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Abstract. We present a new method, median filtered differencing, for estimation 
of tangent direction and curvature of digitised curves. On three synthetic examples 
and two images we show the algorithm performs successfully on both straight 
and curved segments even in the neighbourhood of discontinuities. 

1 Introduction 

Curvature estimation is closely linked to a number of problems studied in connection 
with object recognition, eg. curve partitioning [3], corner detection [10] or extraction of 
salient points [15]. It is therefore not surprising that a number of curvature estimation 
methods have been proposed in literature; see [18] [4] [8] for recent surveys. 

Worring [17] recognises three classes of approaches to curvature estimation: orienta- 
tionbased [13] [1] [2], path based [9] [11] [10] [14] and osculating circle based [16]. The 
classification is based on disparate definitions of discrete curvature. The formulations 
widely differ, but the central underlying assumption remains similar: the discrete curve, 
typically defined as a sequence of 8-connected pixels, represents a set of samples of the 
original continuous curve corrupted by uncorrelated gaussian noise. In a subsequent 
step the least squares machinery is invoked to fit a spline [ 11], low order polynomial [7] 
or circle[ 16]. Kalman filtering [ 14] requires a similar assumption. 

In our opinion sampling of a continuous curve followed by corruption by additive 
independent gaussian noise is a very poor model of digital curve formation. First, the 
very fact that edge detection, boundary tracking etc. produces a connected sequence 
shows the dependence of noise at neighbouring pixels. Rasterisation noise, which can 
be defined as the distance from a smooth continuous curve to the the nearest point 
on a discrete grid, is strongly spatially correlated (see fig.4b) and not at all gaussian. 
The poor match between standard assumption and the actual process of formation and 
detection of discrete curves might be one of the reasons why Flynn [4] had to conclude 
that the curvature estimation methods he studied give reasonable results for images with 
noiseless, real-valued measurements, but none of the five methods gave good estimates 
after truncation even in the absence of additive noise. Another significant problem 
related to least square approaches stems from the lack of robustness. Usually, as in 
images depicted in figures 4a and 7a, the analysed curve has only piecewise  smooth 
derivatives. Fits computed in the neighbourhood of a discontinuity are distorted as they 
are based on data belonging to two different smooth segments. 

In the paper we propose a new method for estimating tangent direction and curvature 
based on two assumptions: 1. errors due to noise and rasterisation are symmetrically 
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distributed and 2. at any location along a curve, at least 50% of neighbouring points 
belong to the same smooth segment. These assumptions lead naturally to the median 
filtered differencing method described in section 2. Experiments on curvature and tangent 
direction estimation on curves linear and curved segments separated by discontinuities 
in orientation and curvature are reported in section 3. Results are summarised in section 
4. 

2 Median filtered differencing 

In the proposed method curvature estimates are obtained by two differencing steps. First, 
to estimate the tangent direction, median filtered differencing is applied to a sequence 
of points representing the digital curve. Next, the same computation is performed on the 
sequence of tangent direction estimates. Will present the algorithm in the form used for 
tangent direction estimation because of its intuitive geometric interpretation. 

Algorithm 1: Median filtered differencing ] 

1. Let Pi, i = 1 , . . . ,  N be a set of 8-connected pixel locations. At each Pi define a set 
of 2M difference vectors di,i+j, j = - M , . . . ,  - 1, 1 , . . . ,  M, such that 

f Pi+j -- Pi j = 1 , . . . , M  
di,i+j = ( P i - P i + j  j - 1 , . . . , - M  

2. Represent di,. in polar coordinates. Sort di,. according to the polar angle 0. 
3. Let Oi be the i-th angle in the sorted sequence. The direction of tangent dirt is 

estimated as a median of the 2M angles: 

dirt = (OM Jv OM+l)/2 

Examples of the application of algorithm 1 shown in figures 1-3 represent proto- 
typical situations. Figure 1 depicts a noisy rasterised straight segment. The difference 
vectors di,. are shown in fig. la, sorted and translated in fig.lb. Vectors marked '2x' ap- 
pear twice. In this example, M equals four. The median angle, ie. the estimated tangent 
direction, of the eight difference vectors is denoted dirt. Note that for a straight line, 
the differences from points farthest from Pi are in the center of the distribution because 
they are least influenced by rasterisation noise. 

Figure 2 demonstrates behaviour of alg. 1 near a discontinuity in orientation. The 
distribution of di,. consists of two components: the directions belonging to the segment 
with pi and outlier directions from the other side of the discontinuity. As pi approaches 
the discontinuity, the proportion of outliers will grow, but will remain just under 50%. 
The median is therefore not grossly influenced [5]. Unlike methods based on smoothing 
the median differencing performs well near corners, regardless of the size M of the 
neighbourhood used to obtain the estimate. 
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(a) (b) (c) 
Fig. 1.: Median filtered differencing on noisy rasterised straight line. (a) Sequence of points around 
Pi and the 2M difference vectors, M = 4 (10) Difference vectors translated to pi. (c) The estimated 
tangent direction dirt superimposed on the original curve. 
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(a) (b) (c) 
Fig. 2.: Median filtered differencing. (a) Sequence of points around pi and the 2M difference 
vectors, M = 6 (b) (c) see fig. 1 

Figure 3 show performance of  alg. 1 on a general smooth curve. In this case difference 
vectors far from pi are strongly biased, vectors from immediate neighbourhood of  Pi 
are significantly influenced by discretisation. The median is most likely drawn from 
difference vectors with average distance from Pi (see figs. 3a-c). To summarise, we can 
conclude that the algorithm behaved intuitively correctly in all three cases. On a straight 
segment it estimated the tangent direction from points as far apart as possible. Near 
a breakpoint, outliers were rejected. On a smooth curve with non-zero curvature the 
algorithm finds a compromise between systematic bias and errors due to noise. 

