
Efficient Timing Analysis
of a Class of Petri Nets*

Henrik Hulga~rd and Steven M. Burns

Department of Computer Science mad Engineering
University of Washington

Seattle, WA 98195
E-mail: {henrik, burns}@cs, washingt on. edu

Abst rac t . We describe an algebraic technique for performing timing
analysis on a restricted class of Petri nets with interval time delays spec-
ified on the places of the net. The timing analysis we perform determines
the extreme separation in time between specified occurrences of pairs of
transitions for all possible timed executions of the system. We present
the details of the timing analysis algorithm and demonstrate polynomial
running time on a non-trivial parameterized example. Petri nets with
3000 nodes and 1016 reachable states have been analyzed using these
techniques.

1 I n t r o d u c t i o n

The majori ty of research involving the formal analysis of temporal issues in
concurrent systems has focused on powerful models of concurrency and these
techniques are therefore often prohibitively computationally expensive. This pa-
per takes the approach of using a less expressive model of a concurrent system in
favor of a more efficient analysis. Our model of a concurrent system is based on
safe Petri nets annotated with timing information. We will place restrictions on
choice in order to make the set of possiblejexecutions independent of timing. This
allows for a nice separation between the timing analysis and the enumeration of
the possible execution paths.

This paper presents the details of an algorithm that determines the extreme
case separation in time between two given transitions in a Petri net specification
over all t imed executions. By answering this separation problem, one can solve
a number of problems in timing analysis, performance analysis and timing veri-
fication [10, 11]. For example, the best and worst case cycle period of a system
is the minimum and maximum time, respectively, from a transition to the next
occurrence of the same transition.

Related work in timing analysis and verification of concurrent systems comes
from a variety of different research communities including: real-time systems,

* This work is supported by an NSF YI Award (MIP-9257987) and by the
DARPA/CSTO Microsystems Program under an ONR monitored contract (N00014-
91-J-4041).

424

VLSI CAD, and operations research. Timed automata [1] is one of the more
powerful models for which automated verification methods exists. A timed au-
tomaton has a number of docks (timers) whose values can be used in guards
of the transitions of the automaton. Such models have been extensively stud-
ied and several algorithms exist for determining timing properties for timed
automata [7, 8]. As in the untimed case, timed automata suffer from the state
explosion problem when constructing the cross product of component specifica-
tions. Furthermore, the verification time is proportional to the product of the
maximum value of the clocks and also proportional to the number of permuta-
tions of the clocks.

To improve the run-time complexity, Burch [6] extends trace theory with
discrete time but still uses automata-based methods for verification. This ap-
proach also suffers from exponential runtime in the size of the delay values but
avoids the factorial associated with the permutations of the clocks. Orbits [16]
uses convex regions to represent sets of timed states and thus avoids the explicit
enumeration of each individual discrete timed state. Orbits is based on a Petri
net model augmented with timing information. Other approaches that fall in this
category include Timed Petri net [15] and Time Petri nets [3]. In Timed Petri
nets a fixed delay is associated with each transitions while Time Petri nets use
a more general model with delay ranges associated with the transitions.

2 Specifications

We use safe Petri nets to model concurrent systems. A net N is a tuple (S, T, F),
where S and T are finite, disjoint, nonempty sets of respectively places and
transitions, and F C (S • T) U (T • S) is a t/ow relation. A Petri net X is a pair
(N, M0), where N is a net and M0 : S ~ N is the initial marking. A Petri net
is safe if for all reachable markings M and all places s, M(s) < 1. See [14] for
further details on the Petri net model.

b /

(~)

So sl b so sl b so

(b)

Fig. 1. (a) A simple Petri net ~ . The place s~ is free choice and s6 is unique
choice. (b) A process 7r for ~. The places and transitions in the process have been
labeled (using the lab function) with the names of their corresponding places and
transitions in ~ .

