
Transforming Boolean Relations by Symbolic
Encoding

Gianpiero Cabodi 1 and Stefano Quer 1 and Paolo Camura t i 2

1 Dipartimento di Automatica e Informatica, Politecnico di Torino, Turin, Italy
2 Dipartimento di Matematica e Informatica, Universitk di Udine, Udine, Italy

A b s t r a c t . Transforming Boolean relations and functions is an impor-
tant horizontal technique that finds several applications in logic synthe-
sis and formal verification. This paper develops a framework for ana-
lyzing input/output transformations of Boolean relations and functions.
It also contributes efficient composition techniques based on partitioning
the transformation. Experimental results on equivalence-preserving FSM
state-space re-encoding demonstrate the feasibility of the approach.

1 I n t r o d u c t i o n

One major step in logic synthesis is encoding, i.e., finding a suitable correspon-
dence between symbols of a finite set S and binary strings. We need strings
whose length 1 satisfies the following inequality:

I ~ [log2(card(S))] (1)

Boolean relations and functions describe correspondences between symbols and
set elements or inputs and outputs. In combinational design, we encode input
and output symbols and represent the function of the circuit. In sequential cir-
cuits, using the Finite State Machine (FSM) model, we encode its input, output ,
and state symbols and express the output and next-state functions in Boolean
form. Just any of the possible encodings may not satisfy constraints related to
minimizing area, performance, power dissipation, and to verifying equivalence,
and so on. For this reason, re-encoding, i.e. replacing a binary string with an-
other binary string, is a technique that finds an application in several cases [7],
[8], [10].

For sake of readability, we do not distinguish between the initial encoding
phase and any re-encoding steps and we use the te rm encoding for both.

Given an inpu t /ou tpu t mapping in the form of Boolean Relation (BR) ~- or
Boolean Function Vecr (BFV) f , we t ransform it, changing the old codes for
its input (output) symbols in new ones. The inpu t /ou tpu t t ransformat ion itself
is expressed as a relation or as a function. When the t ransformat ion is 1 : 1 or
n : 1, both representations as function or as relation are possible. In the most
general case of n : m transformation, we express it as a BR, because this case
occurs seldom and i t 's not worthwhile to investigate how to express it as a BFV.
Initially, we assume to have completely specified t ransformations but we easily
extend our results to incompletely specified ones.

162

This paper doesn' t deal with finding the t ransformation: for this purpose
we refer the reader to the li terature [7], [8], [10]. We rather focus on applying
the t ransformation, which is essentially the problem of composing functions or
relations.

Apar t f rom a tutorial aspect, the main contributions of this paper are:

- a theoretical framework for the application of new encodings
- a theorem for the t ransformation of a n : 1 BR into a BFV
- efficient composition techniques for both functions and relations, based on

decomposition procedures and on the exploitation of the don' t care set for
incompletely specified functions.

The remainder of the paper is organized as follows: section 2 defines the nota-
tional framework and recalls some preliminary notions about FSMs, and Boolean
operators. Section 3 describes how to encode Boolean strings. Section 4 analyzes
encoding f rom the point of view of complexity, showing tha t decomposed multi-
step encoding can be of help in some cases. Because of the importance of FSMs,
encoding them is the subject of section 5. Section 6 reports experimental results.

2 Prel iminaries

This section defines the notat ion used in this paper and recalls some basic notions
about FSMs and Boolean operators.

2.1 N o t a t i o n a l f r a m e w o r k

Let B = {0, 1}. Let I = B n be an input set consisting of n-bit Boolean strings
and let O = B m be an output set composed of m-bit Boolean strings.

A BFV f is defined as f : I--* O,y = f (z) = (f l (z) , . . . , f m (z)) .
Let 9V(z, y) be a n : 1 BR. A compatible BFV f is defined as follows:

/ : z --, o , = r v) (2)

Given a set S = B k, we can represent and manipulate efficiently its sub-
sets using their Boolean characteristic functions. Let A be a subset of S. The
characteristic function of A is the function XA : S --~ B defined by:

l i r a E A
XA(a) = O if a /:_ A (3)

Among all sets that can be represented by characteristic functions, we con-
sider Boolean Relations (BRs). A BR .T(x, y) is a mapping between elements
x and y of its domains I and O. It is thus a set of ordered tuples (x, y). With
abuse of notation, we denote with the same symbol a relation and its character-
istic function.

