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Abstract. In this paper, we propose a new nile for the elimination of 
false edges produced by gradient detectors. This nile is based on the 
characteristics of the image and the properties of the detector used. The 
rule has been tested on realistic images using multi-scale edge detectors. 

1 I n t r o d u c t i o n  

In edge detection, the most commonly proposed schemes include three opera- 
tions: differentiation, smoothing and labeling. Differentiation evaluates the deriva- 
tives of the intensity image. Smoothing consists in the reduction of noise included 
in the image. Labeling localizes edges and increases the signal-to-noise ratio by 
suppressing false edges. We are interested in this paper in the elimination of 
these false edges. We limit ourselves to gradient detectors. In this case false 
edges originate from noise. The commonly used classification rule of edges as 
being true or false is that the plausibility measure (i.e., the gradient modulus) 
of a true (false) edge is above (below) a given threshold. The threshold is the 
minimum acceptable gradient modulus. Due to the fluctuation of the gradient 
modulus, edges resulting from this binary decision rule are broken. So, this rule 
has been improved to take the continuity of edges into account. Indeed, the hys- 
teresis algorithm uses two thresholds and a given edge is true if the gradient 
modulus of any edge point is above a low threshold and at least one is above a 
high threshold. Elsewhere, this edge is false. 

Another aspect of the elimination of false edges concerns the threshold com- 
putation. Usually, a threshold is found using a trialfand-error process and the 
same threshold is used for all edges of an image. As we will show, the threshold 
is a function of edge characteristics and of the properties of the edge detector. 
Consequently, it is not easy to find a single value of threshold for a given image. 
We have proposed in [4, 7] a cleaning rule for multi-scale edge detection based 
on the behavior of the ideal step edge in scale space. Improvements for this al- 
gorithm are proposed in this paper to be used with any edge model and with 
a gradient operator combined with any smoothing filter. We have tested our 
algorithm with gradient and multi-scale detectors using various realistic images. 
In the next section, we show the influence of scale and edge orientation on the 
gradient modulus and on the gradient direction. By using the behavior of the 
gradient we propose two algorithms for the elimination of false edges in section 
3. Finally, we discuss the results obtained. 



90 

2 Behavior of the Gradient 

In this section, we consider the influences of both the scale of the smoothing 
filter and the edge orientation on the gradient modulus and direction. 

Let us consider the influence of the edge orientation on the gradient modulus 
and direction. For the sake of simplicity, we consider here only the case of an 
ideal step edge. This edge model is sufficient to show that it is suitable to take 
the edge orientation into account in the false edge elimination process. Con- 
sequently, the consideration of blurred edges and double edges does not affect 
our study. We have carried out this study in the continuous domain and shown 
that [6]: 1) The gradient magnitude of rotationally symmetric detectors is un- 
affected by edge orientation. For rotationally dependent detectors the gradient 
magnitude is often affected by edge orientation. However, there are rotationally 
dependent detectors whose gradient magnitude is unaffected by edge orienta- 
tion as it is in the case of rotationally symmetric detectors. This influence is 
symmetric at edge orientation equal to rr/4 with an extremum at this orienta- 
tion. 2) For rotationally symmetric detectors the estimated edge orientation is 
accurate; that is, the edge orientation /9 is equal to the gradient direction r 
For rotationally dependent detectors the estimation of edge orientation is often 
biased (i.e., /9 r r even if the signal is noise free. However, there are rota- 
tionally dependent detectors such that /9 = r as is the case for rotationally 
symmetric detectors. Furthermore, we have shown that in practice the property 
of invariance to rotation is not preserved, due to the tessellation of the image 
plane and the numerical error approximation. Rotationally dependent detectors 
are also influenced by these discretization problems and therefore remain the 
most sensitive to edge orientation. 

Since the gradient modulus may be affected by edge orientation, the sup- 
pression of false edges may be sensitive to the orientation of the edge. In fact, 
the best threshold for one edge may be bad for another edge. We propose to 
compute an appropriate threshold for each edge pixel using the influence of the 
edge orientation (see next section). 

