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Abst rac t .  We describe an algebraic technique for performing timing 
analysis on a restricted class of Petri nets with interval time delays spec- 
ified on the places of the net. The timing analysis we perform determines 
the extreme separation in time between specified occurrences of pairs of 
transitions for all possible timed executions of the system. We present 
the details of the timing analysis algorithm and demonstrate polynomial 
running time on a non-trivial parameterized example. Petri nets with 
3000 nodes and 1016 reachable states have been analyzed using these 
techniques. 

1 I n t r o d u c t i o n  

The  majori ty of research involving the formal analysis of temporal issues in 
concurrent systems has focused on powerful models of concurrency and these 
techniques are therefore often prohibitively computationally expensive. This pa- 
per takes the approach of using a less expressive model of a concurrent system in 
favor of a more efficient analysis. Our model of a concurrent system is based on 
safe Petri  nets annotated with timing information. We will place restrictions on 
choice in order to make the set of possiblejexecutions independent of timing. This 
allows for a nice separation between the timing analysis and the enumeration of 
the possible execution paths. 

This paper presents the details of an algorithm that  determines the extreme 
case separation in time between two given transitions in a Petri  net specification 
over all t imed executions. By answering this separation problem, one can solve 
a number of problems in timing analysis, performance analysis and timing veri- 
fication [10, 11]. For example, the best and worst case cycle period of a system 
is the minimum and maximum time, respectively, from a transition to the next 
occurrence of the same transition. 

Related work in timing analysis and verification of concurrent systems comes 
from a variety of different research communities including: real-time systems, 
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VLSI CAD, and operations research. Timed automata [1] is one of the more 
powerful models for which automated verification methods exists. A timed au- 
tomaton has a number of docks (timers) whose values can be used in guards 
of the transitions of the automaton. Such models have been extensively stud- 
ied and several algorithms exist for determining timing properties for timed 
automata [7, 8]. As in the untimed case, timed automata suffer from the state 
explosion problem when constructing the cross product of component specifica- 
tions. Furthermore, the verification time is proportional to the product of the 
maximum value of the clocks and also proportional to the number of permuta- 
tions of the clocks. 

To improve the run-time complexity, Burch [6] extends trace theory with 
discrete time but still uses automata-based methods for verification. This ap- 
proach also suffers from exponential runtime in the size of the delay values but 
avoids the factorial associated with the permutations of the clocks. Orbits [16] 
uses convex regions to represent sets of timed states and thus avoids the explicit 
enumeration of each individual discrete timed state. Orbits is based on a Petri 
net model augmented with timing information. Other approaches that  fall in this 
category include Timed Petri net [15] and Time Petri nets [3]. In Timed Petri 
nets a fixed delay is associated with each transitions while Time Petri nets use 
a more general model with delay ranges associated with the transitions. 

2 Specifications 

We use safe Petri nets to model concurrent systems. A net N is a tuple (S, T, F), 
where S and T are finite, disjoint, nonempty sets of respectively places and 
transitions, and F C (S • T) U (T • S) is a t/ow relation. A Petri net X is a pair 
(N, M0), where N is a net and M0 : S ~ N is the initial marking. A Petri net 
is safe if for all reachable markings M and all places s, M(s) < 1. See [14] for 
further details on the Petri net model. 

b / 

(~) 

So sl b so sl b so 

(b) 

Fig.  1. (a) A simple Petri net ~ .  The place s~ is free choice and s6 is unique 
choice. (b) A process 7r for ~.  The places and transitions in the process have been 
labeled (using the lab function) with the names of their corresponding places and 
transitions in ~ .  
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For an element x E S U T, the preset and postset  of x are defined as *x = 
{y E (S tA T)  : (y, x) E F}  and x* = {y E (S U T) : (x, y) E F},  respectively. We 
restrict the choice in the Petri  net in order to simplify timing analysis. For each 
choice place s E S, i.e., Is.I > 1, we restrict s to be either extended free choice or 
unique choice. A place s is extended free choice if V# E S : s . M # o  = OVs* = #*.  
The place s is unique choice if at most one of the successor transitions ever 
becomes enabled. Let # t ( s ,  M )  denote the number of transitions in se tha t  are 
enabled at the marking M. A place s is unique choice i fVM E [M0) : # , ( s ,  M) _< 
1. Note that  unlike the extended free choice requirement, this is not a structural 
property of the Petri  net. These restrictions still allow the analysis of a large 
and interesting class of Petri  net specifications, including all live safe free choice 
nets. Fig. l (a)  shows a Petri  net satisfying these restrictions. 

