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Abst rac t .  In this paper we present a method for modeling asynchronous 
digital circuits by timed automata. The constructed timed automata 
serve as "mechanical" and verifiable objects for asynchronous sequential 
machines in the same sense that (untimed) automata do for synchronous 
machines. These results, combined with recent results concerning the 
analysis and synthesis of timed automata provide for the systematic 
treatment of a large class of problems that could be treated by con- 
ventional simulation methods only in an ad-hoc fashion. The problems 
that can be solved due to the results presented in this paper include: the 
reachability analysis o] a circuit with uncertainties in gate delays and 
input arrival times, inferring the necessary timing constraints on input 
signals that guarantee a proper functioning of a circuit and calculating the 
delay characteristics of the components required in order to meet some 
given behavioral specifications. 
Notwithstanding the existence of negative theoretical results concerning 
the worst-case complexity of timed automata analysis algorithms, initial 
experimentation with the KRONOS tool for timing analysis suggest that 
timed automata derived from circuits might not be so hard to analyze 
in practice. 

1 Introduct ion 

Digital circuits can be viewed at various levels of abstraction. This paper is 
concerned with the level situated between the transistor differential model and 
the purely-discrete model of synchronous sequential machines. At this interme- 
diate level, the underlying continuous dynamics of the gates is not completely 
ignored, but rather encapsulated into real-time constraints that  serve as an ap- 
proximation of this dynamics. Unlike the synchronous modeling style where time 
is abstracted away into a sequence of points where nothing exists between them, 
time is viewed here as a continuous entity whose progress interferes with discrete 
state transitions. 

* This research was supported in part by the European Community projects BRA- 
REACT(6021) and HYBRID EC-US-043. VERIMAG is a joint laboratory of CNaS, 
INPG, UJF and VERILOG SA. SPECTRE is a project of INRIA. 
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At this intermediate level of timed Boolean functions 3 the primary objects 
are Boolean signals defined over the real time axis, unlike Boolean sequences 
defined over the integers. In this model the output of a gate is a combinatorial 
function of the inputs, shifted in time. These delays could have been inferred 
from the differential dynamics of the components, but we will not be concerned 
with these low-level details (unlike [KM91]) in this paper and consider them as 
given. 

We will present a fairly general model of asynchronous digital circuits con- 
sisting of Boolean gates and delay elements and show how this model translates 
naturally into the timed automata formalism of [AD94]. After this translation 
timed automata techniques can be applied to the analysis of the circuits (this 
was, in fact, the primary motivation for the introduction of timed automata in 
[D89]). 

The main advantage of this formalism is that it allows automatic analysis 
of all the possible behaviors of the circuit. 4 The novel feature of these analysis 
methods compared to more conventional simulation techniques currently em- 
ployed in timing analysis, is that it can capture uncertainties in the input arrival 
times, in the initial conditions or in the delay parameters of the gates, without 
any problem. This is because the "simulation" is global in the sense that instead 
of simulating one possible execution of the circuit, we simulate in one "step" an 
infinite (and even uncountable) number of executions (see also [BM83], [L89], 
[D89], [BD91], [AD94] for the origins of this "geometric" simulation method for 
timed systems, and [ACH+95] [AMP95-a] for the application of this approach 
in the more general setting of hybrid systems). 

The core of this paper is a careful translation of circuits, defined via a sys- 
tem of delay equations into a network of interacting timed automata whose 
set of possible behaviors is exactly the set of signals satisfying the equations. 
The translation is done using two types of basic components and it reflects the 
structural properties of the circuit, including the functional and temporal depen- 
dencies between the state-variables. As such it can serve as a basis for further 
optimizations and algorithmic fine-tuning. 

The rest of the paper is organized as follows: in section 2 we present signals, 
delay equations and circuits. Section 3 consists of a presentation of a modified 
version of timed automata communicating via shared variables, which we find to 
be the most suitable for circuit modeling. In section 4 we show how to translate 
between the two models and conclude in section 5 with the potential applications 
of these results. 

2 S i g n a l s  a n d  C i r c u i t s  

Let T denote the set of non-negative reals and let Q be any set. 

3 We adopt the term, but not the techniques, which are essentially deterministic, from 
[LB94]. In fact, our formalism could be called timed Boolean relations. 