425

For an element x E S U T, the preset and postset of x are defined as *x =
{y E (S tA T) : (y, x) E F} and x* = {y E (S U T) : (x, y) E F}, respectively. We
restrict the choice in the Petri net in order to simplify timing analysis. For each
choice place s E S, i.e., Is.I > 1, we restrict s to be either extended free choice or
unique choice. A place s is extended free choice if V# E S : s . M # o = OVs* = #*.
The place s is unique choice if at most one of the successor transitions ever
becomes enabled. Let # t (s , M) denote the number of transitions in se tha t are
enabled at the marking M. A place s is unique choice i fVM E [M0) : # , (s , M) _<
1. Note that unlike the extended free choice requirement, this is not a structural
property of the Petri net. These restrictions still allow the analysis of a large
and interesting class of Petri net specifications, including all live safe free choice
nets. Fig. l (a) shows a Petri net satisfying these restrictions.

3 E x e c u t i o n S e m a n t i c s a n d P r o b l e m D e f i n i t i o n

3.1 P r o c e s s e s

A process 7r = (N, lab) for the Petri net Z is a net N and a labeling lab :
S~ tAT. ~ S~ U T~. (We subscript S, T, and F to distinguish between the nets
of Z and ~r.) N and lab must satisfy appropriate properties such that ~r can be
interpreted as an execution of Z [4, 18]. Intuitively, the process 7r = (N, lab) is
an unfolding of Z where all choice has been resolved, i.e., N is acyclic and choice
free. Fig. l (b) shows a process for the Petri net in Fig. l(a). The only real choice
is at the place s2 where there is a non-deterministic selection of either transition
c or d. The process represents the execution where the first time transition c
fires and the next time transition d fires. We denote all (untimed) executions of
a Petri net by the set

/ / (Z) = {Tr [7r is a process for Z) .

For a live net, this is an infinite set. However, a safe Petri net has only a finite
number of reachable markings. Processes have the property that any cut of places
corresponds to a reachable marking of ~ [4, Lemma 2.7]. Therefore, sufficiently
long processes will contain repeated segments of processes. We represent the in-
finite set of processes H (Z) by a finite graph we call the process automaton. The
vertices of the process automaton correspond to markings of ~ and the edges are
annotated with segments of processes. We let v0 denote the vertex corresponding
to the initial marking M0. Consider a path p in a process automaton from vertex
u to v, denoted u ~ v. Then ~r(p) is the process obtained by concatenating the
process segments annotated on the edges of p. The process automaton has the
property that

I I (E) = U{pref(Tr(p)) I vo P~ v is a path in the process automaton},

where pref(~r) is the set of prefixes (defined on partial orders [18]) of a process
7r. We can construct the process automaton without first constructing the reach-
ability graph [5, 9]. If there is no concurrency in the net, the size of the process

426

automaton is equal to the size of the teachability graph. However, if there is a
high degree of concurrency, the process automaton will be considerably smaller.
Fig. 2 shows the process automaton and the associated processes for the Petr i
net in Fig. l(a). The process in Fig. l(b) is constructed from 7rlTr37rlzr2.

80 80 80 {s0, sb,s6} so a s l ~ --O o O

0 {so, s2, s6 }
~i 72 ~3

Fig. 2. To the left, the process automaton for the Petri net in Fig. l(a). The
three process segments annotated on the edges are shown to the right (labeled
with elements from S$ U TE).

3.2 T imed E x e c u t i o n

To incorporate timing into the Petri net model, we associate delay bounds with
each place in the net. The lower delay bound, d(s), and the upper delay bound,
D(s), are real numbers (D(s) is allowed to be c~) satisfying 0 < d(s) < D(s).
These delay bounds restrict the possible executions of the Petri net. During a
timed execution of the net, when a token is added to a place s, the earliest it
becomes available for a transition in se is d(s) time units later and the latest
is D(s) units later. A transition t must fire when there are available tokens at
all places in et unless the firing of the transition is disabled by firing another
transition. The firing of t itself is instantaneous.

