
Improved Probabilistic Verification by Hash 
Compaction 

Ulrich Stern* and David L. Dill 

Department of Computer Science, Stanford University, 
Stanford, CA 94305 

{uli@rutabags diU@cs}.stanford.edu 

AbstractS. We present and analyze a probabilistic method for verifica- 
tion by explicit state enumeration, which improves on the "hashcompact" 
method of Wolper and Leroy. The hashcompact method maintains a hash 
table in which compressed values for states instead of full state descrip- 
tors are stored. This method saves space but allows a non-zero probabil- 
ity of omitting states during verification, which may cause verification 
to miss design errors (i.e. verification may produce "false positives"). 
Our method improves on Wolper and Leroy's by calculating the hash 
and compressed values independently, and by using a specific hashing 
scheme that requires a low number of probes in the hash table. The 
result is a large reduction in the probability of omitting a state. Hence, 
we can achieve a given upper bound on the probability of omitting a 
state using fewer bits per compressed state. For example, we can reduce 
the number of bytes stored for each state from the eight recommended 
by Wolper and Leroy to only five, and still enumerate state spaces of up 
to 80 million reachable states while keeping the probability of missing 
even one state to less than 0.13%. 
The new verification scheme was tried on some large, industrial examples. 
The results predicted by the theoretical analysis were confirmed by the 
outcomes of these examples. We also discuss some practical issues in 
choosing the number of bits for the compressed state representation, 
along with some of our experiences in implementing the scheme. 

1 Introduct ion  

Complex  protocols  are often verified by examining  all reachable protocol  s tates 
f rom a set of  possible s tar t  states. This teachability analysis can be done using 
two different methods :  The  states can be explicitly enumerated, by stor ing them 
individually in a table, or a symbolic method  can be used, such as representing 
the reachable s tate  space with a binary decision d iagram (BDD) [2]. 

The  biggest obstacle of  both  methods  is the often u n m a n a g e a b l y  huge num-  
ber of  reachable states - the "state explosion problem".  Symbolic  me thods  can 
alleviate the s tate  explosion problem in some cases. However, in research done 
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in our group for some types of industrial protocols, explicit state enumeration 
has out-performed the symbolic approach [10]. 

In explicit state enumeration algorithms, a state table is maintained that 
will eventually hold all reachable states of the protocol under verification. This 
state table is usuMly implemented as a hash table. In practice, the total memory 
available for the hash table is the limiting resource in verification. Therefore, it 
is desirable to use the most compact representation for this table. The proba- 
bilistic verification method presented and analyzed in this paper improves on 
Wolper and Leroy's "hashcompact" method [16], which reduces the memory re- 
quirements for the state table. The hashcompact method was, in turn, inspired 
by Holzmann's supertrace algorithm [9]. 

The basic supertrace algorithm maintains a huge table of bits which are ini- 
tially set to zero. When a state is inserted into the table, the bit corresponding 
to the hash value of the state is set to one. Whenever two states hash to the same 
location, they are assumed to be the same. For a large number of states, it is al- 
most certain that two distinct states will hash to the same location. This results 
in the omission of the second state and - since the search algorithm backtracks 
when it finds a state that has been searched already - may potentially cause the 
omission of all successor states of the omitted state. Therefore, although super- 
trace intuitively seems to explore a high percentage of the reachable states of a 
protocol if the number of bits in the table is bigger than the number of reachable 
states, full coverage is extremely unlikely. Actually, Holzmann emphasizes that 
supertrace is only meant as a partial-search technique for protocols that cannot 
be analyzed exhaustively [9, page 232]. 

Wolper and Leroy observed that if a compressed state descriptor with, say 
64 bits, instead of one bit is stored for each state (plus the information regarding 
which slots in the hash table are occupied), the probability of omitting even one 
state becomes very small, thus giving a bound on the probability of a false posi- 
tive. The space savings of such a scheme are not as impressive as the supertrace 
algorithm, but still very substantial: the state descriptors for a typical protocol 
might be 100 bytes, which the hashcompact method could reduce to eight bytes 
with a very small probability of omitting states in the verification. 