4 Some recent simulation-oriented attempts to achieve this goal are reported in [ML93], 
[LL94]. 
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Definit ion I ( P i e c e w i s e - c o n t i n u o u s  S igna ls ) .  A Q-valued piecewise contin- 
uous signal is a funct ion  a : T --+ Q admit t ing a (possibly f in i te)  countable 
increasing sequence s  = t o , q , . . ,  such that to = 0 and ~ is continuous at 
T - s  and discontinuous at s 

We use at  to denote a( t )  and let I((~) = I0, I 1 , . . . - -  [ t 0 , t l ) , [ t l , t 2 ) , . . .  be the 
sequence of left-closed right-open intervals induced by the signal. We call s  
the boundary points  of (~. Continuous signals are obtained as a special case when 
s  = 0, oo and I(c~) = [0, oo). 

Let ~ = {0, 1}. A Boolean signal is a /Bk-valued signal for some k. In this 
case the above properties of signals specialize into: 

- t l , t 2  6 Ii ~ at1 = (~t~, 
- t l  ~ Ii A t2 E h--}-I ::~ OLtl # Ogt 2 

One can see that  the conditions above prevent a non-countable number of dis- 
crete variations in the value of the signal as well as the so-called Zeno phe- 
nomenon  in which infinitely many discrete transitions happen within a bounded 
real-time interval. We denote the set of all such Boolean signals by S k . 

A Boolean function is a function f ://3 ~ --+ ~3 for some k > 0. We will use the 
same notation for the temporal  extension, f " S" --+ S, of f ,  defined as/3 = f ( a )  
iff for every t ~ T,/3t = f ( a t ) .  We call this an instantaneous signal function. 

D e f i n i t i o n 2  ( I de a l  D e t e r m i n i s t i c  D e l a y ) .  Let d be a non-negative number.  
The ideal delay associated with d is a funct ion  Ad  �9 ]t3 x S --* S such that 
/3 = A d ( b , a  ) i f f  for  every t E T :  

] 'b i f t  < d 
5, Oet-d if d < t 

The value of/3 always mirrors the value of a as it was d time units before 
and b is a default value of/3 for the initial interval [0, d) - see signals sl and 
s3 in figure 1. Ideal delays are nice mathematically but  are not comfortable for 
finite-state modeling (and are not physically realistic). This is because /3 has 
always to "remember" all the possible variations in the value of a that  could 
have occurred in the last temporal  window of length d. It is common to assume 
that  every change in a has to persist for a minimal interval of t ime (latency) 5 in 
order to be "noticed" by the delay element. In order to simplify the presentation 
we unify these two constants and assume that  the latency associated with Ad is 
equal to d. More generally it could be any number not greater than d (otherwise 
the function becomes non-causal as the value of/3 at t ime t might depend on 
the value of c~ at t ime greater than t). 

D e f i n i t i o n 3  ( D e t e r m i n i s t i c  L a t e n c y  D e l a y ) .  Let d be a non-negative num- 
ber. the latency delay associated with d is a funct ion  Ad : 1B x S ~ S such that 
/3 = Ad(b, 4) if/ 

s Also called "inertial delay", see, for example, the survey [BS91]. 
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1. fit = b for  every t �9 [0, d) and 
2. For every t > d, t �9 s  iff  t - d  �9 s  ( t - d , t ) n s  = O and a t - d  = fit 

The condition (t - d, t) M s  = 0 ensures that the change that took place at 
t - d persisted for d time units. This definition does not refer directly to the 
values of fl at every t, but rather indirectly using s  From the definition it 
follows that if some t is not in s then the value of fl at t is the value of fl at 
the latest boundary point (which could be as well the point t = 0 if no change 
in a persisted long enough since the beginning). Every non-ideal delay can be 
decomposed into a "d-filter" (an element that ignores variations that persist less 
than d), and an ideal delay - see signals sl,  s2 and s4 in figure 1. 
R e m a r k :  In certain physical settings the effects on fl of high-frequency varia- 
tions in a is not predictable. Consequently the value of fl in the corresponding 
instants can be any value and the delay operator is non-deterministic. We have 
chosen a "lazy" version of the latency delay such that no state-transition takes 
place unless it must. The suitability of this modeling decision is application- 
dependent and our theory could be developed under different assumptions. 