3 E x e c u t i o n  S e m a n t i c s  a n d  P r o b l e m  D e f i n i t i o n  

3.1 P r o c e s s e s  

A process 7r = (N, lab) for the Petri  net Z is a net N and a labeling lab : 
S~ tAT. ~ S~ U T~. (We subscript S, T, and F to distinguish between the nets 
of Z and ~r.) N and lab must satisfy appropriate properties such that  ~r can be 
interpreted as an execution of Z [4, 18]. Intuitively, the process 7r = (N, lab) is 
an unfolding of Z where all choice has been resolved, i.e., N is acyclic and choice 
free. Fig. l (b)  shows a process for the Petri net in Fig. l(a). The only real choice 
is at the place s2 where there is a non-deterministic selection of either transition 
c or d. The process represents the execution where the first time transition c 
fires and the next time transition d fires. We denote all (untimed) executions of 
a Petri  net by the set 

/ / ( Z )  = {Tr [ 7r is a process for Z ) .  

For a live net, this is an infinite set. However, a safe Petri net has only a finite 
number of reachable markings. Processes have the property that  any cut of places 
corresponds to a reachable marking of ~ [4, Lemma 2.7]. Therefore, sufficiently 
long processes will contain repeated segments of processes. We represent the in- 
finite set of processes H ( Z )  by a finite graph we call the process automaton.  The 
vertices of the process automaton correspond to markings of ~ and the edges are 
annotated with segments of processes. We let v0 denote the vertex corresponding 
to the initial marking M0. Consider a path p in a process automaton from vertex 
u to v, denoted u ~ v. Then ~r(p) is the process obtained by concatenating the 
process segments annotated on the edges of p. The process automaton has the 
property that  

I I ( E )  = U{pref(Tr(p))  I vo P~ v is a path in the process automaton},  

where pref(~r) is the set of prefixes (defined on partial orders [18]) of a process 
7r. We can construct the process automaton without first constructing the reach- 
ability graph [5, 9]. If there is no concurrency in the net, the size of the process 
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automaton is equal to the size of the teachability graph. However, if there is a 
high degree of concurrency, the process automaton will be considerably smaller. 
Fig. 2 shows the process automaton and the associated processes for the Petr i  
net in Fig. l(a). The process in Fig. l(b) is constructed from 7rlTr37rlzr2. 

80 80 80 {s0, sb,s6} so a s l ~  --O o O 

0 {so, s2, s6 } 
~i 72 ~3 

Fig.  2. To the left, the process automaton for the Petri  net in Fig. l(a).  The 
three process segments annotated on the edges are shown to the right (labeled 
with elements from S$ U TE). 

3.2 T imed  E x e c u t i o n  

To incorporate timing into the Petri  net model, we associate delay bounds with 
each place in the net. The lower delay bound, d(s), and the upper delay bound, 
D(s), are real numbers (D(s) is allowed to be c~) satisfying 0 < d(s) < D(s). 
These delay bounds restrict the possible executions of the Petri net. During a 
timed execution of the net, when a token is added to a place s, the earliest it 
becomes available for a transition in se is d(s) time units later and the latest 
is D(s) units later. A transition t must fire when there are available tokens at 
all places in et unless the firing of the transition is disabled by firing another 
transition. The firing of t itself is instantaneous. 