163

2.2 F S M s

A finite state machine is an abstract model describing the behavior of a sequen-
tial circuit. A completely specified FSM M is a 5-tuple M = (I, O, S, 5, A),
where I is the input alphabet, O is the output alphabet, S is the state space,
5 is the next state function (5 : S • I -+ S), and A is the output function
(A : S x l - ~ O).

2.3 Boolean operators

Boolean functions are efficiently represented by Binary Decision Diagrams (BDDs)
[2]. Boolean operators of great importance are ITE (if-then-else) and COMPOSE.

The if-then-else operator Given Boolean functions f , g, and h, Bryant et al. [1]
define IWE(f, g, h) as:

IWE(f,g,h) = f ' g + 7 ' h (4)

Function composition As this case is commonly found in our applications, we
restrict investigation to a particular form of function composition where f(x, y)
is a Boolean function and g(z) is a BFV whose set of support doesn't contain
any y variables. If y E B k and g : B h --~ B k, we define function composition as:

f (~ , g(z)) = COMPOSE (f(~, V), V, g(z)) = f (x , Y)I~I=~,U), ~=~2(,),. ,~--g~U)
(5)

A standard way to perform it resorts to recursive applications of ITE:

COMPOSE(f(x,y), y, g(z)) = ITE(gl(z), COMPOSE(fyjL(a,y(2)), y(2), g(2)(z)),
COMPOSE(fv,(x,y(~)), y(2), g(2)(z)))

(6)
where superscripts, e.g. f(i), indicate the components with index j _> i, e.g.
f(i) = (fi, f i + l , . . . , fn) in the recursive formula.

Relation composition Let ~'(x, y) and 6(y, z) be BRs. We can compose U and
G by logical conjunction and existential quantification of y:

(y o 6)(x, z) = 3~ (f (x , y) �9 6(v, z)) (7)

3 Encoding

Let us consider a mapping between an input space I and an output space O. We
express it either as a relation .~(x, y) or as a function y = f (x) (where x e I
and y E O). We can encode the input space, the output space, or both. Let
us suppose for simplicity to encode the entire input (output) space and let the
encoded input (output) space be I ' (O'). The input transformation is either an
encoding function ex or an encoding relation Ex. The same holds for the output
transformation eo or Eo.

164

Relations gx and go are expressed as:

gI : I X I ' --* B , g l (X ,X ') ~e~ x' i s a c o d e o f x

go : O x O ~ --+ B , go (Y ,Y ') C~z y~ i s a c o d e o f y

Functions el and eo are expressed as:

ei : I--+ I ~, x ~ = e l (x) cv x ~ is the code of x

e o : O - + O ~, y ~ = e o (y) CVy~ is the code of y

(8)
(9)

(10)

(11)

A graphical representation is shown in Figure 1. As the inputs to f or 9 c
belong to the I space, they are re-constructed from x ~ by applying the inverse
input transformation E/1 or e}-1. This in turn imposes an invertibility constraint
on gx and ei. In a similar way, y is transformed into y~ by go and eo. The
application of the input /ou tput encodings to f or 5 r essentially requires function
or relation compositions. In the compositions we identify an outer term and an
inner one. ~r (f) is the outer term in input encoding and the outer one in output
encoding, g71 (e71) and go (eo) are the corresponding inner and outer terms,
respectively.

We must thus distinguish many cases, depending on the use of relations vs.
functions for the inverse of the input transformation, for the output transfor-
mation, and for the original representation of the circuit function. Let's analyze
explicitly the two limit cases:

case 1: if the three are expressed as BFVs, we use function composition:

y' = f ' (x ') = e o (f (e 7 1 (x '))) (12)

case 2: if the three are expressed as BRs, we use conjunction and existential
quantification:

H (x ' , y') = ($ /1 o ~" o s y') = 3x, y(Ex(x, x ') . 9c(x, y) . s (Y, Y')) (13)

All other cases can be handled according to the following observations. The
result of composing an outer BFV f with an inner BR (~ is a relation. BFV f is
first transformed into a relation, relational composition is then performed. Com-
posing an outer BR 5 r with an inner BFV g is a plain functional composition
.~(x, g(z)) , producing a relation. A particular but important sub-case is com-
posing a BFV with a n : 1 BR, i.e. a function expressed as a relation. Regardless
of the mutual position (inner/outer) the BR may be converted to a compatible
BFV, reducing this case to functional composition.

Let us analyze how to transform BFVs in BRs and vice-versa.