Now, we will consider the influence of the scale on the edge plausibility (i.e., 
the gradient modulus). For the sake of simplicity, we examine the convolution 
of an one-dimensional smooth filter (normalized first order derivative) with one 
dimensional edges to infer the behavior of edges in two dimensions. The filter 
considered here is a tempered function fulfilling the regularization requirements 
of Tikhonov (i.e., exponential filter, Gaussian filter). Let us consider four differ- 
ent noise-free models of step edges which are frequently encountered in indoor 
images and which can be easily modeled: the ideal, the blurred, the pulse and the 
staircase model. The ideal edge usually corresponds to the clean border of the 
objects in the scene. The blurred edge comes from changes in illumination of the 
scene. The pulse and staircase edges result from mutual illumination between 
objects that are adjacent or from thin objects over a background. Although the 
problem of noise is not considered in our study, experimentation shows that the 
basic theory presented here is not affected by the presence of noise. The influence 
of the scale on the estimated contrast has been studied in [4, 5, 7] and is sum- 
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marized by: 1) ideal edge: the plausibility is independent of the scale; 2) blurred 
edge: the plausibility is an increasing function of the scale. When the scale is 
large it is equal to the edge contrast; 3) pulse edge: the plausibility decreases 
when the scale increases. For a large scale, the weaker edge disappears while the 
stronger one remains, its plausibility is equal to the difference of the two steps; 
4) staircase edge: the plausibility of the two maxima increases with the scale. At 
large scale, the plausibility is equal to the sum of the two steps. 

Except the ideal edge, the plausibility of edges increases or decreases with 
the scale. For a blurred edge, the plausibility is very low at fine scale and it is 
difficult to distinguish it from noisy edges using only the contrast as criterion. 
This is also true for a pulse edge at high scale. One practical solution for this 
problem is to associate to each edge point its own threshold and to bind the 
scale used. Figure 1.a shows a grey level image containing a pulse edge and a 
blurred edge. To this image, we have added a strong Gaussian white noise with 
variance equal to 225. The contrast of the pulse edge is (50, 20) and the contrast 
of the blurred edge is 25 and its width is 6. Figure 1.b presents edges obtained 
using Canny's detector [1] at scale c~ = 1.5. The gradient modulus of the pulse is 
(41, 8.25) and the gradient modulus of the blurred is 17.5. Although the image 
has been smoothed, the amplitude of noise is greater than both the gradient 
modulus of the weak edge of the pulse and the gradient modulus of the blurred. 
Therefore, by using a single threshold it is difficult to suppress false edges while 
preserving true edges (see figure 1.c). It is necessary to use a specific threshold 
for each of those edges. 

3 E l i m i n a t i o n  of False Edges  

We have shown in the previous section that  if a cleaning algorithm is used, 
the choice of the threshold must take into account the behavior of edges in scale 
space and the sensitivity of the plausibility measure to the edge orientation. This 
means that  it is suitable to compute one threshold per pixel and therefore to 
associate for each edge model a specific computation rule. Given an edge model 
m(x, y), thresholds are computed according to this rule: 

t(x, y) = toCm,e,s(x, y) (1) 

to is a given threshold which can be considered as the smallest acceptable 
contrast at a given scale s. The same value of to is used for all edge models. There 
is no known rule which can be successfully used for choosing this threshold. The 
trial-and-error process remains a reliable means for choosing the appropriate to. 
The quantity cm,0,~ (see eq. 2) represents the sensitivity of the detector to the 
edge orientation (8) and the influence of the scale (s). The gradient modulus of 
the response of the filter f ( x ,  y, s) describes the influence of the scale and of the 
edge orientation. Since cm,0,s must be independent of the contrast, we define it 
as the ratio of the gradient modulus of the response of the filter f ( x ,  y, s) to the 
gradient modulus of the response of the filter f ( X ,  ]1, s) : 

~ (I(x, ~) �9 (x, y, s))2 + (I(x, ~) �9 y, s))2 
Cm,O,~ : "(I(x, y) * f~ (X, Y, s)) 2 + (I(x ,  y) * f~(X,  Y, s)) 2 (2) 
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where s is the scale used, X = xcos (0 )+  ysin(0), Y = - x s i n ( 0 ) +  ycos(0), 
f (X ,  Y, s) is the rotation an angle 0 about the origin of the filter f (x ,  y, s). The 
quantity 0 is the estimated edge orientation which approximates the gradient 
direction r The gradient modulus of the response of f ( Z ,  Y, s) (i.e., the de- 
nominator in eq. 2) is orientation independent. In fact, let x = pcos(r and 
y = psin(r be the polar coordinate system, re(X) a linear edge of any type 
with an orientation 0 E [0, ~r/2] and f (x ,  y, s) a smoothing filter, i t  is easy to 
show that: 

~o +~176 ~o2~ f (pcos(r - O), p sin(r - O) )m(p cos(r - O) ) - f(p, r r )pclpdr = O 