More formally, a t iming assignment for process 7r, T, is a function that  maps 
transitions in a process to time values, T : T~ ---+ R § where R ~z is the set of 
non-negative real numbers. Let E be a Petri  net and let 7r be a process of Z .  
We consider a cut c C S~ of 7r and let Tenable d C_ T~7 be the set of transitions 
enabled at the corresponding marking, Me. For a timing assignment, T, and a 
transition t E Tenabled, the earliest and latest global firing time of t is given by 

earliest(t) = max{starttime(b) + d(lab(b)) l b e cN lab-l(et)}  and 

latest(t) = max{starttime(b) + O(lab(b)) I b e c fq lab -1 ( . t )} ,  

where lab-l(s)  denotes the set of elements of S ,  which are mapped to s by 
lab. Note that  c fq lab-l(et)  is non-empty because t is enabled at marking Me. 
The function starttime takes a place b E S ,  and returns the time when a token 
entered the place lab(b), i.e., ~-(e) if (e, b) �9 F~. If there is no such transition e, 
we set starttime(b) to 0. The timing assignment v is consistent at cut c if for all 
e �9 co: 
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1. earliest(lab(e)) < "r(e) < latest(lab(e)), and 

2. Vt E Tenabled \ lab(c.) : T(e) < latest(t). 

Condition 1 states tha t  the delay bounds must be respected. Condition 2 states 
tha t  for those transitions t that  are enabled bu t  do not have a corresponding 
transition included in 7r, t must not have been required t6f i re  previously because 
of the restrictions imposed by the timing bounds. 

A timing assignment r of a process is consistent if it is consistent at all cuts 
c of the process. Let 

/-zftimed(Z) ---- U{pref(7r) I if E / / ( ~ )  and there exists a consistent T for if}. 

The restrictions on the Petri  net in Section 2 were crafted so that  the set of 
untimed and t imed processes are equivalent. This allows us to use the process 
automaton to enumerate the possible processes without referring to timing in- 
formation, and then perform timing analysis on each process individually. 

T h e o r e m  1. Let ~ be a safe Petri net where the choice is either extended free 
choice or unique choice. Then/-/timed(Z) = / - / ( Z ) .  

Proof. (Sketch) By the definitions and the fact H ( E )  is prefix-closed, we have 
Htimed(Z ) C_ /~(~) .  We need to show that  /-/(Z) C_ Htimed(~), i.e., for all 
~r e H ( ~ )  we can find a 7' E /-/(Z) and a consistent timing assignment for 
~r ~ such that  7r E pre](~d). Condition 1 can always be satisfied by choosing r 
appropriately for a particular 7r'. Some processes do not have a timing assignment 
because they do not contain enabled transitions that  are required to  have fired by 
condition 2. We must show that  any If to be extended with these transitions. This 
can always be done except in conflict cases tha t  have been explicitly eliminated 
by the choice restrictions. 

3.3 P r o b l e m  F o r m u l a t i o n  

Given two transitions from a restricted Petri net Z,  tfrom, tto E T~, we wish to 
determine the extreme-case separation in time between related firings of tfrom and 
tto. We l e t / 1  be a set of triples ~ = (v, tsrc, tdst), where ~ E H(~U) and tsrc, tdst 
are transitions in the process ~r with lab(tsrc) = tfrom, lab(tdst) = tto. The se t /~  is 
used to describe all the possible processes where the distinguished transitions tsrc 
and tdst have the appropriate relationship. This relationship must be established 
in order for the timing analysis to yield interesting information [10]. 

Consider finding the maximum time between consecutive firings of transition 
a in Fig. l(a) ,  i.e., tfrom = tto = a. All the elements of /~  must have the property 
tha t  no other transition t between tsrc and tdst has label a. One of the elements in 
/~ is the process in Fig. l i b  ) with tsrc and tds t being the left-most and right-most 
transitions labeled with a, respectively. 
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The timing analysis we perform is: for all ~ E ~r, and for all consistent timing 
assignments r for 7r, determine the largest 5 and smallest A such that 

<_ ~(tdst) - ~(tsrr < ,4. 

In the sequel, we will only discuss the maximum separation analysis, i.e., find 
A, because the minimum separation 5 can be found from a maximum separation 
analysis of T(ts~c) - ~-(tdst) <_ --5. 

4 Timing Analysis 

Let zX(~) be the maximum separation between tsrc and tds t for some particular 
execution ~: 

/~(~) ---~ m a / x { T ( t d s t )  - -  T(tsrc) I T is a consistent timing assignment for zr }. 

The maximum separation over all executions is then given by 

A = max{A(~) e (1) 

This section shows how the elements of H are constructed to obtain A, and 
Section 5 describes the algorithm for computing A(~). 

