i o n u n i t s a re n e e d e d in ou r

e x a m p l e : one m u l t i p l i e r (n a m e d multiplier) a n d one m u l t i - p u r p o s e u n i t (n a m e d
mul t ipurpose) for a d d i n g , s u b t r a c t i n g a n d i n c r e m e n t i n g . T h e i r f o r m a l specif ica-
t i ons are g iven as below. Such desc r ip t i ons a re a s s u m e d to b e g iven in a l i b r a r y
wh ich def ines t h e a b s t r a c t RT- leve l c o m p o n e n t s . T h e co r r ec tnes s of such c o m p o -

79

nents is beyond the scope of this paper and can be performed using conventional
verification techniques.

I- mul t ip l i e r (a , b) = a * b

t- mult ipurpose((d, e), Add) = d + e
mult ipurpose((d, e), Sub) = d - e
mult ipurpose((d, e), Inc) = d + 1

The multi-purpose unit has ((d, e), c) as input, d and e are data inputs and c is
a control input for selecting the function, c may have one of the values Add, Sub
and Inc and the corresponding output is d + e, d - e and d + 1, respectively.

In theorem (5) the functional unit FU is provided. It consists of one multiplier
and one multi-purpose unit. It 's input (((a, b), (d, e)), c) consists of two parts: a
data input ((a, b), (d, e)) and a control input c. The result is a pair consisting of
the product of a and b and the result of applying d and e to the multi-purpose
unit, where the control of the multi-purpose unit is c.

In general there may be several operations of each type and optimizations in
the binding between operations and functional units may reduce communication
costs. In our small example the binding is unambiguous, since in each c-step
there is always no more than one operation of each type.

Remark: In c-step 0, the multiplier unit remains unused. Arbitrary values z 5
and z 6 are its input and the output (named z 7) is not connected to the output
of gO. Since there is only one operand needed during the inc-operation in c-step
1, one of the data inputs becomes redundant. An arbitrary value z s is assigned
to this input.

Theorem (5) is derived by applying the definitions of FU and the specifications
of the multiplier and the multipurpose component.

7 D e r i v a t i o n o f t h e R T - L e v e l I m p l e m e n t a t i o n

This section describes, how the preprocessed algorithmic description is converted
into a RT-level description. Before this step can be performed, we must describe
the temporal relationships between the algorithmic and RT-levels, i.e. we must
describe, how the circuit evaluating g interfaces with its environment. We will
call these relations as communication schemes.

7.1 C o m m u n i c a t i o n Schemes

The datapath oriented synthesis algorithm described until now is an adequate
basis for deriving implementations for different kinds of simple communication
schemes. All hardware descriptions, that may be implemented by our approach
must have a fixed number of c-steps 0 . . . n for each evaluation cycle. In c-step 0,
the circuit reads x from the input i, in the succeeding c-steps it calculates g(x)
and at c-step n it assigns g(x) to the output o.

We present two possible communication schemes describing the behavior of
the circuit in an entirely different manner.

80

F" myg =
let

F U = A(((a, b), (d, e)), c). (mul t ip l ier (a , b), mul t ipurpose((d , e), c))
in
let
gO = ~(a, b, c).

let (z ~, T 3') = FU(((zL z~ (b, e)), Add) and
r 1' = a and r 21 = b and r 41 = C in
(r lr, r 21, r al ' r 41)

and
g l :)~(r l , r2, r 3, r4) .

let (r 1', r 2,) : F U (((' F 1 , ?~2), (r4 , z8)) , Inc) and

r 3t - - r 3 and r 41 : z 1 in
(r II, r 21, r 31, r 41)

and
g2 = A (r l , r 2 , r 3 , r 4) .

let (r l / , ' F 21) = F U (((/ ' I , T2), (~ '1, / '3)) , S u b) and
r 31 - - z 2 and r 41 - - z 3 in
(r 11 ' r 21 ' r 31, r 41)

and
ga =)~(rl, r 2, r 3, r4).

let (x,y) -= F U (((r l , r 2) , (r l , r2)) ,Add) in
(~,y)

in
g3 o g2 o g l o gO

(5)