Wolper and Leroy implicitly assumed that the hash values for storing the 
compressed state descriptors are calculated using this compressed state descrip- 
tor. We show that, by deriving the hash values independently from the com- 
pressed state descriptor and by employing a particular hashing scheme with a 
low number of probes in the table, the omission probability can be reduced 
significantly. Our new analysis of the omission probability shows that one only 
needs to store five bytes for each state in situations where Wolper and Leroy 
recommend storing eight bytes. 

Using this 5-byte compression, one can, for example, store 80 million states 
with an omission probability smaller than 0.13%. Furthermore, by re-running the 
verifier with different hash and compression functions, each yielding independent 
values from the ones of the previously employed function, one can further reduce 
this probability. For example, two verification runs for the above example would 
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yield an omission probability smaller than (0.13%) ~ = 1.69.10 -6. 
We have extended the Mur~ verification system developed at Stanford with 

the probabilistic verification scheme. In prior work, the "old" Mur~ system was 
successfully applied to several industrial protocols [5, 6, 12, 14, 17]. We tried 
the new, probabilistic scheme on some of these protocols. No omissions occurred 
using 5-byte compression. Then, we looked at one of these protocols and varied 
the number of bits in the compressed state descriptors. For each value, we con- 
ducted multiple runs of the verifier with randomly chosen hash and compression 
functions. The outcomes of these experiments corresponded with the omission 
probabilities from the theoretical analysis. Furthermore, the mean number of 
omitted states at, for example, 55% omission probability was only 3.2, out of 
109 080 reachable states. Thus, coverage is expected to degrade very slowly. 

The paper is organized as follows. Section 2 presents the probabilistic ver- 
ification scheme in more detail. The omission probabilities obtained using this 
scheme are calculated in Sect. 3. In Sect. 4, the omission probabilities for 4-byte 
and 5-byte compression are graphed and the choice of the number of bits in 
the compressed values is discussed. Some experience gained in implementing the 
probabilistic verification scheme is elucidated in Sect. 5. We describe the results 
on larger example protocols in Sect. 6. Finally, Sect. 7 contains some conclusions 
and suggestions for future research. 

2 T h e  P r o b a b i l i s t i c  V e r i f i c a t i o n  S c h e m e  

The new, probabilistic verification method is described in this section. However, 
first the basic algorithms for explicit state enumeration on which the new method 
is based and the hashing and compression schemes employed are explained in 
more detail. In these explanations, some definitions are made that will be used 
in calculating the omission probability. 

Explicit State Enumerat ion 

In explicit state enumeration, the automatic verifier tries to examine all reachable 
states from a set of possible start states. Either breadth-first or depth-first search 
can be employed for the state enumeration process. Both the breadth-first and 
the depth-first algorithms are straightforward. A depth-first algorithm is, for 
example, given in [16]. 

Two data structures are needed for performing the state enumeration. First, 
a state table stores all the states that have been examined so far and is used to 
decide whether a newly-reached state is old (has been visited before) or new (has 
not been visited before). Besides the state table, a state queue holds all active 
states (states that still need to be explored). Depending on the organization of 
this queue, the verifier does a breadth-first or a depth-first search~ 

The state table will eventually hold all reachable states, unless the number of 
states exceeds the capacity of the table, in which case the verifier halts with an 
error message. In practice, the total memory available for the table is the limiting 
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resource in verification. The probabilistic verification scheme greatly reduces the 
memory requirements for this table by compressing the states before they are 
inserted, thus increasing the size of verification problems that  can be dealt with. 

Hashing 

In the probabilistic verification scheme, the state table is implemented as a hash 
table. In the following, we assume that  this hash table has m slots. Thus, a 
maximum number of m states can be explored. One problem in hashing are 
collisions. A collision occurs if two states hash to the same slot in the table. This 
collision can be resolved by either chaining or open addressing [4]. Chaining 
requires storing an additional pointer besides the compressed state and with 
that  the memory requirements increase. Therefore, open addressing was used in 
our probabilistic verification scheme. 

In open addressing, a vectorial hash function h is applied to each state s 
yielding a probe sequence h0(8), hi(s), . . . ,  hm_l(z). When inserting a state in 
the table, the slots are tested for emptiness according to this probe sequence. 
The state is stored in the first empty slot found during the probe sequence. Note, 
that  each probe sequence has to be a permutation of {0, . . . ,  m -  1} if we want 
every slot in the table to be used. 