A 

4.1 C o n s t r u c t i n g  the Processes of  H 

The process automaton represents all possible executions starting at the initial 
marking (v0 in the process automaton). However, whatever follows the tsrc and 
tdst in a process cannot influence the maximum separation between these two 
transitions. We can therefore ignore any portion of a process following tsrc and 
t d s  t .  All processes in H will therefore end with some terminal process segment 
that  includes the two transitions t s r  c and t d s  t . We can construct a finite set of 
terminal process segments such that  all processes in/~r can be constructed from 
some path in the process automaton followed by one of the terminal process seg- 
ments. Fig. 3 shows the two terminal process segments for the a-to-a separation 
analysis in our example. 

4.2 T h e  C T S E  A l g o r i t h m  

An algorithm for computing A(~) can be phrased in algel~raic terms. For each 
segment of a process, there is a corresponding element in the algebra. We use 
[Tr] to denote this element for the process segment 1r. The algebra allows us to 
reuse analysis of shorter processes when computing A(~) because the operators 
of the algebra are associative (the details are shown in the next section). There 
are two operations in the algebra: "choice", [, and "concatenation", | 

Our approach to analyzing the infinite set H is to enumerate the processes 
of increasing length by unfolding the process automaton using a breadth- 

first traversal. We traverse the automaton backwards, starting with the terminal 
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So sl b so So sl b So 
a f'~ =~ = f - ~  a ( %  a F-~_=~ ~ z - ~  a 

7rT1 7rT2 

Fig.  3. Two terminal processes (labeled using lab) for the separation analysis 
from a to the next a transition in the Petri  net in Fig. l(a).  

segments. At each node v in the process automaton, we store an element of the 
algebra. Let [V]k denote the algebraic element stored at node v in the process 
automaton after the k th iteration. Initially, [v]o = [TrT] for each terminal segment 
exiting node v. If there is more than one terminal segment exiting v, the algebraic 
elements are combined using the choice-operator. 

When traversing the process automaton backwards, the elements of the alge- 
bra  are composed (using | for two paths in series, and combined (using [) for 
two paths in parallel. The choice-operator combines backward paths when they 
reach the same marking in the process automaton. This is illustrated below by 
showing a backward traversal with reconvergence corresponding to the process 
automaton in Fig. 2 and the two terminal processes in Fig. 3: 

7l"2 "if2 "if2 "if2 ~T1 
" ' ' x / ~ V 0 ~  T'I ~ , , ~ V 0  71"L . _.~ 0// ' - '~V ~ , , , . .__ .~  O. j j / f "~V- / f~ '~  

~3 71"3 71"3 7r3 7rT2 

For this example, [v0]0 = [TrT1] I [7~T2] and for all k > 1 : [v0]k = [Irl] | 
([r2] [ [~r3]) | [V0]k-1- Whenever the node v0 is reached in the k TM unfolding, 
[Vo]k represents the maximum separation for all executions represented by that  
unfolding, denoted Ak. This value is maximized with the values for the previous 
unfoldings, A<k = max{Ai I 0 < i < k}. By definition (1), A<k is a lower bound 
on A and A = limk-+r A_<k. 

For a given node v in the process automaton, we can compute an upper 
bound on all further unfoldings; this bound is denoted [V]>k. Let c be a vertex 
cut of the process automaton. An upper bound on A for the k TM unfolding is 
Z~>k = ma~{[V]>k I v e c}. When A>k is less than or equal to A<k for some k we 
can stop further unfolding and report  the exact maximum separation A = A_< k. 
It is possible tha t  the upper and lower bounds do not converge in which case 
the bounds may still provide useful information as A is in the range [A_<k, A>k]. 
The main loop of the CTSE algorithm is shown in Figure 4. 

The run-time of the algorithm depends on the size of the representation of 
the algebraic elements. The size of these elements may be as large as the number 
of paths between the two nodes related by the element, i.e., exponential in the 
number of iterations, k. In practice, pruning drastically reduces the element size. 
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ALGORITHM: CTSE(G) 

For each v �9 G, place [rT(V)] at v; 

A<k +-- --o0; 

do { 
UNFOLD_ONCE(G); 
z~_<k e- max(Z~_<~, [,0]k); 
A>~ ~-- max{[v]>k I v �9 cut of G}; 

} until A_<k _> A>k; 
re turn  A<k ; 

Fig.  4. The CTSE algorithm computing A given a process automaton G. 