More formally, a t iming assignment for process 7r, T, is a function that maps
transitions in a process to time values, T : T~ ---+ R § where R ~z is the set of
non-negative real numbers. Let E be a Petri net and let 7r be a process of Z .
We consider a cut c C S~ of 7r and let Tenable d C_ T~7 be the set of transitions
enabled at the corresponding marking, Me. For a timing assignment, T, and a
transition t E Tenabled, the earliest and latest global firing time of t is given by

earliest(t) = max{starttime(b) + d(lab(b)) l b e cN lab-l(et)} and

latest(t) = max{starttime(b) + O(lab(b)) I b e c fq lab -1 (. t)} ,

where lab-l(s) denotes the set of elements of S , which are mapped to s by
lab. Note that c fq lab-l(et) is non-empty because t is enabled at marking Me.
The function starttime takes a place b E S , and returns the time when a token
entered the place lab(b), i.e., ~-(e) if (e, b) �9 F~. If there is no such transition e,
we set starttime(b) to 0. The timing assignment v is consistent at cut c if for all
e �9 co:

427

1. earliest(lab(e)) < "r(e) < latest(lab(e)), and

2. Vt E Tenabled \ lab(c.) : T(e) < latest(t).

Condition 1 states tha t the delay bounds must be respected. Condition 2 states
tha t for those transitions t that are enabled bu t do not have a corresponding
transition included in 7r, t must not have been required t6f i re previously because
of the restrictions imposed by the timing bounds.

A timing assignment r of a process is consistent if it is consistent at all cuts
c of the process. Let

/-zftimed(Z) ---- U{pref(7r) I if E / / (~) and there exists a consistent T for if}.

The restrictions on the Petri net in Section 2 were crafted so that the set of
untimed and t imed processes are equivalent. This allows us to use the process
automaton to enumerate the possible processes without referring to timing in-
formation, and then perform timing analysis on each process individually.

T h e o r e m 1. Let ~ be a safe Petri net where the choice is either extended free
choice or unique choice. Then/-/timed(Z) = / - / (Z) .

Proof. (Sketch) By the definitions and the fact H (E) is prefix-closed, we have
Htimed(Z) C_ /~(~) . We need to show that /-/(Z) C_ Htimed(~), i.e., for all
~r e H (~) we can find a 7' E /-/(Z) and a consistent timing assignment for
~r ~ such that 7r E pre](~d). Condition 1 can always be satisfied by choosing r
appropriately for a particular 7r'. Some processes do not have a timing assignment
because they do not contain enabled transitions that are required to have fired by
condition 2. We must show that any If to be extended with these transitions. This
can always be done except in conflict cases tha t have been explicitly eliminated
by the choice restrictions.

3.3 P r o b l e m F o r m u l a t i o n

Given two transitions from a restricted Petri net Z, tfrom, tto E T~, we wish to
determine the extreme-case separation in time between related firings of tfrom and
tto. We l e t / 1 be a set of triples ~ = (v, tsrc, tdst), where ~ E H(~U) and tsrc, tdst
are transitions in the process ~r with lab(tsrc) = tfrom, lab(tdst) = tto. The se t /~ is
used to describe all the possible processes where the distinguished transitions tsrc
and tdst have the appropriate relationship. This relationship must be established
in order for the timing analysis to yield interesting information [10].

Consider finding the maximum time between consecutive firings of transition
a in Fig. l(a) , i.e., tfrom = tto = a. All the elements of /~ must have the property
tha t no other transition t between tsrc and tdst has label a. One of the elements in
/~ is the process in Fig. l i b) with tsrc and tds t being the left-most and right-most
transitions labeled with a, respectively.

428

The timing analysis we perform is: for all ~ E ~r, and for all consistent timing
assignments r for 7r, determine the largest 5 and smallest A such that

<_ ~(tdst) - ~(tsrr < ,4.

In the sequel, we will only discuss the maximum separation analysis, i.e., find
A, because the minimum separation 5 can be found from a maximum separation
analysis of T(ts~c) - ~-(tdst) <_ --5.