In uniform hashing, each state is equally likely to have any of the m! permuta- 
tions of {0 , . . . ,  m- l}  as its probe sequence. Uniform hashing has the advantage of 
being relatively easy to analyze and of avoiding clustering in the hash table. How- 
ever, the calculation of the probe sequence is difficult in practice. Therefore, we 
used double hashing instead, where only two hash values h'(s) and h'(s) have to 
be calculated. The probe sequence is then given by hi ( s ) =  [h' (8)+ihtt(s)] modm, 
i = 0 , . . . ,  m -  1. The practical performance of double hashing is very close to 
uniform hashing. Gonnet states that  it is practically impossible to establish sta- 
tistically whether double hashing behaves differently from uniform hashing [7, 
page 57]. 

C o m p r e s s i o n  

In our state compression scheme, a compression function c is applied to each 
state s yielding a compressed value c(s) E { 0 , . . . , l -  1). Here, I denotes the 
number of different compressed values. If we use b bits for these values, clearly 
/ = 2  b. 

Now, we introduce the notion of uniform compression. In uniform compres- 
sion, the compressed value of each state is equally likely to be any of the l values 
0 , . . . ,  l -1 .  In practice, we can use universal hashing to calculate the compressed 
value from the state descriptor, as suggested by Wolper and Leroy [15]. 

Let Pr(A) denote the probability of event A and let S denote the set of all 
possible states. Furthermore, let H be a universal2 class of hash functions [3] 
from S to { 0 , . . . , l - 1 ) .  Details about the particular universal2 class of hash 
functions used in our implementation can be found in Sect. 5. If we randomly and 
uniformly choose one function in H as our compression function c, the universal2 
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property guarantees that  the probability that  two different states have the same 
compressed value is bound, namely 

1 
Pr(c(sl)=c(s2)) <_ 7 for all Sl,S2 E S, s1#s~ . 

Hence, universal2 hashing is guaranteed to perform at least as good as uniform 
compression, where for all different sl, s2 6 S, Pr(c(sl)=c(s2)) = {. Further- 
more, it can be shown that  the above bound will be tight in our application 
of universal2 hashing. Therefore, universal2 hashing will perform almost exactly 
like uniform compression. 

T h e  P r o b a b i l i s t i c  V e r i f i c a t i o n  S c h e m e  

The probabilistic verification scheme only behaves differently from the basic ex- 
plicit state enumeration algorithms when a newly reached state s is entered into 
the hash table. This state insertion process is depicted in Fig. 1. After applying 
the hash function h and compression function c independently to the state s, 
the algorithm starts probing the table at ho(s). A probe can yield three different 
results: 

- The probed slot may be empty. The state s has not been encountered pre- 
viously in the search and its compressed value c(s) is stored in the slot. 

- The probed slot contains a compressed state different from the compressed 
state c(s) being entered. This is called a collision. The hash table algorithm 
then probes the next slot given by the probe sequence h(s).  

- The probed slot contains a compressed state equal to the compressed state 
c(s) being entered. In this case, the algorithm assumes that  the uncom- 
pressed states are the same, which may or may not be true. The state table 
is not modified, and the successors of the current state s are not generated 
and searched. When the uncompressed states are indeed equal, this is the 
desired result. When the uncompressed states are not equal, this results in 
an omission of the current state s, and the possible omission of its successors 
in the state graph. 

hash 
h / ~ k . . ~ "  ~  ", ,  table 

b bits 

m slots 

Fig. 1. The state insertion process in the probabilistic verification scheme 
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It is important  to observe that  only the slots examined using the probe se- 
quence can lead to omissions. Usually, only a few slots are examined before an 
empty Slot is found (which is why hashing is attractive in the first place). This 
positive effect of hashing on reducing the likelihood of omissions was not consid- 
ered by Wolper and Leroy [16], who implicitly assumed that  the probe sequence 
is calculated from the compressed value. Under their assumptions, states with 
the same compressed value inevitably lead to omissions. 

Using our improved probabilistic verification algorithm, the choice of the 
hashing scheme affects the omission probability. A "good" hashing scheme for our 
probabilistic verification algorithm has few collisions in an unsuccessful search, 
i.e. while inserting a new state. We employ double hashing since its performance 
is very close to uniform hashing, where no clustering occurs. Clustering would 
increase the number of collisions in unsuccessful searches. 