Delay characteristics of real components cannot be known precisely�9 The most 
one can expect from a specification of such components is a delay interval [l, u] 
expressing lower and upper-bounds on the time it takes for a change in the input 
to propagate to the output.  This motivates the following definition: 

D e f i n i t i o n 4  ( N o n - D e t e r m i n i s t i c  De l ay ) .  Let 1 and u be two non-negative 
numbers such that l <_ u. The non-determinisi t ic  delay associated with l, u is a 
funct ion A[1,~] : P3 • S --+ 2 s defined as: fl �9 A[~,~](b, (~) i f f  

1. Z, = b for  every t �9 [0, l), 
2. ~or every t > l, t �9 L ( f )  ~ 3 e  �9 ~(~)  n [t - ~, t - I] such that ~ ,  = ~ aud 

(t', t '+l)ns = 0. (Every change in fl must be preceded by an/-persistent 
change in a).  

3. For every t', t' �9 Z(~)  A (t', t + u) n s  : 0 =~ (t' + l, t' + u) n Z(~)  # O. 
(Every u-persistent change in o~ must be reflected in fl). 

All these notions are depicted in figure 1. Non-deterministic delays pose prob- 
lems to traditional simulation methods as the next "event" in the simulation can 
take place anywhere within an interval. 

D e f i n i t i o n 5  (C i r cu i t ) .  A k-wire digital circuit is a tuple Af = (X, iT, D) where 
X = { x l , . . . , x k }  is a set of wires, Y: = { f l , . . . , f ~ }  is a set of funct ions of the 
form fi : ~3 k "-~ J73 and D = {(ll, u l ) , . . . ,  (lk, ub))  is a set of positive pairs of 
integers such that li ~ ui. A behavior of the circuit starting from an initial state 
b = (b l , . . . ,  b~) is a j~k_valued signal x = ( x ~ , . . . ,  xk) satisfying the system of 
simultaneous inclusions: 

x~ e AI~l,,~l(b~, f~(x~, x~ , . . . ,  x~)) 

x2 E A[t,,u,](b2, f 2 (x l ,  x 2 , . . . ,  xk))  (~) 

xk �9 ,a[z~,~](bk, f~ (x l ,  x 2 , . . . ,  xk)) 



193 

8 2  

8 3  - - , - - ,  

8 4  . . . . .  

', 
8 5  " - + - - . 

8 8  . . . . .  

3 7  . . . . .  

I 

I I I 

I b I 

FI~ .  1. A signal 81, i ts 2-filtered version s2, s3 = As ( s l )  (ideal),  s4 : A2( s l )  ( latency) 
~nd {8,, s~, s+, 87} c nt~,~l(8~ ). 

A circuit appears in figure 2. Such a decomposition of gates into the combina- 
torial and the delay part is common (e.g., [LB94]). The correspondence between 
a circuit and the system of equations (1) is straightforward and we will refer 
to (1) as the description of the circuit. In practice gates have a limited fan-in 
and each f i  refers only to a small subset of the wires. However for proving our 
results it is simpler to assume that  all functions are k-ary. The syntactic struc- 
ture of F reflects th e topology of the circuit and it will certainly play a role in 
any efficient implementation of analysis algorithms. In the sequel, in order not 
to drag with us too much notation, we will omit the reference to the initial value 
from the delay equations and their corresponding automata,  and use equations 
of the form 

x+ G nt~,,~,](/+(xl, x ~ , . . ,  xk)). 

Needless to say, the system of equations (1) need not have unique solution. 
For the readers who wonder where have the input signals disappear in our model, 
the answer is that  in a non-deterministic framework inputs can be treated as 
any other signal, having the property of being independent of other signals. For 
example, the assumption that  the rising and falling of an input signal xi must 
be separated by at least d time units, can be expressed as xi E Z~[d,eo]("lXi). 
Similarly, xi E A[z,~](-~xi) specifies all signals the distance between their two 
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consecutive alternations is between l and u. An unconstrained input signal does 
not appear in the left-hand side of any equation. 

Fig. 2. A 3-wire circuit. 

I E,3!31  
Before introducing timed au tomata  let us t ry  to explain intuitively how we 

model the functioning of a circuit. We use a variable vi to represent the observ- 
able value of xi, that  is, the value at the output  port of the delay element (see 
figure 2). We associate two additional f ictitious variables vi and Ci that  reflect 
what happens between fi  and the delay: vi is the current value of the output  of 
fi while Ci is a clock that  measures the time since vi obtained this value. Using 
hardware terminology, wire xi is excited when v i r  vi. When the t ime is ripe, 
i.e. Ci >_ li, and vi lags behind vi, vi  can catch up and update its value. Since 
xi might be connected via a feed-back loop to f i ,  the change in vl may change 
fi  and vi and possibly invalidate the condition that  enabled this very change in 
vi. Hence in order to avoid this instability we 6 must break the simultaneity and 
assume that  every change in a vi precedes (by an "infinitesimal") the changes 
it triggers in the various vi's. This will become hopefully clearer in the sequel. 