4 Timing Analysis

Let zX(~) be the maximum separation between tsrc and tds t for some particular
execution ~:

/~(~) ---~ m a / x { T (t d s t) - - T(tsrc) I T is a consistent timing assignment for zr }.

The maximum separation over all executions is then given by

A = max{A(~) e (1)

This section shows how the elements of H are constructed to obtain A, and
Section 5 describes the algorithm for computing A(~).

A

4.1 C o n s t r u c t i n g the Processes of H

The process automaton represents all possible executions starting at the initial
marking (v0 in the process automaton). However, whatever follows the tsrc and
tdst in a process cannot influence the maximum separation between these two
transitions. We can therefore ignore any portion of a process following tsrc and
t d s t . All processes in H will therefore end with some terminal process segment
that includes the two transitions t s r c and t d s t . We can construct a finite set of
terminal process segments such that all processes in/~r can be constructed from
some path in the process automaton followed by one of the terminal process seg-
ments. Fig. 3 shows the two terminal process segments for the a-to-a separation
analysis in our example.

4.2 T h e C T S E A l g o r i t h m

An algorithm for computing A(~) can be phrased in algel~raic terms. For each
segment of a process, there is a corresponding element in the algebra. We use
[Tr] to denote this element for the process segment 1r. The algebra allows us to
reuse analysis of shorter processes when computing A(~) because the operators
of the algebra are associative (the details are shown in the next section). There
are two operations in the algebra: "choice", [, and "concatenation", |

Our approach to analyzing the infinite set H is to enumerate the processes
of increasing length by unfolding the process automaton using a breadth-

first traversal. We traverse the automaton backwards, starting with the terminal

429

So sl b so So sl b So
a f'~ =~ = f - ~ a (% a F-~_=~ ~ z - ~ a

7rT1 7rT2

Fig. 3. Two terminal processes (labeled using lab) for the separation analysis
from a to the next a transition in the Petri net in Fig. l(a).

segments. At each node v in the process automaton, we store an element of the
algebra. Let [V]k denote the algebraic element stored at node v in the process
automaton after the k th iteration. Initially, [v]o = [TrT] for each terminal segment
exiting node v. If there is more than one terminal segment exiting v, the algebraic
elements are combined using the choice-operator.

When traversing the process automaton backwards, the elements of the alge-
bra are composed (using | for two paths in series, and combined (using [) for
two paths in parallel. The choice-operator combines backward paths when they
reach the same marking in the process automaton. This is illustrated below by
showing a backward traversal with reconvergence corresponding to the process
automaton in Fig. 2 and the two terminal processes in Fig. 3:

7l"2 "if2 "if2 "if2 ~T1
" ' ' x / ~ V 0 ~ T'I ~ , , ~ V 0 71"L . _.~ 0// ' - '~V ~ , , , . .__ .~ O. j j / f "~V- / f~ '~

~3 71"3 71"3 7r3 7rT2

For this example, [v0]0 = [TrT1] I [7~T2] and for all k > 1 : [v0]k = [Irl] |
([r2] [[~r3]) | [V0]k-1- Whenever the node v0 is reached in the k TM unfolding,
[Vo]k represents the maximum separation for all executions represented by that
unfolding, denoted Ak. This value is maximized with the values for the previous
unfoldings, A<k = max{Ai I 0 < i < k}. By definition (1), A<k is a lower bound
on A and A = limk-+r A_<k.

For a given node v in the process automaton, we can compute an upper
bound on all further unfoldings; this bound is denoted [V]>k. Let c be a vertex
cut of the process automaton. An upper bound on A for the k TM unfolding is
Z~>k = ma~{[V]>k I v e c}. When A>k is less than or equal to A<k for some k we
can stop further unfolding and report the exact maximum separation A = A_< k.
It is possible tha t the upper and lower bounds do not converge in which case
the bounds may still provide useful information as A is in the range [A_<k, A>k].
The main loop of the CTSE algorithm is shown in Figure 4.

The run-time of the algorithm depends on the size of the representation of
the algebraic elements. The size of these elements may be as large as the number
of paths between the two nodes related by the element, i.e., exponential in the
number of iterations, k. In practice, pruning drastically reduces the element size.