5 C o m p u t i n g  A(~- )  

This section describes the algebra used in the CTSE algorithm. This algebra is 
used to reformulate an algorithm by McMillan and Dill [13] for determining the 
maximum separation of two events in an acyclic graph. 

5.1 Algebras 

Before presenting the algorithm for computing A(~) we introduce two algebras. 
The first is the (min, +)-algebra (R O {oo}, @', | c~, 0) where 

x @' y = min(x, y) ,  x | y = x + y .  

The elements c~ and 0 are the identity elements for @' and | respectively. 
The second algebra is denoted by (~,@, |  Each element in F is a 

function represented by a set of pairs. The singleton set, {(l, u)}, where u is a 
row-vector of length n, represents the function: 

f(x, m) = min ( /+  x, u | In) ,  

where m is a column-vector of length n and | denotes the inner product in the 
(min, +)-algebra. In general, the set {(11, Ul), (/2, u 2 ) , . . . ,  (In, Un)} represents 
the function 

f ( x , m )  = max {min(/i + x, ui | m ) [  1 < i < n} .  

We associate two binary operators with functions: function maximization, f @ g, 
and function composition, f | g. It follows from (2) that  function maximization 
can be defined as set union: f @ g = f t3 g. Function composition, f = g | h, 
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is defined as ](x, m) = h(g(x, m), m). Notice that we use left-to-right function 
composition. For g = {(/1, Ul)} and h -- {(/2, u2)} we have 

( g |  and g |  

Function composition, | distributes over function maximization, ~. The ele- 
ments 0 and T are the identity elements for function maximization and compo- 
sition, respectively. 

Let Pi = (li,ui) and pj = (lj,uj) be two pairs in the representation of a 
function. We can remove pj if li _> lj and ui _> uj (componentwise), since then 
for all x and m, min(x + li, ui | m) _> min(x + lj, uj | m). Proper application 
of this observation that can greatly simplify the representation of a function. 

5.2 The  Aeyelie T ime  Separa t ion  of  Events  Algor i thm 

We can now present the algebraic formulation of McMillan and Dill's algorithm 
for computing A(~). For each place and transition in 7r we compute a pair [], m] 
where f �9 :T and m �9 R.  Each [f, m] pair is computed in backward topological 
order of ~. For each place s, the pair [ff,m I] at s is determined by: 

{ ~, oo] if s. = 0 
[fl,ml] --= [{(D(s),(m))} | | 

where If, m] is the pair stored at t �9 s-. 

For each transition t, we compute the pair [1 I, m I] as: 

ff  = { T if t ~-~ ~:dst 

~ { f  at place s I s �9 t .} otherwise 

m I = ~ 0  i f  t : tsrc 
[ ~'{m at place s [ s E t.} otherwise 

Informally, this algorithm works as follows: To maximize the value of ~-(tdst) -- 
~-(tsrc) we need to find a timing assignment that maximizes T(tdst) and minimizes 
T(tsrc). The first element of [f', m'] represents the longest path (using D(s)) from 
a transition to tdst and the second element represents the shortest path (using 
-d(s)) to tsrc. The algebra for the if-part is complicated by the fact that the 
delay for a given place can not be assigned both d(s) and D(s). The if-part must 
represent the longest path respecting the delays assigned by the shortest path 
computation. For details see [12]. To find the maximum separation represented 
by a [f, m] pair, we evaluate f at m and 0, computing the sum of the longest 
and shortest paths. To compute A(~), we maximize over all [f, m] pairs at the 
initial marking: 

A(~) _-- max{f (m, 0) I[f,  m] is the pair at s �9 -Tr}, 

where .~r denotes the set {s �9 S~ I . s  = 0}, and, similarly, lr. denotes the set 
{s  �9 I s .  = O} 
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5.3 Decomposition 