S p e c i f i c a t i o n A: s e l f - s t a r t i n g e v a l u a t i o n T h e circuit s t a r t s its first compu-
t a t ion cycle a t t ime O. I t immedia t e ly res ta r t s a new c o m p u t a t i o n whenever
the old calculat ion cycle has finished. Such a circuit will a lways be busy.
Formal iza t ion:

specA(g, n, i, o) =
(Vx. o((n + 1) �9 (x + 1) - 1) = g(i ((n + 1) �9 x)))

Remark : g s the funct ion to be evaluated, n is the n u m b e r of c-steps, i
is the input and o is the ou tpu t . Given such a formal iza t ion , the overall
specification can be wr i t t en as:

3n. specA(g, n, i, o)
S p e c i f i c a t i o n B: e v e n t - d r l v e n e v a l u a t i o n At t ime 0, the circuit s ta r t s in a

nonbusy s tate . T h e circuit begins a c o m p u t a t i o n cycle whenever it is not
busy and gets a specific s t imulus f rom an input signal s tar t .
Requi rements :

- the circuit is not busy a t t ime 0
- if a t t ime t the circuit is not busy and there is no s t a r t signal a t t ime t,

t hen the circuit will not be busy at t ime t + 1.
- if a t t ime t the circuit is not busy and there is a s t a r t signal a t t ime t,

t hen the circuit will be busy dur ing It + 1, t + n], p roduce the required
ou tpu t at t ime t + n and be ready for new input a t t ime t + n + 1.

Formal iza t ion:

81

specB(g, n, i, o) =
3n.

(busy(0)) ^

(Yt. -~busy(t) A -~start(t) ~ -~busy(t + 1)) A

(vt. busy(t) A st t(t)
Vm : t + 1 <_ m < t + n. busy(m) A
o(t + n) = g(i(t)) A
-~busy(t + ~ + 1))

The overall specification for such circuits is:
3n. specB(g, n, i, o)

7.2 Implementation Templates

For a given function g and a communication scheme such as specA(g, n, i, o) or
specB(g, n, i, o) an RT-level implementation is to be derived. It is assumed that
g has already been preprocessed according to the synthesis steps described in
sections 3 through 6 so that g has the form given in (5).

It is not our intention to t ry and find an implementation and prove its cor-
rectness whenever we have successfully processed synthesis steps 3 through 6.
Instead we use generic implementation descriptions for given communication
schemes and prove a theorem stating that the generic implementation descrip-
tions fulfills the communication scheme. During synthesis, this theorem is just
instantiated and thereby the correct implementation is derived from the specifi-
cation.

For lack of space, we cannot give a complete description on how the imple-
mentation is described within higher order logic and how the correctness proof
is performed. Figure 6 gives a sketch of how a general implementation of the
specification specA(g, n, i ,o) looks like. It is assumed that g has the shape as
in (5). The controller is a simple modulo-n-counter with n being the number
of c-steps. In the middle there is the functional unit as described in section 6.
The MUX-circuits on the left and right of the functional unit determine the
data flow between input, output, registers and functional unit according to the
c-step the circuit is in. Since there may also be multi-purpose units within the
functional unit, the operations to be performed may also depend on the c-step
and is therefore steered by the controller.

8 C o n c l u s i o n

We have described, how high level synthesis can be performed by a sequence of
logicM transformations. Starting from the functional descriptions of data flow
graphs, we have been able to successfully refine them into an RT-level hardware
description. The novelty of our approach lies in the exploitation of the existing
knowledge in synthesis in a logically correct manner.

82

Controller I
I I]
I I I

i ~ - - - - I

:, ...x H HM xl
Registers [

Fig. 6. Abstract implementation for general type A specifications

This style of formal synthesis will be acceptable to most users since they
can proceed with their designs in a customary manner and yet have correct-
ness without getting into the hardship of logic. In the post-synthesis verification
approach, however, the proof has to be "guessed" rather than constructed by
derivation.