430

ALGORITHM: CTSE(G)

For each v �9 G, place [rT(V)] at v;

A<k +-- --o0;

do {
UNFOLD_ONCE(G);
z~_<k e- max(Z~_<~, [,0]k);
A>~ ~-- max{[v]>k I v �9 cut of G};

} until A_<k _> A>k;
re turn A<k ;

Fig. 4. The CTSE algorithm computing A given a process automaton G.

5 C o m p u t i n g A(~-)

This section describes the algebra used in the CTSE algorithm. This algebra is
used to reformulate an algorithm by McMillan and Dill [13] for determining the
maximum separation of two events in an acyclic graph.

5.1 Algebras

Before presenting the algorithm for computing A(~) we introduce two algebras.
The first is the (min, +)-algebra (R O {oo}, @', | c~, 0) where

x @' y = min(x, y) , x | y = x + y .

The elements c~ and 0 are the identity elements for @' and | respectively.
The second algebra is denoted by (~,@, | Each element in F is a

function represented by a set of pairs. The singleton set, {(l, u)}, where u is a
row-vector of length n, represents the function:

f(x, m) = min (/+ x, u | In) ,

where m is a column-vector of length n and | denotes the inner product in the
(min, +)-algebra. In general, the set {(11, Ul), (/2, u 2) , . . . , (In, Un)} represents
the function

f (x , m) = max {min(/i + x, ui | m) [1 < i < n} .

We associate two binary operators with functions: function maximization, f @ g,
and function composition, f | g. It follows from (2) that function maximization
can be defined as set union: f @ g = f t3 g. Function composition, f = g | h,

431

is defined as](x, m) = h(g(x, m), m). Notice that we use left-to-right function
composition. For g = {(/1, Ul)} and h -- {(/2, u2)} we have

(g | and g |

Function composition, | distributes over function maximization, ~. The ele-
ments 0 and T are the identity elements for function maximization and compo-
sition, respectively.

Let Pi = (li,ui) and pj = (lj,uj) be two pairs in the representation of a
function. We can remove pj if li _> lj and ui _> uj (componentwise), since then
for all x and m, min(x + li, ui | m) _> min(x + lj, uj | m). Proper application
of this observation that can greatly simplify the representation of a function.

5.2 The Aeyelie T ime Separa t ion of Events Algor i thm

We can now present the algebraic formulation of McMillan and Dill's algorithm
for computing A(~). For each place and transition in 7r we compute a pair [], m]
where f �9 :T and m �9 R. Each [f, m] pair is computed in backward topological
order of ~. For each place s, the pair [ff,m I] at s is determined by:

{ ~, oo] if s. = 0
[fl,ml] --= [{(D(s),(m))} | |

where If, m] is the pair stored at t �9 s-.

For each transition t, we compute the pair [1 I, m I] as:

ff = { T if t ~-~ ~:dst

~ { f at place s I s �9 t .} otherwise

m I = ~ 0 i f t : tsrc
[~'{m at place s [s E t.} otherwise

Informally, this algorithm works as follows: To maximize the value of ~-(tdst) --
~-(tsrc) we need to find a timing assignment that maximizes T(tdst) and minimizes
T(tsrc). The first element of [f', m'] represents the longest path (using D(s)) from
a transition to tdst and the second element represents the shortest path (using
-d(s)) to tsrc. The algebra for the if-part is complicated by the fact that the
delay for a given place can not be assigned both d(s) and D(s). The if-part must
represent the longest path respecting the delays assigned by the shortest path
computation. For details see [12]. To find the maximum separation represented
by a [f, m] pair, we evaluate f at m and 0, computing the sum of the longest
and shortest paths. To compute A(~), we maximize over all [f, m] pairs at the
initial marking:

A(~) _-- max{f (m, 0) I[f, m] is the pair at s �9 -Tr},

where .~r denotes the set {s �9 S~ I . s = 0}, and, similarly, lr. denotes the set
{s �9 I s . = O}