3 Calculation of the Omission Probabil it ies  

In the following, we first derive an approximate formula for the omission prob- 
ability in our probabilistic verification scheme. In the examples tested, this ap- 
proximation formula seems to be very accurate. However, we also derive another 
formula that  is an upper bound for the omission probability but  is less accurate 
than the approximation formula. Finally, the results from the analytical calcula- 
tions are compared with results from a simulation of the probabilistic verification 
scheme. 

Approximate Analysis 

For the following analysis, we assume that  uniform hashing and uniform com- 
pression are used. Let E[X] denote the expected value of random variable X 

and nk ~-1 = YI~=0 (n - i) the falling factorial power. Besides that ,  let In denote 
log e. Recall that  m denotes the number of slots in the hash table and I the num- 
ber of compressed values. We assume that  we insert n distinct states, numbered 
1 , . . . ,  n, into the table. 

- We first look at a situation where the first k of the n states were inserted 
into the table without omissions. Thus, the table actually holds k compressed 
values. We now want to insert the ( k + l ) s t  state into the table. Let Ck be 
the random variable describing the number of collisions that  occur when we 
insert a new state given there are k states in the table. Ck is exactly one 
less than the number of probes needed to insert the ( k +  1)st state into a 
conventional hash table. Therefore, one can obtain from the distribution of 
the number of probes - given, for example, in [13, page 527] - the probability 
that  we have exactly j collisions inserting the (k+l)s t  state given there are k 
states in the table, namely 

ks 
Pr(Ck = j )  = m---)-~(m -- k) . (1) 
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We define Nk to be the event that  there is no omission when inserting the 
(k+l)s t  state given that  there were no omissions when the first k states were 
inserted. Let N~ be the corresponding unconditional event, namely that  there 
is no omission when inserting the ( k + l ) s t  state into the table. Clearly, 

= I NL1A...AN  

Observing that  each collision may result in an omission, we can approximate 
the probability of the event Nk under the condition that  there are exactly j 
collisions as 

Pr(Nk ,Ck=j)~ (ll----~-l)J (2) 

Here, it is assumed that  the j comparisons of the compressed value to be 
entered with the values in the table are mutually independent. However, re- 
member that  we conditioned on the situation where no omission occurred 
during the insertion of the first k states. This condition imposes some depen- 
dence on the compressed values in the table. The values have the tendency 
to be different from each other because the omission cases - where at least 
two compressed values are equal - were filtered out by the condition. Thus, 
(2) underestimates the resulting omission probability. In practice, we use the 
probabilistic verification scheme with a bound on the omission probability 
when inserting n states into the table. Hence, the omission probability for 
one of the n states will be very small - especially when n is large - and so 
will be the filtering effect of the condition. This is confirmed by experimental 
results presented later. 
Using the theorem of total probability, one can easily obtain from (1) and (2) 
the conditional probability that  there is no omission inserting the ( k + l ) s t  
state given there are k states in the table, yielding 

Pk := Pr(Nk) ~ E m---y4-i-(m - k) . (3) 
j=o 

Observe that,  in general, omissions change the distribution of Ck, since the 
insertion algorithm stops when a compressed value in the table equals the 
compressed value of the (k+  1)st state. However, we can use the unaltered 
Ck distribution as given in (1) in the above calculation of Pk. To see why 
this is correct, imagine that  we altered our insertion algorithm so that  it 
always probes until an empty slot is found and so that  the final insertion 
is only made if none of the probed slots contained the compressed value 
of the ( k + l ) s t  state. Clearly, this algorithm behaves exactly the same way 
as the "old" insertion algorithm except an increased run-time and except 
that  the number of collisions is distributed according to the unaltered Ck 
distribution. 

- Now, we consider the situation where we insert n states into the (initially 
empty) table. Using the definitions of Nk and Pk, the probability that  we 
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have no omissions inserting all n states is obtained as 

Pno := Pr(no omission inserting n states) 

= Pr (g '_ l  ^ g ' _ 2  ^ . . .  AND 

= Pr(N'_l  I N'_2 ^ . . .  A ND Pr(N'_2 A . . .  ^ ND 

= Pn-1 Pr(N~-2 A . . . A  g~) . 