Transforming a B F V in a Bt l Let f be a BFV f : B n --~ B m , y = f i x) . The
standard way to compute the corresponding BR .~(x, y) is to perform a conjunc-
tion:

7(x , y) = I-Icy, -- i , (x)) (14)
i=l

165

Transforming a Bt~ in a B F V This case occurs in many applications, e.g., in the
computation of the FSM equivalent states (n : 1 or when finding 1 : 1 encodings.

In the process of converting an n : m BR to a BFV, some information may
be lost and the result is a BFV compatible with the original BR. We focus on
n : 1 Bt~s, for which there is no information loss in the conversion process.

A possible way to compute a compatible f starting from a iT is to individually
compute each fi function as the existential quantification of the output variables
on each positive cofactor according to Yi of the BR. There is also a dual form,
based on the universal quantifier. The following theorem guarantees that the
result is one of the compatible BFVs of the BR:

T h e o r e m 1. Hp:

- i T : I x 0 --~ B represents a n : 1 BR, i.e., iT(x ,y*) . iT(x ,y**) r y* = y**
- yi = f i (x) = By iTy,(=, y), i = 1 . . . n

T h -

iT (x ,y) ~ (y = f (x)) . (3y :T (x , y)) , i.e., the B F V f is equivalent to BR iT for
all min terms x belonging to the relation.

Proof. Informally, we proceed as follows. Given a minterm x* E I, the corre-
sponding minterm y* E O is unique (if it exists). Its component bits Yi, i -=
1 . . . m can be computed as y* = 3y iT(x*, y).

More formally, as

f~(x) = 3y 7y,(x, y) = 3y (~ - 7 (x , y)) (15)

given a minterm in y* E O and its i-th bit y~

= = - (1 6)

The second equivalence holds only if iT is n : 1, which is true because of Hp. 1.
Extending the above equivalence to the whole y*

y* = f (x) ~ I I i = l (y i - f i (x)) c~ FL=l (3y ((y* =_ y i) . . T (x , y))) (17)

as 3y (a. b) => 3y a -3y b we permute the conjunction and the existential quantifier

n ,
Y* = f(=) r 3Y(I-[i=1(Yi - Yi) " iT(x, y)) (18)

restricting the analysis to minterms x in 3y iT(x , y), the right expression yields
i T (= , y *)

(y* = f (x)) . 3y iT (x , y) r Y(x, y*) (19)

The implication becomes a co-implication, proving the thesis, if we consider
that no =* can yield (y* = f (x*)) . 3y iT(x* , y) and not iT(x*, y*).

166

4 O n t h e C o m p l e x i t y o f E n c o d i n g

A complexity analysis of encoding deals with three aspects: the complexity of
computing, representing, and applying the encoding. We refer the reader to [7],
[8], and [10] for a discussion on the first two points. In this paper, we focus our
attention on the third one.

The application of an encoding requires essentially composing functions or
relations. We assume the results published by R. Bryant in [2] on the worst-case
complexity of operations on BDDs.

Let ~ and G be the BRs to be composed and let [hr[and [~[be their size in
BDD nodes. The complexity of COMPOSE is O(I.~'12 �9 1~12). Average complexity
is, according to our experience, below this upper bound.

As far as functions are concerned, Bryant analyzes only the case of a BFV
f composed with a function g. Let Ill and Igl be their size in BDD nodes. The
complexity of COMPOSE is O(If l 2. Igl).

There is no analysis for the composition of two BFVs, but according to
Coudert et al. [5], in the worst-case, this is an NP-hard problem.

In the average case, good implementations allow to cope with quite big prob-
lems [3], [9]. Variable ordering, function simplification, and efficient caching play
a key role. Complexity is not only related to the final result, but also to the
intermediate ones, because they require considerable space and CPU time.

We found no formal analysis nor any conjecture in literature about the cost of
the intermediate steps in composition. According to our experience, we conclude
that the complexity of the result of a composition depends on the complexity of
the operands, namely the function/relation to be encoded and on the complexity
of the encoding. The cost of computing a composition depends on the algorithm
adopted, and it depends on the size of the operands, too. A good conjecture for
feasible compositions is a polynomial function of the size of the operands and of
the result.

Note that, if we compose BRs, the application of COMPOSE is straightforward,
asymptotic complexity is better, but sometimes the BDDs for the BRs are so
large that we can't even compute them. With BFVs, the individual BDDs are
simpler, although their composition is harder.