432

5.3 Decomposition

The algebraic formulation allows for a decomposition of the above computation
using matrices. Consider a process segment r having le~rl = m and I~re I -- n. We
represent the computation of the algorithm on ~r by two n x m matrices, F and
M. Given a vector of m-values at ~o, m, we can find the vector m-values at e~,
m' , from the (rain, +)-matr ix multiplication m ' = M | m. The functions (the
f -par t) , however, depend on the m-values at the places in ~re. This dependency
is encoded by a vector u of length n. The vector product u @' m computes the
shortest path to the internM node where u is stored. For example, in the process
segment ~rl of Fig. 2 with all delay ranges set to [1,2], we get the two matrices

F--- {(4, (0 0 oo))} {(2, (0 0 oo))} and M = - 1 .
0 0 oo

Given a process segment ~, we denote the corresponding function and m-
value matrices by F(Tr) and M(x) . The algebraic element [~r] is then defined as
the singleton set {[F(r) , M(~r)]}. We can now define the two operators | and [.
The choice operator is defined as set union:

= u

The composition operator is more complex. When composing two segments 7rl
and ~r2, the functions in ~1 need to refer to the m-values in 7r2o rather than
those at ~1o. We shift the functions in F(~rl) to make them refer to m-values in
~r20 by multiplying the u-vectors in F (r l) with M(~r2). For a singleton function
{(/, u}}, we obtain the function {(/, u | M(~r2)}}. Non-singleton functions are
shifted by shifting each pair, and a matrix of functions is shifted elementwise.
We use the notation F << M to denote a shift of matr ix F by matr ix M. For
singleton sets the composition operator is defined as:

{[f(~h), M(~I)]} | {[F(r2), M(Tr2)]} =

{[(F(~h) << M(~r2)) | F(=2), M(Th) | M(~r2)]}.

Non-singleton sets are multiplied out by applying the distributive law.

5.4 P r u n i n g

Consider the element {[F1,MI], IF2, M2]}. We can removed IF2, M2] from the
set if we can show that for any fixed pairs composed to the left and right such that
the result is a scalar, this scalar is no greater than the same composition with the
IF1, M1] pair. We have developed a sufficient condition for when IF1, M1] prunes
IF2, M2]. This condition is used to eliminate entire execution paths from further
analysis, and is central to obtaining an efficient algorithm. More sophisticated
conditions, tha t use more information about the particular computation, are
possible and may further increase the efficiency of the algorithm.

433

5.5 Upper Bound Computat ion

We now consider how to determine an upper bound [V]>k for node, v, in the pro-
cess automaton. To determine a non-trivial upper bound, all further backward
paths from v to v0 have to be considered, i.e., we need to bound the infinite set
of processes constructed from backward paths p:

For any simple path p we just compute [~r(p)]. If p is not simple, we write p
as p = p i p , P3, where P3 is a simple path, P2 is a simple cycle, and Pl is finite,
but may contain cycles. We introduce an upper bound operator, V , with the
property that

[71"1] (~) [7s n (~) [71"3] ~--- [7i'1] (~) [71"3] I (V[Tr2]) (~) [7r3] ,

where rq = rr(pi) for i = 1, 2, 3 and n > 1. By applying this lemma, the cycle p~
is removed from path p. The V operator is recursively applied to the path PlPa
until this is a simple path. Hence, we can bound the infinite set in (3) by a finite
set of paths constructed from a simple cycle followed by a simple path.

Applying V to the pair [F, M] sets all elements of M to infinity and applies
the function z = { (co, ~ k)} to all elements in the dense part of F (corresponding
to the part of the process segment without isolated places.) ~ k is a row-vector
of length k whose elements are all co. This element has the property that for all
functions f , z > f .

The upper bound is determined individually for each pair in the set for node
v. If the upper bound for a given [F, M] pair is less than or equal to the present
global lower bound, A_<k, that pair can be removed from the set for node v,
further pruning the backward execution paths that must be considered.