3 T i m e d  A u t o m a t a  

Let 12 = V tO V be a set of Boolean variables and let C be a set of clock variables 
ranging over T. The variables in V tO C are called hidden variables while those in 
V are called observable variables. 

D e f i n i t i o n 6  ( F o r m u l a e ) .  A (]),C)-formula is a Boolean combination of con- 
ditions of the form v = O, v = 1, C < c, and C < c for  v E 13, C C C and 

6 And anyone else attempting to model feed-back loops using sequential mathematics. 
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c E {0 , . . . ,  h} for some integer h (which we assume to be fixed throughout the 
paper). 

We denote the set of all such formulae by F(Y, C). Clearly, if 131 C 17 and C I C_ C 
then every (•', C')-formula is also a (12, C)-formula. 

D e f i n i t i o n 7  (S t a t e s  a n d  T rans i t i ons ) .  A (V',g*)-state for V' C 13 and C' C 
C is a pair s = (q,r) of functions q : 13' -+ 1B and r : C I --* T, assigning 
actual values to every v E 12', C E C'. A (]2',C')-transition is a pair (s, s') of 
(Y', CI)-states. 

Let s = (q, r), and s' = (q', r ') be two (Y', C')-state. For every v �9 Y', C �9 C' 
2 

we use s[v] = q(v) and s[C] = r(C) to denote the interpretations that  s gives to 
its variables. For a transition (s, , ' )  we will use (s, s')[v] to denote s'[v] if v �9 V 
and s[v] otherwise. As we see the observable variables are interpreted according 
to their value "after" the transition while the hidden variables are interpreted 
"before" the transition. This can be viewed as giving a priority to the observed 
variables. 

We will use ,9 = Q x 7-I where Q =/BIVl and 7t = T Icl to denote the set of 
all global states, i.e. all (12, C)-state. All the signals we will use henceforth are 
8-wlued.  Such a signal x : T --+ S induces for every v E Y (resp. C �9 C) an 
interpreted signal x[v] : T --+ {0, 1} (resp. z[C] : T --+ T)  which is almost the 
projection of x on v. It is defined for every t as 

{ x~[v] if v �9 V 
z[v]t = (limt,-+t,t,<t zt,)[v] otherwise 

Note that  the above two expressions are equal whenever z is continuous at t, 
and the distinction concerns only the points in L:(x), where the hidden variables 
are interpreted according to their value "before" the discrete jump. 

D e f i n i t i o n 8  ( I n t e r p r e t a t i o n  o f  F o r m u l a e ) .  Let Td be a formula, s, s' be two 
(yl,  C')-state and x : T --+ ,9 be a signal. Then 

1. The interpretation of T~ at s, denoted by s[7~], is the formula obtained by 
substituting s[v] in v for every v �9 Y' U C'. 

2. The interpretation of T~ at (s, s'), denoted by (s, s')[T~] is the formula ob- 
tained by substituting (s, s')[v] in v for every v �9 ]2' O C'. 

3. The interpretation of Tt at x, denoted by x[n], is a signal z[7~] : T --+ 
{ t rue ,  false} such that for every t, x[7~], is obtained by substituting x[v]t in 
7~ for every v �9 Y U C. 

A (Y', C')-state s transforms a (Y, C)-formula T~ into a (V - Y', C - C')-formula 
Tr = s[7~] and if all the variables mentioned in 7~ are included in yl t0 C I, then 
s[7~] is either t r u e  or false (which is always the case when s is global). We use 
a similar notation for the interpretation at a state s or a signal x of a subset of 
variables, e.g. s[Y'], x[Y']. If Y' C V then z[Y'] is exactly the projection of x on 
Y'. For a set L of signals, L[Y'] is the set of corresponding projected signals. 
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E x a m p l e :  Let 1 / =  {vl, v~}, C = {C}, and consider the states 

s : ( v l = 0 ,  v 2 = l , C = 5 )  s ' : < v l = 0 >  

and formulae 
7~1 : v l  = 1 V C < 4  7"~2 : Vl --- 0 A C > 4. 

Then s[vl] = O, siC] = 5, s[12] = (0, 1}, s[7~1] = false,  s[~2] = t r u e ,  s'[N1] = 
C < 4 and s'[T~] = C > 4. 