Using the above argument recursively yields 

~ - - 1  

Pno = r I  pk �9 (4) 
k----0 

By substituting (3) into (4) and making the falling factorial powers explicit, 
we obtain the following formula for the probability that  there are no omis- 
sions inserting n states into the table to be 

Pno ~ l'I . (5) 
k=0 j=0 m 3 

Straightforward evaluation of this formula requires O(n 3) operations. In 
practice, we need to calculate the omission probability for state spaces on 
the order of 10 million reachable states. Therefore, we now derive an approx- 
imation formula that  only needs O(1) operations. 

For this approximation, we re-consider (3) in a slightly different form, namely 

P~ "~ E I.___1_1 Pr(C~ = j )  . (6) 
j=o 

The right-hand side is an instance of the theorem of total probability. The "ex- 
pected" exponent of the term (f~A_) is the expected value of Ck. Thus, we ap- 
proximate 

E[Ck] 

Plugging this approximation into (4) yields 

; . o  ~ (s) 

This formula has a simple, intuitive explanation. The sum equals the expected 
value of the total number of collisions inserting n states into a conventional hash 
table. For each of these collisions, we have a probability of (~-!) that  no omission 
occurs and the compressed value comparison is approximately independent of 
all others. 
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A closed form for E[Ck] can, for example, be obtained from the formulas in 
[13, page 528], yielding 

k 
E[C ] - + 1 - k ' ( 9 )  

Using this formula, the sum in (8) can be written in closed form as 

r t - -1  

E[Ck] = (m + 1)[Ym+l - H m - , ~ + l ]  - n , (10) 
k - - 0  

where Hn denotes a harmonic number. Using the asymptotic approximation for 
g n  given, for example, in [8, (9.28)] we obtain 

1 1 
H n  ,~ l n n + 7 +  2n 12n2 . (11) 

Substituting (10) and (11) into (8), we obtain the final result of our approxima- 
tion effort, namely 

( r n + l )  ln(  ~-----~A-- ~ znW2 . . . .  2 

Pno ~ 15,o := ( ~ - ~ )  , ~ - . + 1 , - ~ +  1~(..+1)(,~_.+1)2-n (12) 

Obviously, the evaluation of this formula only requires O(1) operations and it is 
thus useful for handling our "arbitrarily" large values of n. 

In the remainder of this paper, we will only consider the o m i s s i o n  proba- 
bility of our probabilistic verification scheme. Clearly, this probability can be 
calculated as 

Pom := Pr(one or more omissions inserting n states) = 1 - Pno �9 

Upper Bound 

An upper bound for the omission probability is derived in the appendix yielding 

1 
Pom ~ iSom := ~ [(m + 1) [H,~+I - Hm-n+l] - n] (13) 

Simulation Results 

We wrote a simulator for the probabilistic verification scheme to assess if the 
theoretical results for the omission probability can be achieved in a practical 
implementation. Here, we only show results for an example with a small number 
of slots in the hash table. Results running the real verifier on larger examples 
can be found in Sect. 6. 

One e x p e r i m e n t  of the simulator Consists of generating n states with a ran- 
dom number generator and inserting the compressed values into a hash table. 
The experiment is repeated N times with different states. Finally, the omission 
probability is calculated as the number of experiments where omissions occurred 
divided by N. 
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The simulation results discussed in the following were obtained by repeating 
each experiment N = 10 million times, using a hash table with m = 199 slots 
and using b = 10 bits for the compressed values. The number of states n inserted 
into the table was used as a parameter. Simulation runs were performed for 
n = 19, 39, . . . ,  199. 

1 

~0.8 

~0.6 
o 

o~0.4 

.~ 
o 0 . 2  

i ' .... .... ' i1 

m / # / ' / ' '  

, , T , , , . . . .  , , , , J . . . .  
0 50 i00 150 200 

number of states (n) 

Fig. 2. Omissions probabilities obtained from the simulation (solid), the upper bound 
(dashed) and Wolper and Leroy's formula (dotted) 

Fig. 2 compares the omission probabilities for Wolper and Leroy's formula 
and our upper bound (13) with the simulation results. Observe that the omission 
probability rises as the table fills up. Wolper and Leroy's formula clearly over- 
estimates the omission probability, and the upper bound becomes less accurate 
for larger values of the omission probability. Both, Our final approximation (12) 
and the O(n 3) formula (5) yield values that are so close to the simulation values 
for the omission probability that the graphs coincide in Fig. 2. 