Given a fixed variable ordering, Coudert et al. [5] show that the size of the
result can be exponential. We limit our scope to problems where the result of
composition can be expressed. In the following paragraphs we present techniques
that simplify computation, based on the exploitation of the don't care set and
on the application of encoding as a sequence of simpler functions.

4.1 E x p l o i t i n g t h e d o n ' t care set

We do not go into the details of incompletely specified encodings. Their im-
portance lies in the fact that properly exploiting don't-care sets may result in
minimized and/or optimized BRs or BFVs.

For incompletely specified functions, the don't care set gives us a degree of
freedom that we exploit to reduce the complexity of an encoding. The input don't

167

care set di(x) is given by the specifications. The output don't care set do(x) is
given by all those outputs that can't occur, i.e., do(x) = range(f(x)), do(x) =
range(2"(x, y)). We leave the input (output) encoding unspecified on di(x) (do(x)).

4.2 D e c o m p o s e d encod ing

Let us consider the general case of a BR E that denotes either the input or the
output encoding. An equivalent result can be found by applying a sequence of
simpler encodings, provided such a decomposition of E is available. For sake of
simplicity, let us restrict investigation to just two steps. This is easily generalized
to an arbitrary number of steps. In the general case, the original transformation
is expressed as a composition:

c = ca o cb (20)

Applying in sequence Ca and Cb results in a relevant gain when their sizes
are much lower than IEI.

As a particular case, let us consider independent encodings applied to disjoint
subsets of variables. Let v represent generically either x or y variables. Let va
and vb be partitions of the variables and let v~ and v~ be the corresponding
encoded variables. The encoding E is the Cartesian product of Ca and Cb:

c(~o, v~, r ~i) = co(,o, ~'o) • c~(~b, vl) (21)

The gain can be relevant, because the size of Ca and Cb is smaller than the size
of E, especially when variables Va (V'a), Vb (V~) are interleaved in the ordering.

A simple case of such a decomposed encoding is 'related to don't care set
exploitation. Suppose that the incompletely specified encoding E is a subset of
the identity relation 77a on a subset (Va, v~) of the variables, i.e., re-encoding is
applied to just a subset of the code bits. Setting the values of the don't cares,
we obtain the encoding E*, easily expressed as a Cartesian product:

! !
E*(,~, ,b, v. , ~b) = zo(~o, ,'o) • 3~o,,o,(C~(v~, ~i)) (22)

Decomposed encodings are easily found for partitioned circuits. Partitioning
according to topology relies on designer knowledge or heuristic functions, Quer
et aL present state variable partitioning for verification in [10].

5 Encoding FSMs

FSMs play an important role in automated synthesis, formal verification, and
testing. Transformations can be of great help in speeding up for example the
symbolic traversal of the product machine of two FSMs, because similar state
encodings make BDDs simpler [10]. They can also contribute to the exact or
approximate state minimization of a machine, mapping all states belonging to
the same equivalence class onto one code [4]. We therefore examine this particular
case of encoding and present experimental data in the next section.

168

Encoding the states of FSM M may be advantageous in many applications,
eg., symbolic traversals. Because of the feedback loop of Fig. 2, the transforma-
tion must be equivalence-preserving, i.e., the resulting M r must have the same
input/output behavior of M. In order not to be bothered by the existence of
equivalent states, we consider a particluar case of equivalence-preserving trans-
formations, i.e., 1 : 1 functions. A 1 : 1 function e(s,s~), which is certainly
invertible, serves as eo and its inverse as ex = e -1 [10]. The transformation only
affects the state elements on the feedback loop, so the equivalence of M and M ~
is guaranteed by the existence of the inverse e-1 of e.

Consequently, we obtain M t = (I, O, S ~, 5~, A~), where the next-state and
output functions are computed as follows:

x) = e(e(e-l(s') , x))
x) : x) (23)

6 E x p e r i m e n t a l R e s u l t s

A common verification problem is that of comparing two machines that are
behaviorally equivalent but structurally different. This is the case when one FSM
has been obtained from the other by means of sequential optimization (such
as partial or total encoding, retiming and resynthesis, sequential redundancy
removal, etc. [6]). Symbolic state space traversal is the state-of-the-art technique.
Its efficiency can be increased when the FSMs have the same or similar state
encodings. Transforming a state encoding to make it more similar to another
one is a typical application of Boolean transformations.