Our model of timed automata,  defined below, slightly differs from the original 
model of [AD94] and others in the following features: 

1. The distinction we make between hidden and observable variables. 
2. We allow communication between the automaton and the external world 

by means of continuously-present shared variables, instead of by "message- 
passing". 

3. We employ a "dense" semantics (signals) instead of "sampled" semantics 
(steps). 

It can be shown that  these models are essentially equivalent. 

D e f i n i t i o n 9  ( T i m e d  A u t o m a t o n ) .  A timed automaton is a tuple 
A = (V.4,6.4, rr O) where: 

- 12.4 C Y is a set of m Boolean variables. We denote the se t /B  "~ of all their 
possible valuations by QA and call it the state-space of .,4. 

- C.4 C C is a set o fn  clock variables. We denote the set T"  of all their possible 
valuations by ?/.4 and call it the clock space of .A. The configuration space 
of A is Q.4 x 7/.4. 

- Tt : Q.4 x Q.4 -+ F ( V  - 12.4, C) is a function that assigns a formula (over the 
clocks and the variables which are "external" to ,4) to each pair of states, 

- 0 : Q.4 xQ.4 -+ 2 c~ is a function that assigns to everypair of states a subset 
of the clocks of A (we require that  O(q, q) = ~). 

The intuitive meaning of this definition is as follows: the configuration-space 
of A consists of all possible valuations to its own variables and clocks - the 
rest of the clocks and variables are considered external to the automaton and 
thir values can take the form of arbitrary signals. 7 The internal clocks grow 
uniformly with time. The automaton can stay at some state q as long as the 
evaluation of 7~(q, q) on the clocks and the external variables remains t r u e .  
Similarly, a transition from q to q' can be taken when ~(q ,  q') evaluates to t r u e .  
In this case, A resets all the internal clocks in O(q, q'). The external clocks and 
variables can, thus, influence the behavior of M, but only the values of clocks in 
CA and the variables in 12.4 can be modified by A.  

z The notion of external/internal with respect to an automaton should not be confused 
with the notion of observable and hidden variables. An automaton can "own" both 
hidden and observable variables and can employ (other) variables of both sorts in 
its associated formulae. 
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D e f i n i t i o n  l 0  ( S e m a n t i c s  o f  T i m e d  A u t o m a t a ) .  Let A = (12A, CA,Tt, O) 
be a timed automaton. The semantics o f ,4  consists of all signals x : T --+ $ 
such that: 

1. T is partitioned into a sequence of intervals [ to , t l ) , [ t l , t2 ) , . . .  such that 
xt[I;A] is constant inside every interval, 

2. For every i > O: 
(a) x[l;A]t, =- q and z[l/A]t,+~ = q' implies 

- x[n(q, q')]t,+~ = t rue ,  
- x[C]t,+, = z[C]ti + (ti+l - tl) for every C e CA - O(q, q'), 
- x[C]t,+~ = 0 for every C e O(q, q'). 

(b) I f  xD;A]t , = q then for every t E [t~,ti+l): 
- x[T~(q, q)]t = t rue ,  
- = = I V ] , ,  + (t - for  every C e CA. 

The set of all such signals is denoted by L(A) .  

Condition (2-a) says that  .4 makes a discrete transition from q to q' at time t 
only if the transition condition T~(q, q') is true at t - in this case it resets the 
corresponding internal clocks. Condition (2-b) says that  in order to stay at state 
q (and let the internal clocks grow) T~(q, q) must be satisfied. 
Note that  the semantics is defined as a set of S-valued signals including di- 
mensions that  correspond to variables in 12 - 12 A. This facilitates the following 
definition of composition. 

D e f i n i t i o n  11 ( C o m p o s i t i o n  o f  T i m e d  A u t o m a t a ) .  Let 
./ll = (12A 1, CAI,T~I, 01)  and r = (12A~, CA~,T~2, 02) be two timed automata 
such that (I;A~ UCA1) (3 (I;A2 UCA2) = @.s Their composition is .A1 | ,A2 = .,4 = 
(I;A, CA, Tt, (9) such that: 

1. 13A = VA1 U 'r (and the state-space is QA = QA1 • QA~), 
2. CA = CA1 U CA~, (and the clock-space is 7-/A = 7-/A1 • 7-/A~), 
3. T~ : QA • QA --~ F ( V  - VA, C) is defined for every (ql, q2/, (q~, q~) E QA1 • 

QA2 as 

Tt((ql, q2), (q'l, q'2)) = ((ql, q2), (q'l, q~))[T~l (ql, ql)' A T~(q2, q~)]. 