Therefore, in Fig. 3 the relat ive errors of the omission probabilities obtained 
by the O(n 3) formula and the final approximation are shown. Furthermore, the 
relative errors of the 90% confidence intervals of the omission probabilities are 
graphed. All relative errors were calculated using the simulation results as exact 
values. Both, final approximation and O(n 3) formula yield relative errors smaller 
then 0.8%. 

Observe that the values from the final approximation are always bigger than 
the ones from the O(n 3) formula while still being very close to the exact values. 
As discussed before, the O(n 3) formula slightly underestimates the omission 
probability. 
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Fig. 8. Relative errors of the omission probabilities obtained by the O(n 3) formula 
(solid) and the finaJ approximation (dotted) and of the 90% confidence intervals of the 
omission probabilities (dashed) 

4 C h o o s i n g  t h e  N u m b e r  o f  B i t s  p e r  S t a t e  

We now address the question of how one should choose the number of bits b 
in the compressed values. First, we depict the omission probabilities for 5-byte 
(i.e. 40-bit) and 4-byte compression using a large hash table of size 400 million 
bytes and present a table showing the number of bits in the compressed values 
dependent on hash table size and maximum omission probability. Finally, a rule 
of thumb for the maximum omission probability is derived. 

5-byte and  4-byte  Compress ion  

As mentioned before, for the following two examples a hash table size of 400 
million bytes was chosen. Not coincidentally, this number corresponds well with 
the available DRAM on our largest machine. Our hash table of size 400 million 
bytes has m = 80 million slots using 5-byte compression and m = 100 million 
slots employing 4-byte compression. 

Figures 4 and 5 show the omission probabilities for 5-byte and 4-byte com- 
pression, respectively, while the number of states n inserted into the table was 
varied. Even if the table fills up completely, the omission probability stays smaller 
than 0.13% for 5-byte compression and below 33% for 4-byte compression. 

For both figures, the omission probabilities were calculated using the final 
approximation (12). The upper bound (13) yields values for the omission prob- 
abilities that are usually quite close to the ones from the final approximation. 
The biggest difference occurs when the table fills up completely. Then, the up- 
per bound values have relative errors of 0.06% and 21% for 5-byte and 4-byte 
compression, respectively. 
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Fig. 4. Omission probability for 5-byte compression 
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Fig. 5. Omission probability for 4-byte compression 

In both, 5-byte and 4-byte compression, the omission probability rises sharply 
immediately before the hash table fills up completely. Intuitively, this can be 
explained by observing that  when we insert a compressed state into an almost 
full table, it is compared against many compressed values until an empty slot 
is found. Omissions may occur in any of these comparisons. In practice, the 
characteristic shape of the omission probability curve yields a nice behavior of 
our probabilistic verification scheme. If the verifier terminates without a hash 
table overflow, the table is usually not almost completely full and we have a much 
lower omission probability than in the worst case, where it fills up completely. 
On the other hand, if there is an overflow in the hash table, we are sure to miss 
states. So the final increase in the omission probability will not matter .  

Table 1 shows the required number of bits for the compressed values - given 
the  size of the hash table in bytes and the maximum omission probability Pom. 
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The maximum omission probability occurs when the table fill up completely (i.e. 
n = m). Remember that  typically the omission probability will be much smaller. 
Table 1 was generated by solving (12) numerically. 

For example, if one is willing to tolerate a maximum omission probability of 
50%, one could use 4-byte compression until the hash table size exceeds roughly 
700 million bytes. 

Table 1. Required number of bits for the compressed values. In this table, 1 M = 106 
and 1 G -- 109. 

hash table size (bytes) 
Pore 100M 200M 500M 1G 2G 5G 10G 

0.1% II 38.2 39.3 40.6 41.6 42.6 44.0 45.0 
1% II 35.0 36.1 37.4 38.4 39.4 40.8 41.8 

10% [[ 31.8 32.8 34.2 35.2 36.2 37.5 38.5 
50% I 29.2 30.2 31.6 32.6 33.6 34.9 35.9 
99% 26.6 27.6 29.0 30.0 31.0 32.3 33.3 

A R u l e  o f  T h u m b  

In the following, we derive a rule of thumb for the maximum omission probability 
Pore, that  occurs when the table fills up completely. 