We present data on the transformation of the next-state and output func-
tions of FSMs for significant ISCAS'89 (with the '93 addendum) and MCNC
benchmark circuits. We experimented on a 30 MIPS DEC VAX 7000 with 128
MByte of memory.

In Table 1 ~ P indicates the number of partitions used to encode the circuit.
When # P > 1, encoding is decomposed, otherwise it is monolithic. # F F indicates
the maximum number of state variables found in any partition. Column avgle I
shows the size in BDD nodes of the encoding functions. The CPU time in seconds
is shown in the next columns: avg-timei,~ is the average time required for the input
encoding of next-state and output functions, avg-timeo~t is the average time for
the output encoding of next-state functions, and tot_time is the total amount of
time required to encode the circuit.

Decomposed encoding is always superior to monolithic encoding, except in
the case of s400. Moreover, it handles cases on which the monolithic encoding
approach fails because of node explosion.

7 C o n c l u s i o n s a n d F u t u r e w o r k

Transforming Boolean functions and relations has several applications in the
fields of automated synthesis and formal verification. In this paper we devel-
oped a theoretical framework about the application of encodings, contributing

169

Table 1. Experimental results. - means unknown, i.e. overflow in BDD nodes (with
108 nodes and garbage collection active).

IlCi~cuitll#Pl:#:FF~= [~vg ellavg-time,.Javg-timeo~4tot-tirnell
s400 1 21 436

3 7 161
s713 1 19 389

2 10 195
3 7 138

s1238 1 18 392
3 6 129

s1423 1 74 2000
11 7 430
20 4 384

s1269 1 37 808
4 10 298
10 4 199

s1512 1 57 1421
10 6 329

0.6 6.0
1.0 2.0
1.9 92.1
4.5 14.1
3.3 9.2
1.4 10.5
0.9 0.4
35.0
20.5 75:8
15.0 29.1

15.7
8.3
7.7 97.43
10.3
4.2 16.4

3.7 213.6
0.4 1.5

7.2
9.8

97.8
40.5
38.9
13.4
4.3

1078.4
904.5

1598.7

273.5

in particular a theorem to transform Boolean n : 1 relations in BFVs. We also
described efficient composition techniques for both functions and relations, based
on decomposition procedures and on the exploitation of the don' t care set for
incompletely specified functions.

Future work will consist in a more detailed analysis of the complexity of com-
position, especially for BFVs, in carrying on the investigation on the exploitation
of the don ' t care set for incompletely specified functions, and in a complete set
of experimental results.

References

1. K.S. Brace, R.L. Rudell, R. Bryant: Efficient Implementation of a BDD Package.
Proc. IEEE/ACM DAC'90, June 1990, pp. 40-45

2. R.E. Bryant: Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers, Vol. C-35, No. 8, August 1986, pp. 667-691

3. G. Cabodi, P. Camurati, S. Quer: Symbolic Exploration of Large Circuits with
Enhanced Forward/Backward Traversals. Proc. IEEE E URO-DAC'9~,, Grenoble
(France), September 1994, pp. 22-27 best paper award

4. G. Cabodi, P. Camurati, S. Quer: Computing subsets of equivalence classes for
large FSMs. Proc. IEEE EURO-DAC'95, September 1995

170

5. O. Coudert, J.C. Madre, C. Berthet: Verifying temporal properties of sequential
machines without building their state diagrams. AMS/DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, Vol. 3, 1991, pp. 75-84

6. G. De Micheli: Synthesis and optimization of digital circuits. McGraw-Hill, 1994
7. G.D. Hachtel, M. Hermida, A. Pardo, M. Poncino, F. Somenzi: Re-Encoding Se-

quential Circuits to Reduce Power Dissipation. Proc. IEEE ICCAD'94, November
1994, pp. 70-73

8. B. Lin, H.J. Touati, A. Richard Newton: Don't Care Minimization of Multi-Level
Sequential Logic Networks. Proc. IEEE ICCAD'90, November 1990, pp. 414-417

9. C. Pixley: A computational theory and implementation of sequential hardware
equivalence. AMS/DIMA CS Series in Discrete Mathematics and Theoretical Com-
puter Science, Vol. 3, 1991, pp. 293-320

10. S. Quer, G. Cabodi, P. Camurati, L. Lavagno, E.M. Sentovich, R.K. Brayton:
Incremental FSM Re-encoding for Simplifying Verification by Symbolic Traversal.
IEEE International Workshop on Logic Synthesis, May 1995