The algebraic formulation allows for a decomposition of the above computation 
using matrices. Consider a process segment r having le~rl = m and I~re I -- n. We 
represent the computation of the algorithm on ~r by two n x m matrices, F and 
M. Given a vector of m-values at ~o, m,  we can find the vector m-values at e~, 
m' ,  from the (rain, +)-matr ix multiplication m '  = M | m.  The functions (the 
f -par t ) ,  however, depend on the m-values at the places in ~re. This dependency 
is encoded by a vector u of length n. The vector product  u @' m computes the 
shortest path to the internM node where u is stored. For example, in the process 
segment ~rl of Fig. 2 with all delay ranges set to [1,2], we get the two matrices 

F--- {(4, ( 0 0  oo))} {(2, ( 0 0  oo))} and M =  - 1  . 
0 0 oo 

Given a process segment ~, we denote the corresponding function and m- 
value matrices by F(Tr) and M(x) .  The algebraic element [~r] is then defined as 
the singleton set {[F(r) ,  M(~r)]}. We can now define the two operators | and [. 
The choice operator is defined as set union: 

= u 

The composition operator is more complex. When composing two segments 7rl 
and ~r2, the functions in ~1 need to refer to the m-values in 7r2o rather  than 
those at ~1o. We shift the functions in F(~rl) to make them refer to m-values in 
~r20 by multiplying the u-vectors in F ( r l )  with M(~r2). For a singleton function 
{(/, u}}, we obtain the function {(/, u | M(~r2)}}. Non-singleton functions are 
shifted by shifting each pair, and a matrix of functions is shifted elementwise. 
We use the notation F << M to denote a shift of matr ix F by matr ix M. For 
singleton sets the composition operator is defined as: 

{[f(~h),  M(~I)]} | {[F(r2), M(Tr2)]} = 

{[(F(~h) << M(~r2)) | F(=2), M(Th) | M(~r2)]}. 

Non-singleton sets are multiplied out by applying the distributive law. 

5.4 P r u n i n g  

Consider the element {[F1,MI],  IF2, M2]}. We can removed IF2, M2] from the 
set if we can show that  for any fixed pairs composed to the left and right such that  
the result is a scalar, this scalar is no greater than the same composition with the 
IF1, M1] pair. We have developed a sufficient condition for when IF1, M1] prunes 
IF2, M2]. This condition is used to eliminate entire execution paths from further 
analysis, and is central to obtaining an efficient algorithm. More sophisticated 
conditions, tha t  use more information about the particular computation, are 
possible and may further increase the efficiency of the algorithm. 
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5.5 Upper Bound Computat ion 

We now consider how to determine an upper bound [V]>k for node, v, in the pro- 
cess automaton. To determine a non-trivial upper bound, all further backward 
paths from v to v0 have to be considered, i.e., we need to bound the infinite set 
of processes constructed from backward paths p: 

For any simple path p we just compute [~r(p)]. If p is not simple, we write p 
as p = p i p ,  P3, where P3 is a simple path, P2 is a simple cycle, and Pl is finite, 
but may contain cycles. We introduce an upper bound operator, V ,  with the 
property that  

[71"1] (~) [7s n (~) [71"3] ~--- [7i'1] (~) [71"3] I (V[Tr2]) (~) [7r3] , 

where rq = rr(pi) for i = 1, 2, 3 and n > 1. By applying this lemma, the cycle p~ 
is removed from path p. The V operator is recursively applied to the path PlPa 
until this is a simple path. Hence, we can bound the infinite set in (3) by a finite 
set of paths constructed from a simple cycle followed by a simple path. 

Applying V to the pair [F, M] sets all elements of M to infinity and applies 
the function z = { (co, ~ k  )} to all elements in the dense part of F (corresponding 
to the part of the process segment without isolated places.) ~ k  is a row-vector 
of length k whose elements are all co. This element has the property that  for all 
functions f ,  z > f .  

The upper bound is determined individually for each pair in the set for node 
v. If the upper bound for a given [F, M] pair is less than or equal to the  present 
global lower bound, A_<k, that  pair can be removed from the set for node v, 
further pruning the backward execution paths that  must be considered. 