In other words, we make a conjunction of the two formulae and substitute 
the values of the hidden and observable variables induced by the transition 

! ! from (ql, q2) to (ql, q2). 
4. O((ql, q2), (q~, q~)) = Ol(ql ,  q~) U 02(q2, q~2). 

C l a i m  1 ( C o m p o s i t i o n a l i t y  o f  | L(A1 | M2) = L(~41) N L(~42). 

Ske t c h  o f  Proof :  By induction on the number of discontinuities. [] 

8 This means that each automaton cannot change the values of the clocks and variables 
of the other. 
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4 T r a n s l a t i n g  E q u a t i o n s  i n t o  A u t o m a t a  

For every k-wire circuit described by a system of equations (1) we let V = 
{ v l , . . . , v k } ,  V = {v l , . . . , vk}  and C = {C1, . . . ,Ck}.  With every equation 
xi E A[h ,ud( f i (x l , . . . ,  xk)) we associate two timed automata  Ai and Ai 

Ai = ({vi}, {C~}, Ri, Oi), 

= 0, Oi ) .  

The intended meaning of these two automata  is as follows. Ai represents the 
observed value on xi while Ai represents the "hidden" value on xi, namely the 
value xi is about to obtain given that  its input is stable for a sufficiently long 
period. When a change in fi occurs, it is Ai that  changes its state and resets the 
clock Ci. This way the clock represents the time elapsed since the occurrence of 
the change. Changes that  last long enough can trigger an observable transition 
in Ai (which in turn may change the value of some f j  and vj). More specifically: 

Ri(O,O) = Ri(1, O) = f i ( v l , . . . , v k )  = 0 
Ri(O, 1) = RiO,  1) = f i ( v l , . . . , v k )  = 1 
Oi(O, 1) = 0i(1, O) = {Ci} 

R~(O, O) = vi = 0 V Ci < ui 
Ri(O, 1) = vi = 1 A C/_> li 
R i ( 1 ,  O) = vi = OAC/ _> li 
Ri(1, 1) = vi = 1 V Ci < ui 

These two timed automata  are depicted in figure 3. 

C l a i m  2 ( P r o p e r t i e s  o f  L(Ai)) .  For every i, L(Ai) consists of all the signals 
x such that for every t 

- -  X[V i ] t  -~ f i ( X [ V l ] t , . . . ,  X[Vk]t) 
- x[Ci]t = max{d:  Vt' E I t -  d,t](x[vl]t, = x[vi]t)}, namely, the time elapsed 

since vi obtained its current value. 

Proof :  By definition. [] 

C l a i m 3  ( P r o p e r t i e s  o f  L(Ai)) .  For every i, L(Ai) consists of all the signals 
x such that for every t: 

- # x[vd,  : *   [cd, < 
- t ~ s  ~ l~ < z[G]~ 

Proof :  By definition. [] 

C l a i m 4  P r o p e r t i e s  o f  L(Ai  @ Ai). The set L (A i  | Ai)[V] is exactly the set 
of signals satisfying the delay inclusion xl E A[z ,ud( f i (Xl , . . . ,  xk)) . 
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. . . .  

�9 , v k )  = O/Ci := o 

C A v~ = 1 A _ " " = C i  >_ l i  

Fig. 3. The two automata A~ and Ai associated with each equation 

Ske tch  of  Proof :  By combining what claim 2 tells us about C/ and Vl, what 
claim 3 tells us about their influence on vi, with the compositionality of | 
(claim 1) we obtain a characterization equivalent to definition 4. 13 

T h e o r e m 5  (Main  Resu l t ) .  Every k-wire circuit can be transformed into an 
equivalent timed automaton with 2k variables and k clocks. 

Proof :  Given a system of delay inclusions, we create the corresponding system 
of timed automata and compose them, obtaining 

k 

A = ~ ( A i  |  = . 4  = (VWV, g,7~,O) 
i=1 

as described above, whose set of observable behaviors L(A)[V] is exactly the set 
of solutions. [] 
Example :  Consider the simple circuit in figure 4. We model xl as an oscillator 
with parameters 11 and ul. Initially we obtain the four 2-state automata A1, A1, 
A2 and As whose 7Z and (9 are written in table 1. After composing A1 with A1 
and As with As (and removing states and transitions whose T~ is false - these 
indicate unstable states in which the automaton cannot stay for a non-zero 
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duration) we obtain the two automata  ,41 and .A2 of table 2. Composing those 
two we end up with the four-state timed automaton of table 3 which is depicted 
(with the hidden variables removed) in figure 5. This automaton generates all 
the observable signals of the circuit. 