We have shown, that formal synthesis is an appropriate approach in high level
synthesis and that it is possible to formally embed existing synthesis algorithms.
We believe, that also in other areas of hardware design, formal synthesis can be a
good alternative to the classical synthesis/post-synthesis-verification approach.
Still, our approach of formally embedding the synthesis process has only been
applied to particular synthesis algorithms in order to prove its applicability. It
is our intention to provide a formal synthesis toolbox containing formally based
synthesis procedures that cover the entire synthesis from the algorithmic level
down to the logical level. We still have a long way to go, but we believe, that we
have an interesting starting point.

R e f e r e n c e s

[AHL92] AHL. Lambda Reference Manual, 1989.
[CaWo91] R. Camposano and W. Wolf. High-Level VLSI Synthesis. Kluwer, Boston,

1991.
[Davi89] R. E. Davis. Truth, Deduction, and Computation: Logic and Semantics for

Computer Science. Computer Science Press, New York, 1 edition, 1989.
[Day92] Nancy Day. A comparison between statecharts and state transition assertions.

In Luc Clmesen and Michael Gordon, editors, Higher Order Logic Theorem
Proving and Its Applications~ pages 247-262, Leuven, Belgium, November
1992. North-Holland.

[FoMa90] M.P. Fourman and E.M. Mayger. Formally Based System Design - Interac-
tive hardware scheduling. In G. Musgrave and U. Lauter, editors, Interna-
tional Conference on Very Large Scale Integration, pages 101-112. Elsevier
Science Publishers (North-Holland), 1990.

83

[GoMe93] M.J.C. Gordon and T.F. Melham. Introduction to HOL: A Theorem Proving
Environment for Higher Order Logic. Cambridge University Press, 1993.

[Gupt92] A. Gupta. Formal hardware verification. Formal Methods in System Design,
1(2/3):151-238, 1992.

[HaLD89] F.K. Hanna, M. Longley, and N. Daeche. Formal synthesis of digital sys-
tems. In IMEC-IFIP Workshop on Applied Formal Methods for Correct VLSI
Design, pages 532-548, Leuven,Belgium, 1989. Elsevier Science Publishers
B.V.

[John84] S. D. Johnson. Synthesis of Digital Designs from Recursion Equations. MIT
Press, 1984.

[JoWB89] S.D. Johnson, R.M. Wehrmeister, and Bhaskar Bose. On the interplay of
synthesis and verification. In IMEC-IFIP Workshop on Applied Formal Meth-
ods for Correct VLSI Design, pages 385-404, Leuven,Belgium, 1989. Elsevier
Science Publishers B.V.

[Lars94] M. Larsson. An engineering approach to formal system design. In Thomas F.
Melham and Juanito Camilleri, editors, Higher Order Logic Theorem Prov-
ing and Its Applications, pages 300-315, Valetta, Malta, September 1994.
Springer.

[Loew92] Paul Loewenstein. A formal theory of simulations between infinite automata.
In Luc Claesen and Michael Gordon, editors, Higher Order Logic Theorem
Proving and Its Applications, pages 227-246, Leuven, Belgium, November
1992. North-Holland.

[MaFo91] E.M. Mayger and M.P. Fourman. Integration of formal methods with system
design. In A. Halaas and P.B. Denyer, editors, International Conference on
Very Large Scale Integration, pages 59-70, Edinburgh, Scotland, August 1991.
IFIP Transactions, North-Holland.

[Melh93] T. Melham. Higher Order Logic and Hardware Verification. Cambridge Uni-
versity Press, 1993.

[Paul91] P. G. Paulin. Global Scheduling and Allocation Algorithms in the HAL Sys-
tem. In R. Camposano and W. Wolf, editors, High-Level VLSI Synthesis,
pages 255-281. Kluwer Academic Publishers, 1991.

[RoKr91] W. Rosenstiel and H. Krgmer. Scheduling and Assignment in High Level
Synthesis. In R. Camposano and W. Wolf, editors, High-Level VLSI Synthe-
sis, pages 355-382. Kluwer Academic Publishers, 1991.

[ScKK93] K. Schneider, R. Kumar, and Thomas Kropf. Alternative proof procedures
for finite-state machines in higher-order logic. In Jeffrey J. Joyce and Carl-
Johan H. Seger, editors, Higher Order Logic Theorem Proving and Its Appli-
cations, pages 213-226, Vancouver, B.C., Canada, August 1993. Springer.