The order in which IF, M] pairs are multiplied greatly affects the run-time of 
the algorithm. For example, consider precomputing for each node in the process 
automaton the algebraic expression for the upper bound, i.e., for each node, 
compute the algebraic element for the set of simple paths followed by simple 
cycles (going backwards). Because we don't know what is to be composed with 
these elements, few pairs can be pruned from the representation. Because of this, 
it may be more efficient to multiply the pairs out in each iteration, even though 
this doesn't allow the reuse of work from previous iterations. Our experience has 
been that  upper bound expressions become very large when precomputed and 
we are better off recomputing them at each iteration because effective pruning 
takes place. We only precompute the V of the simple cycles. This observation was 
key to achieving polynomial run-time for the example described in the following 
section. 

6 B e n c h m a r k  E x a m p l e :  T h e  E a g e r  S t a c k  

Replicating a single process in a linear array provides an efficient hardware imple- 
mentation of a last-in, first-out memory which we refer to as an eager stack [10]. 
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The eager stack contains an interesting mixture of choice and concurrency and 
represents an excellent parameterizable example for benchmarking our imple- 
mentation of the algorithm. 

A stack capable of storing n elements is constructed from n identical pro- 
cesses arranged in a linear array. There are numerous interesting time separation 
analysis we can perform on the eager stacks. Here we show execution times for 
two maximum separation analyses. One is the maximum separation between 
consecutive push operations; the other is the maximum separation between con- 
secutive push or pop operations, corresponding to the maximum response time 
of the stack. Table 1 and Fig. 5 shows execution times of the CTSE algorithm 
for these two separation analyses on eager stacks of various sizes where all delay 
ranges are set to [1, 2]. 

T ab l e  1. Execution times of the CTSE algorithm on eager stacks of various 
sizes, n. All delay ranges are [1, 2]. The size of the specification, i.e., number of 
places, number of transitions, and the size of the flow relation, is given by I S~I, 
]Ts , and [F~I, respectively. The number of nodes in the reachability graph is 
shown in the ]R.G. I column. (Note that  the teachability graph is not constructed 
when performing the timing analysis and is only reported to give an idea of the 
complexity of the nets.) The separation analysis denoted by A1 is the maximum 
separation between consecutive push operations and A2 is the maximum separa- 
tion between consecutive push or pop operations. The CPU times were obtained 
on a Spare 10 with 256 MB of memory. 

[Size (n)[[ [S~l[ IT.ll {F~[[ IR.G.IHCPU al (sees) 
3 20 13 53 14 .4 
4 32 21 86 36 .7 
5 47 31 127 97 1.8 
6 65 43 176 268 2.4 
8 110 73 298 2124 6.8 

10 167 111 452 2.104 16 I 
12 236 157 638 14.104 34 I 
16 410 273 1106 9.106 116 
20 632 421 1702 6.10 s 303 
24 902 601 2426 4-101~ 678 
28 L220 813 3278 2-1012 1404 
32 1586 1057 4258 2.1014 2723 
36 2000 1333 5366 1.1016 4510 

CPU A2 (sees) 

.3 

.6 
1.3 
2.3 
6.6 
17 
31 

111 
296 
71g 

1494 
2954 
485~ 

Orbits [16] is, to the authors knowledge, the most developed and efficient 
tool for answering temporal  questions about Petri  nets specifications. Orbits 
constructs the timed reachability graph, i.e., the states reachable given the timing 
information. It  should be noted that  Orbits is capable of analyzing a larger class 
of Petri net specifications than the one described here. Partial  order techniques 
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Fig .  5. Double logarithmic plot of CPU time for the two separation analyses as 
a function of the Petri  net size, IFI. 

are also used in Orbits to reduce the state space explosion [17]. However, the 
time to construct the timed reachability graph for the eager stack increases 
exponentially with the stack size n. For n = 6 the time is 234 CPU seconds on 
a Decstation 5000 with 256 MB, i.e., two orders of magnitude slower than the 
CTSE algorithm. For n = 7, Orbits ran out of memory. 

7 C o n c l u s i o n  

We have described an algorithm for solving an important  time separation prob- 
lem on a class of Petri nets that  contains both choice and concurrency. In prac- 
tice, our algorithm is able to analyze nets of considerable size, demonstrated by 
an example whose Petri  net specification consists of more than 3000 nodes and 
1016 reachable states. While we report  a polynomial run-time result for only a 
single parameterizable example, we expect similar results for other specifications 
exhibiting limited choice and abundant concurrency. 
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