The same algorithm was used for curvature estimation with di,i+j replaced with 
(60, j) .  The algorithm effectively selects a median slope of  the tangent direction as 
function of  arc length. 

As implemented the efficiency of  the method is O ( N M  log M),  ie. it is linear in the 
number of  points at which estimates are sought. The sorting o f  directions is responsible 

: 0 ,/: 0 0"",, J / ", o it 
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Fig. 3.: Median filtered differencing on a general smooth curve. (a) Sequence of points around p~ 
and the 2M difference vectors, M = 4. (b)(c) see fig. 1 
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Fig. 4.: Heptagon. (a) Rasterised, noiseless. (b) Magnification of the area around the leftmost cor- 
ner. Notice the artifact at the vertex. (c) Gaussian noise added; foreground N(200,30), background 
N(50,30). (d) noisy boundary output by Canny edge detector. 

for the M log M term. It is known that median can be found in almost linear time 
[12]. For the neighbourhood sizes used in our experiments with M between five and 
fifteen we decided that the improved asymptotic complexity did not justify the effort to 
implement the more sophisticated algorithm. 

3 Experiments 

Due to lack of space We will describe only experiments on two 2D shapes. The heptagon 
depicted in fig. 4a, was chosen because it demonstrates performance of our algorithm on 
linear segments with different directions with respect to the discrete grid. The silhouette 
of scissors shown in fig.7 comprises a number of smooth segments as well as a number 
of discontinuities. 

Figures 5 and 6 summarise performance of median filtered differencing on the 
heptagonal shape. Fig. 5a shows the angle estimate computed on the boundary of the 
noiseless rasterised image 4a. The results is close to the 'ideal' step function showing 
that the algorithm is a capable of filtering the highly correlate rasterization noise. In a 
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Fig. 5.: Heptagon. Tangent angle estimation. (a) Median differencing of noiseless rasterised image 
4(a), M = 13. (b) Canny edge detection, gradient direction (c) median differencing on edge string 
4d, M =  13 
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(a) (b) 
Fig. 6.: Heptagon. Error of tangent angle estimation for the Canny edge detector(a)(see fig. 5b) 
and the median filtered difference on the edge string (see fig. 5c). 
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(c) (d) 
Fig. 7.: Scissors. (a) Original image. (b) Boundary output by Canny edge detector. (c) Canny 
edge detector, gradient direction. (d) Tangent angle direction estimated by median differencing, 
M = 1 5  

following experiment, gaussian noise was added to the heptagon image (fig. 4c). Next, 
we run Canny edge detector to obtain boundary of the heptagon (fig. 4d). Edge direction 
is a part of the edge detector output (fig. 4b). We applied algorithm 1 to the edge string. 
Figures 5b-c and 6a-b compare the results. On the straight section, the standard deviation 
of the error in angle estimate (from the known ground truth) is reduced by a factor of 10. 
To achieve similar results by linear filtering, significant smoothing would take place at 
corners. When interpreting the comparatively large errors of median differencing near 
the corners we have to bear in mind the corners were rounded off by edge detection, not 
by smoothing of the estimation process. 

The first part of the 'scissors' experiment, summarised in figure 7, shows that the 
median differencing produces reliable estimates of the tangent direction on a complex 
contour. Comparing figs. 7c and 7d it is clear that the noise reduction is no~ accompa- 

"oh 301 3 I 

0 

- 1 0  

-20 6 S 
-30 
- 40  poi la it~lex 
-so V ~ . . . . . . . . .  0 100 200 300 400 500 600 700 800 900 

(a) 

1ZFi 
poillt bulex 

- 1 0  200 400 600 800 
(b) 

Fig. 8.: Scissors. Curvature estimation. (b) Differentiated gradient direction (fig. 7c). (c) Median 
filtered differencing of angle estimate (fig. 7d). Numbers mark points of maximum convexity and 
concavity (above a threshold), median 
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nied by smoothing at discontinuities; steps and peaks remain sharp. Results of curvature 
computation are presented in fig. 8. The contrast in smoothness of figs. 8a and 8b is ap- 
parent. Selection of points of maximum convexity and concavity is easily accomplished 
by non-maximum suppression. 

4 Conclusions 

We have presented a new method, median filtered differencing, for estimation of tangent 
direction and curvature. On three synthetic examples and two images we show the 
algorithm performs successfully on both straight and curved segments even in the 
neighbourhood of discontinuities. 
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