Assuming that  1 • 1, we can approximate (L~A) = 1 - ~ ~ e -~  since 
e = ~ 1 + x for Ix I<< 1. By plugging this approximation into (8), we obtain 

1 -Po  e-( )EL1 

Using (10), Hn -~ In n + 7, e= z 1 + z (assuming a sufficiently large l) and 
assuming m >> 1, we get 

Pommel m ( I n m -  1) . (14) 

Observe, that  adding just one bit to the compressed values approximately halves 
the maximum omission probability. 

5 Implementation 

The interesting part in the implementation of the probabilistic verification al- 
gorithm is the calculation of the hash and compressed values out of the state 
descriptor. This calculation was done in two steps. First, a 96-bit key value 
(natural number) was calculated from the "arbitrary" long state descriptor us- 
ing universal hashing. Second, the two hash values for double hashing and the 
compressed value were determined from this key. 
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We employed the H3 universal2 class of hash functions [3] to calculate the 
key value from the state descriptor. Assume the key values have k bits and the 
state descriptors have d bits. Then, each function h C Ha corresponds to a d by k 
Boolean matrix m and H3 corresponds to the set of all those matrices (which 
has 2 dk elements). Let mi be the ith row of m, si the ith bit of state s and let (9 
denote the exclusive or operator. Then, the hash function h is calculated as 

h(s)  = s l m l  �9 s2rn2 |  �9 sdmd  , 

i.e. the bits in the state descriptor select those rows of m that are to be combined 
with exclusive or. 

Note that traditional methods for calculating keys from long state descriptors 
contain some pitfalls. Simple adding or "exclusive oring" all words in the state 
descriptor yields the same key value for several kinds of symmetries. For example, 
if only sums and "exclusive ors" are used, any permutation of the words in the 
state descriptor results in the same key value and therefore necessarily leads to 
omissions in the verification if "permuted" states occur. This is especially severe, 
since many systems contain several kinds of symmetries. These problems do not 
occur in the universal hashing-based calculation. 

We used b of the k bits of the key directly as compressed value. The hash val- 
ues were calculated with the division method [4] using a subset of the remaining 
k-b bits of the key to achieve independence of hash and compressed values. Note 
that the number of slots m in the hash table can be any prime number since we 
employed the division method. 

6 Results  on Larger Examples  

We tested the probabilistic verification scheme on three examples - Peterson's 
algorithm for mutual exclusion (Peterson), an industrial cache coherence proto- 
col (cache3) and the cache coherence protocol of the Scalable Coherent Inter- 
face [11] (SCI). The sizes of all of the three examples are scalable. That  explains 
the differing numbers of reachable states for the SCI example in the following. 

In Table 2, the three examples were scaled to yield huge numbers of reachable 
states. We used 5-byte compression for all of the three examples when using the 
probabilistic verification scheme. In the table, the run-time of the classic scheme 
is compared to that of the probabilistic one. Observe that there is only a small 
increase in the run-time requirements for the probabilistic scheme due to the 
calculation of the compressed values. As expected, no omissions occurred. 

In the next set of experiments, we used the SCI example with n = 109 080 
states and a hash table with m = 116 531 slots. We varied the number of bits b 
in the compressed values. For each value of b, we conducted 100 runs of the 
verifier with randomly chosen universal hash functions and counted the num- 
ber of runs in which omissions occurred. Figure 6 compares the outcomes of 
these experiments with the omission probabilities from our final approximation 
(12). Furthermore, the 90% confidence intervals of the omission probabilities 
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Table 2. Verification with 5-byte compression 

I state descriptor 
example, ,(bits) 
Peterson 69 
SCI 320 
cache3 179 

run-time 
states classic I probabilistic omissions 

6698326 3187s 3232s none 
1179942 4254s 4396s none 
2093231 4303s 4436s none 

~0.8 

~ 0.6 ~ 
o 

~ M 

o 0 . 2  

12.5 15 17.5 20 22.5 25 27.5 

number of bits (b) 

Fig. 6. Omission probabilities obtained from the experiments (dotted) and the final ap- 
proximation (solid) and 90% confidence intervals of the omission probabilities (dashed) 

are shown. The experimental results in the figure nicely match the theoretical 
analysis. 