V 
Fig. 4. A circuit. 

V1 [0 1 
0 vl = O V C 1  < u l  v l = I A C 1  > l l  

1 v l = I A C 1  >ll v l = l V C l < u l  

A1 

vl 0 1 
0 v l = 0 v l = l  

{<} 
1 v l  ----- 1 v l  ---- 1 

{c1} 

A1 

V2 0 1 
0 v 2 = O V C 2 < u 2 v 2 = I A C 2 > I 2  

1 v~=OAC2>_I2 v2-=IVC~<u2 

0~ 0 [1 
VI = 0 V V 2 - - ~  i Vl ~ I A V 2  ~ - 0  

{C2} 
1 v l = 0 V v 2 = l v l  = I A v 2 = 0  

{C2} 

A2 A2 

Table 1. The four initial automata. 

5 Applications 

Once a circuit has been translated into an automaton,  we can reason about  its 
behavior using (timed) automata-theoretic methods. The main applicable results 
are those concerning analysis/model-checking ([AD94], [ACD93], [HNSY94]) and 
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Vl,Vl 10 01 V2,V2 00 
10 C1 < u l  C1 >11 00 vl = 0  

{c1} 
O1 vl =OhC�89 < u s  

Ol c1 >zl 61 <u~ {cs} 
{C1} 10 v l = 0 A C 2 > &  

{Cs} 

01 I0 

V1~-1 
{C2} 
Vl = I A C s  < u s  C~ >__~2 

{cs},, 
vl = I A C s  >_/2 C 2 < u 2  
{Cz} 

.41 As 

Table 2..A1 = A1 | A1 and .42 = As | As. An empty entry in the table indicates 
false. 

Vl, Vl 
Vs,V2 

1001 

1010 

0100 

0110 

I001 1010 0100 0110 

C1 < u l A C 2 < u 2 C 1  < u l A C 2 > 1 2  C I _ > / 1 A C 2 < u 2 C I _ > l l A C 2 _ > 1 2  
{cs} {ci, c~} {ci, c~} 

61 < Ul A62  >_ 12 C1 < Ul A(72 < us 61 > 11 A62  ~ 12 C1 > 11 A(72 < u2 
{c~} { c l , c s }  {cs} 
C1 _>/1 C1 < ul 
{ Cl , Cs } 
C1 >_ ll A Cs >_12 Ct >_ ll A Cs < u C1 < ul A Cs >_ ls C1 < u l  A C2 < u2 
{cl,cs} {c1} {c~} 

A 

Table 3. A = ,41 | A2. 

synthesis 9 ([HWT92], [MPS95] [AMP95-b]). We will briefly present these results 
and discuss their usefulness. 

5.1 A n a l y s i s  

Given a timed automaton .4, one can decide whether a state q~ is reachable 
from a state q. This is done by an algorithm that  calculates, using simple linear- 
algebra techniques, the set of successors of a given configuration. More generMly, 
the satisfaction of properties expressed in various reM-time temporal logics can 
be verified as well. Such properties go beyond simple teachability and allow one 

9 The word "synthesis" is used in the hardware community for a kind of "compila- 
tion" between an abstract representation into a more concrete one. In the software 
verification community the meaning is like in control theory, namely, constructing a 
system from its specifications. This is the sense in which we use the word. 
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10 

C1 < ul A C2 < u2 

Oa < u~ A O2 >_ & 

Ca < ul A C2 >_12 
{c~} 

Ca > la A 
C2 < u2 
{ c~ , c~ } 

C1 > la 
{ ca , c~ } 

Ci ~laA 
C 2 > &  
{ c~ , c~ } 

O0 

J 

~ C1 < Ul A C2 > 12 
{c~} 

11 

C l < u l  AC2 <u2 

'-1 
Ca ~ laA 
C 2 < u 2  
{ca} 

c2} {Cl, 
01 

CI ~ I~ A 
C2<u2 
{c~} 

C1 < Ul A C2 < U2 

Fig. 5. The automaton .A projected on the observed variables. 

to express, for example, a fact like every visit o f  the sys tem in state q is fol lowed 
within d t ime units by a visit in state ql. 