(3) 
This result means that  the convolution of an edge with orientation 0 with a filter 

f (x ,  y, s) taken in the direction 0 is equivalent to the convolution of the filter 
taken in the horizontal direction with a vertical edge. As we have shown earlier, 
in this case, the value of the denominator in (eq. 2) is the largest or the smallest 
depending on the detector used. Therefore, the value of cm,9,s (z, y) is one if the 
gradient modulus is orientation independent as is the case with Canny's detec- 
tor. Elsewhere, it can be smaller (greater) than one when the gradient modulus 
decreases (increases) depending on the edge orientation and the detector used. 
For instance, for Deriche's detector[3] cm,e,s (z, y) is greater than one. The convo- 
lution of the image and the filter f (X ,  ]I, s) can be computed immediately using 
convolution masks. The cleaning algorithm can be summarized as follow: given 
the first order derivatives of the smoothed image I(z ,  y ) ,  f'~(z, y, s), I(z ,  y) �9 
f'y(z, y, s), for each edge pixel compute I(z ,  y) * f ' , (X, Y, s), I(z ,  y) * fy(X,  Y, s) 
and cm,o,, (eq. 2) and then compute t (eq. 1). 

In a multi-scale edge detection scheme, one needs to suppress false edges in all 
recovered images by cleaning each of them before the edge combination process. 
In general, this method is tedious since the trial-and-error process is required at 
each scale. To automate this task, we have proposed in [4, 7] an algorithm based 
on threshold propagation. More precisely, it is possible to compute a threshold 
for given edge pixels obtained at a high scale and to propagate it automatically 
at lower scales. The choice of the high scale as a starting point is based on the 
fact that,  at this scale, there are few false edges and they are usually easy to 
suppress. We give here some improvements of this algorithm taking into account 
the effect of edge orientation and extending it to any edge model and to any 
edge detector. The multi-thresholding algorithm is given as follows: 

1. Threshold edge pixels obtained at a high scMe using the algorithm mentioned 
above ; that  is th (x, y) = tocm,e,sh (z, y). to represents the smallest acceptable 
contrast of horizontal and vertical edges at high scale, c,~,0,~h used in this 
case represents the sensitivity of the detector to the edge orientation at the 
same scale. 

/ ([(x, y) �9 f~(x, y, Sh)) 2 + (I(x, y) * ]~(x, y, Sh)) 2 (4) 
c~,0,sh (x, u) = V ( i ( x ,  u) � 9  v, s~))2 + (I(x, u) �9 1;(x, v, s~))2 

2. Threshold edges obtained at smaller scales. The threshold is computed au- 
tomatically from the one obtained at a high scale ; that  is, t(x, y) = 
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i (I(x, y) �9 f ' ( x ,  v, s)) 2 + (I(x, y) �9 f~(x, v, s)) ~ 
cm'sh"(x 'Y)= ( I ( x , y ) .  f~(X,V,  ~ + ( i ( x , y ) .  f~(X,Y,  (5) 

The influence of the orientation is considered only at the high scale. This influ- 
ence is transcribed in th and therefore it is propagated to the low scales. 

4 Experimental  Results  and Conclusion 

We have experimented our algorithm using various real images and various~edge 
detectors. We present here results of Deriche's detector. It should be noted that 
Deriche's detector is not rotationally symmetric. Consequently, edges produced 
by this detector are not easy to classify. To eliminate false edges we have used 
only one threshold combined to the binary decision rule. The use of the hystere- 
sis algorithm leads to better results. Figure 2.a presents an indoor image which 
contains various edge models. Figures 2.b, 2.c and 2.d are respectively edges ob- 
tained at scale a = 0.9, true edges and false edges (to = 9). Figure 2.e shows 
edges obtained at a = 1.2. At this scale, false edges are suppressed by the prop- 
agation of the threshold used at a = 0.9. Figures 2.f and 2.g display respectively 
true edges and false edges. 

We have shown that the use of the same threshold for all edges in the image 
does not lead to sufficient results. Our method takes into account the following 
parameters: edge orientation, signal-to-noise ratio, edge model, behavior of edges 
in scale space, multi-scale processing, properties of both the smoothing filter and 
the differentiation operator. Experiments show the efficiency of the classification 
scheme to distinguish false edges from true ones and for the propagation of 
thresholds between scales. 
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F i g .  1. a) Original image: 99 x 99 of 170 grey levels, left edge is a pulse of a contrast 
(50, 20), right edge is a blurred of contrast 25 and width 6 pixels, the variance of noise 
is 255. b) Edges obtained using Canny's detector with a = 1.5. c) Cleaned edges, the 
threshold used is 15. 

F i g .  2.  (a) Indoor image (256 • 256 pixels and 256 grey levels). (b) Edges resulting 
from Deriche' s detector at the scale a = 0.9. (c) and (d) True edges and noisy edges 
(to = 9).  (e) Edges obtained at a = 1.2. (f) and (g) True edges and noisy edges resulting 
from the procedure of threshold propagation. 