The order in which IF, M] pairs are multiplied greatly affects the run-time of
the algorithm. For example, consider precomputing for each node in the process
automaton the algebraic expression for the upper bound, i.e., for each node,
compute the algebraic element for the set of simple paths followed by simple
cycles (going backwards). Because we don't know what is to be composed with
these elements, few pairs can be pruned from the representation. Because of this,
it may be more efficient to multiply the pairs out in each iteration, even though
this doesn't allow the reuse of work from previous iterations. Our experience has
been that upper bound expressions become very large when precomputed and
we are better off recomputing them at each iteration because effective pruning
takes place. We only precompute the V of the simple cycles. This observation was
key to achieving polynomial run-time for the example described in the following
section.

6 B e n c h m a r k E x a m p l e : T h e E a g e r S t a c k

Replicating a single process in a linear array provides an efficient hardware imple-
mentation of a last-in, first-out memory which we refer to as an eager stack [10].

434

The eager stack contains an interesting mixture of choice and concurrency and
represents an excellent parameterizable example for benchmarking our imple-
mentation of the algorithm.

A stack capable of storing n elements is constructed from n identical pro-
cesses arranged in a linear array. There are numerous interesting time separation
analysis we can perform on the eager stacks. Here we show execution times for
two maximum separation analyses. One is the maximum separation between
consecutive push operations; the other is the maximum separation between con-
secutive push or pop operations, corresponding to the maximum response time
of the stack. Table 1 and Fig. 5 shows execution times of the CTSE algorithm
for these two separation analyses on eager stacks of various sizes where all delay
ranges are set to [1, 2].

T ab l e 1. Execution times of the CTSE algorithm on eager stacks of various
sizes, n. All delay ranges are [1, 2]. The size of the specification, i.e., number of
places, number of transitions, and the size of the flow relation, is given by I S~I,
]Ts , and [F~I, respectively. The number of nodes in the reachability graph is
shown in the]R.G. I column. (Note that the teachability graph is not constructed
when performing the timing analysis and is only reported to give an idea of the
complexity of the nets.) The separation analysis denoted by A1 is the maximum
separation between consecutive push operations and A2 is the maximum separa-
tion between consecutive push or pop operations. The CPU times were obtained
on a Spare 10 with 256 MB of memory.

[Size (n)[[[S~l[IT.ll {F~[[IR.G.IHCPU al (sees)
3 20 13 53 14 .4
4 32 21 86 36 .7
5 47 31 127 97 1.8
6 65 43 176 268 2.4
8 110 73 298 2124 6.8

10 167 111 452 2.104 16 I
12 236 157 638 14.104 34 I
16 410 273 1106 9.106 116
20 632 421 1702 6.10 s 303
24 902 601 2426 4-101~ 678
28 L220 813 3278 2-1012 1404
32 1586 1057 4258 2.1014 2723
36 2000 1333 5366 1.1016 4510

CPU A2 (sees)

.3

.6
1.3
2.3
6.6
17
31

111
296
71g

1494
2954
485~

Orbits [16] is, to the authors knowledge, the most developed and efficient
tool for answering temporal questions about Petri nets specifications. Orbits
constructs the timed reachability graph, i.e., the states reachable given the timing
information. It should be noted that Orbits is capable of analyzing a larger class
of Petri net specifications than the one described here. Partial order techniques

10000

1000

100

10

435

0.1
10

' ' ' ' ' ' ' ' l i ' ' ' ' ' ' ' l , , i , , , i ,

,A t, ~>
'A 2' .+.

100 1000 10000
Petri net size, IFt

Fig . 5. Double logarithmic plot of CPU time for the two separation analyses as
a function of the Petri net size, IFI.

are also used in Orbits to reduce the state space explosion [17]. However, the
time to construct the timed reachability graph for the eager stack increases
exponentially with the stack size n. For n = 6 the time is 234 CPU seconds on
a Decstation 5000 with 256 MB, i.e., two orders of magnitude slower than the
CTSE algorithm. For n = 7, Orbits ran out of memory.