All these features are already implemented in the tool KRONOS ([HNSY94], 
[DOu developed at VERIMAG. As an initial experiment we have used it to 
verify that  a MOS circuit with 8 elements 1~ and 4 input signals never reaches 
a certain "short-cut" state. This property has been verified against a non- 
deterministic specification of the relative rising and falling times of the input 
signals. 

5.2 S y n t h e s i s  

The synthesis problem for timed automata  can be roughly phrased as follows: 
Given an automaton A = (l a ,Ca ,T~ ,  0 ) ,  f ind a sys temat ic  way to restrict  its 
behavior such that some property is satisfied. By "restricting the behavior" we 
mean to modify A into A'  = (l;a,  Ca, 7~', O) such that  for every, q, q' C Qa,  
7U(q, q') => 7~(q, q'). A typical example of a restriction is to replace an inequality 

10 In this paper we have presented the model using Boolean gates, but any other basis 
consisting of functions over finite domains can be treated as well. 
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of the f o r m l < C < u i n T ~ b y l  I < C < u  ~ s u c h t h a t  I < l  ~< u I < u .  Clearly, 
by restricting T~ the set of signals generated by the automaton decreases and 
L(A')  C_ L(A). 

The algorithm presented in [MPS95], [AMP95-b], which is based on the same 
geometric ideas as the analysis algorithms for t imed automata ,  can extract  a re- 
stricted au tomaton  all of whose behaviors satisfy a given property. If no such 
automaton exists, the algorithms can point out a configuration (state + clocks) 
from which the transition to the bad state cannot be avoided. We will demon- 
strate how this result can be used for solving two concrete problems in circuit 
analysis. 

Consider a circuit with given delay characteristics. We want to know what 
constraints must be imposed on the input signals in order that  some state q 
will never be reached. We built the equations for the internal signals and let 
the input signals be unconstrained (or specified by xi E A[d,~](-~xi) for some 
minimal propagation constant d). Then, after translating the system into an 
automaton ,4, our algorithm will search from q backwards, trying to eliminate 
bad transitions by putt ing further restrictions on the formulae. The restrictions 
can be made only for those parts of a formula which originate from the equations 
that  correspond to the input. In the ideal case, we will get as a solution an 
automaton .4' admitt ing a reverse translation into a similar system of delay 
equations where possibly smaller delay interval are associated with the input 
signals. This would mean that  it is sufficient to restrict the variability of every 
input signal individually. In more complicated cases we will have restrictions that  
relate several input signals. For example the condition in A'  corresponding to a 
transition that  changes some value of x{ may refer to a clock Cj for some i # j .  
In this case the set of input signals should satisfy more complicated constraints, 
such as: input signal xi will never change unless some time has elapsed since the 
last change in input xj. 

In more complicated cases, a formula that  corresponds to an input xi in the 
solution .4' may refer to clocks of internal signals. This will indicate tha t  the 
input cannot be constrained in a feed-forward manner,  but that  we need a feed- 
back from the internal components in order to select admissible inputs. This will 
generally indicate bad design. It should be noted, however, that  if the gate delays 
are deterministic, the problem of calculating the maximal set of input signals 
against which the circuits operates properly can be solved without reference to 
the clocks associated with the gates, as the values of those can be inferred from 
other variables. 

In a similar manner we can solve the opposite problem: given a circuit and 
a class of input signals, find the delay characteristics of the gates that  will sat- 
isfy some teachability property. Here we will start  with the most general delay 
parameters of the non-input signals and use our algorithm to restrict them and 
obtain a good automaton.  As in the previous problem, ideal solutions could be 
translated back into delay equations (gate parameters are independent) while 
in more complicated cases the relation between gate delays will be of a more 
intricate and dynamic nature. 
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The classification of these problems and solutions as well as the implemen- 
tation of efficient data-structures and algorithms for t imed reachability analysis 
is subject of an ongoing research. We believe that ,  as in the case of synchronous 
circuits and ordinary untimed automata,  the translation into au tomata  clari- 
fies the issues, allows a uniform treatment of a class of problems that  might 
look different at a first glance, and helps to focus on practical solutions of the 
algorithmic issues. 

A c k n o w l e d g m e n t  

This work grew out of discussions with J. Sifakis. We have also benefitted from 
comments made by other members of VERIMAG, in particular, A. Bouajjani, 
C. Daws, Y. Lakhneche, R. Robbana and S. Yovine. 
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