The mean number of omitted states at, for example, 55% omission probability 
was only 3.2, out of 109 080 reachable states. The 90% confidence interval for 
the mean number of omitted states in this case was (2.6, 3.8). Thus, coverage is 
expected to degrade very slowly. 

7 C o n c l u s i o n  a n d  F u t u r e  R e s e a r c h  

The probabilistic verification scheme discussed in this paper worked reliably for 
several large verification examples. A small probability of omitting states during 
the verification process seems negligible in comparison with the other inaccura- 
cies incurred by making verification of large systems feasible. Usually, one has to 
simplify systems of industrial size (e.g. by down-scaling and by omitting system 
parts) before they are amenable to formal verification [14]. This simplification is 
more likely than a small omission probability to lead to failures in detecting all 
errors in the system under verification. 

Furthermore, the omission probability can be controlled by the user of the 
verification system. Our rule of thumb (14) shows that  adding just one bit to the 
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compressed values halves the omission probability. Thus, it seems advantageous 
- whenever possible - to add a few bits to the compressed values rather than to 
re-run the verifier with different hash and compression functions. In practice, for 
large hash tables with on the order of 500 million bytes, either 5-byte or 4-byte 
compression is recommended - depending on the maximum omission probability 
one is willing to tolerate. 

While space was for a long time considered to be the major  limiting factor in 
verification, we currently experience a shift to run-time as the new major  limiting 
factor, which increases the priority of research into accelerating explicit-state 
verification methods. 

Finally, one improvement in the probabilistic verification scheme presented 
in this paper could be made. If a scheme like ordered hashing [1] that  aims at 
reducing the complexity of the unsuccessful search in a hash table is employed, 
the omission probability is further reduced. Some preliminary results indicate 
that  thereby the the number of bits in the compressed values could be reduced 
by a small fraction. 
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Appendix 

In this appendix, an upper bound 15ore for the omission probability Pore is derived. 
Clearly, this upper bound for the omission probability yields a lower bound for 
the no omission probability pn~ and vice versa. We first calculate the latter 
bound. 

The first approximation in our approximate analysis was (2). We try to re- 
place this approximation by a worst case formula. This worst case occurs, when 
each of the j compressed values the compressed state to be entered is compared 
with is different from all the others. Hence, we obtain 

l - j  
Pr(Nk I C~=j) > 1 

By using the theorem of total probability, the definition of Pk and the definition 
of the expected value, we obtain 

P~ 

k 

Pr(Nk) -- E P r ( N k  I C~=j) Pr(Ck=j)  
j = 0  

k ~ 1 E[C~] 
-> E Pr(Ck=j)  = 1 - 7  ' 

j=O 

Substituting this result into (4) and multiplying out the product yields 

Pno 

~-1 (})5 ~-1 ~-1 
1 ~E[c~] + Z Z E[c~]s[cj] 

> 1 - 7 k=o k=oj=k+l 

Q~)3 n-1 n-1 n-1 
- ~ F_, ~,  s[c~]s[c~]s[cd + ... 

k = 0 j = k + l i = j + l  

(15) 

The triple sum in the fourth term on the right-hand side can be rewritten by 
changing the order of summation, namely 

n - 1  n - 1  n - 1  n - 1  n - 1  n - 1  

E E E  tc l Ic l tc, l : E E  Cc lEtc l E 
k=O j = k + l  i = j + l  k=O j = k + l  i = j + l  

s [ c d  . 

Thus, the fourth term has the additional (non-constant) factor (} ~ - '  E~=~+I E[cd) 
n--1 in comparison to the third term. If we assume that l >_ ~i=0 E[Ci], the value of 

this factor can be bounded above as 

n--1 n - 1  
1 1 

E E[C~] < 7 E E[Ci] -< 1 . 
i = j + l  i=0 
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Then, the difference of the third and the fourth term of the right-hand side of 
inequality (15) is greater than zero. Using the above argument for all higher 
numbered terms, we obtain 

r~--i 
1 E E[Ck] (16) Pno :> 1 - - ~  

k=O 

Observe, that this inequality also holds for l < ~ i=0 E[Ci] since Pno is a prob- 
ability and thus it holds for all 1. Plugging formula (10) into (16), we finally 
obtain our upper bound for the omission probability, namely 

1 
Pom _~ Pore :--  7 [ (m + 1)[Hm+l - H m - n + l ]  - n] 