7 C o n c l u s i o n

We have described an algorithm for solving an important time separation prob-
lem on a class of Petri nets that contains both choice and concurrency. In prac-
tice, our algorithm is able to analyze nets of considerable size, demonstrated by
an example whose Petri net specification consists of more than 3000 nodes and
1016 reachable states. While we report a polynomial run-time result for only a
single parameterizable example, we expect similar results for other specifications
exhibiting limited choice and abundant concurrency.

A c k n o w l e d g m e n t s

The authors thank the anonymous reviewers for their thoughtful and detailed
comments.

436

R e f e r e n c e s

1. R. Alur and D. L. Dill. The theory of t imed automata. In J. W. de Bakker,
C. Huizing, W. P. de Roever, and G. Rosenberg, editors, Real-Time: Theory in
Practice, LNCS ~600, pages 28-73. Springer-Verlag, 1991.

2. F. Baccelli, G. Cohen, G. J. Olsder, and J.-P. Quadrat. Synchronization and Lin-
earity. John Wiley and Sons, 1992.

3. B. Berthomieu and M. Diaz. Modeling and verification of t ime dependent systems
using t ime Petri nets. IEEE Transactions on Software Engineering, 17(3):259-273,
1991.

4. E. Best and J. Desel. Part ial order behavior and structure of Petr i nets. Formal
Aspects of Computing, 2:123-138, 1990.

5. E. Best and Raymond Devillers. Interleaving and partial orders in concurrency:
A formal comparison. In M. Wirsing, editor, Formal Description of Programming
Concepts-III, pages 299-323, 1986.

6. J. R. Burch. Trace Algebra for Automatic Verification of Real-Time Concurrent
Systems. Ph.D. thesis, Carnegie Mellon, August 1992.

7. C. Courcoubetis and M. Yannakakis. Minimum and maximum delay problems in
real-time systems. Formal Methods in System Design, 1:385-415, 1992.

8. D. L. Dill, editor. Computer-Aided Verification '9~.
9. P. Godefroid. Using partial orders to improve automatic verification methods. In

E. M: Clarke and R. P. Kurshan, editors, Computer-Aided Verification '90, pages
321-340.

10. H. Hulgaaxd and S. M. Burns. Bounded delay t iming analysis of a class of CSP
programs with choice. In International Symposium on Advanced Research in Asyn-
chronous Circuits and Systems, November 1994.

11. H. Hulgaard, S. M. Burns, T. Amon, and G. Borriello. Practical applications of
an efficient t ime separation of events algorithm. In Proc. International Conf.
Computer-Aided Design (ICCAD), pages 146-151, November 1993.

12. H. Hulgaard, S. M. Burns, T. Amon, and G. Borriello. An algorithm for exact
bounds on the t ime separation of events in concurrent systems. To appear in
IEEE Transactions on Computers. Available as University of Washington CS&E
Technical Report #94-02-02.
(anonymous ftp: cs . washington, edu : t r / t994/02/UW-CSE-94-02-02. PS. Z)

13. K. L. McMillan and D. L. Dill. Algorithms for interface t iming verification. In
1992 IEEE International Conference on Computer Design: VLSI in Computers
and Processors, October 1992.

14. 3. L. Peterson. Petri Net Theory and The Modeling of Systems. Prentice-Hall,
1981.

15. C. V. Ramamoor thy and G. S. Ho. Performance evaluation of asynchronous con-
current systems using Petri nets. IEEE Transactions on Software Engineering,
SE-6(5):440-448, September 1980.

16. T. G. Rokicki. Representing and Modeling Digital Circuits. Ph.D. thesis, Stanford
University, 1993.

17. T. G. Rokicki and C. J. Myers. Automatic verification of t imed circuits. In D. L.
Dill, editor, Computer-Aided Verification '9~, pages 468-480.

18. W. Vogler. Modular Construction and Partial Order Semantics of Petri Nets.
LNCS ~625. Springer-Verlag, 1992.

