
Interactively Verifying a Simple Real - t ime 
Scheduler 

Colin Fidge, Peter Kearney, Mark Utting 

Software Verification Research Centre, 
Department of Computer Science, 

The University of Queensland, Brisbane, Australia. 
Email: {cjf ,pk,marku}~cs.uq.  oz. au 

A b s t r a c t .  This paper describes the interactive verification of a simple 
interrupt-driven real-time scheduler written in the machine code lan- 
guage of the MIPS R3000 RISC processor. The formal verification was 
carried out using the interactive theorem prover Ergo. 

1 I n t r o d u c t i o n  

Many reM-time systems are structured as sets of tasks or processes. Scheduling is 
required to share resources between the tasks so that  their real-time requirements 
are met.  Real- t ime schedulers are often a core part  of safety critical real-time 
applications. 

This paper  describes the formM verification of a simple scheduler which sched- 
ules a fixed number  of periodic tasks with each task being given an equal t ime 
slice. The scheduler (or cyclic executive) is implemented by a clock-driven inter- 
rupt routine, where the period of the clock is equal to the time-slice. 

The scheduler is written in the machine code language of the MIPS t R3000 
RISC processor. RISC processors are increasingly used in real-time applica- 
tions [11], but they introduce certain complexities into the analysis of real-t ime 
behaviour, through the use of memory  caches and instruction pipelining. To pro- 
vide a basis for verifying real-time R3000 machine code, a formal specification 
of the real-t ime behaviour of the processor was written [5, 8, 9]. The instruction 
level of that  specification provides the basis for the verification discussed here. 

2 F o r m a l  P r o o f  a n d  C o n s t r a i n t  E x t r a c t i o n  

The verification was carried out using the Ergo interactive theorem prover [10]. 
Ergo was used to 

- formalise functional logic [3, 4, 7] - the modal  logic tha t  was used for rea- 
soning about  real-time systems; 

- ensure that  the proof was carried out correctly; 
- provide au tomated  assistance in finding proofs and managing proof detail; 

1 MIPS is a registered trademark of MIPS Computer Systems. 



396 

- support code verification through the use of application-specific tactics and 
heuristics for the R3000 machine language; 

- help derive required timing constraints as part  of the proof process. 

The scheduler system is parameterised by seven timing constants and over 
a dozen constraints on these parameters are necessary to make the specified 
system feasible. Some of these constraints come from the environment, while 
others come from our chosen implementation, even the scheduler itself. The 
interaction between these constraints is subtle and we found we could not easily 
identify a minimal set of constraints that would ensure feasibility. There is a fine 
balance between having sufficient constraints to make the system feasible and 
over-constraining the system unnecessarily. 

The theorem prover was used not only to ensure that  sufficient constraints 
were present, but also to assist in deriving the weakest necessary constraints. 
Sections 6.2 through 6.6 discuss this constraint derivation. 

3 A s s u m p t i o n s  a n d  R e q u i r e m e n t s  

The verification is carried out by proving a theorem which formalises the schedul- 
ing requirement. However, the requirement can only be met under certain as- 
sumptions about the environment: for example, concerning the kind and fre- 
quency of interrupts, and about task behaviour. The verification theorem is 
proven in the theory which describes the behaviour of the MIPS R3000, aug- 
mented with these assumptions. 

This section introduces the scheduling requirement and environmental as- 
sumptions under which the requirement is to be met. Formalisation of these 
is discussed in Section 4. As indicated in the last section, further constraints 
on certain timing parameters were derived during the proof and are given in 
Sections 6.2, 6.3 and 6.6. 

3.1 Initialisation 

Our analysis applies only to times following an initialisation phase undertaken 
by a system kernel. During initialisation the scheduler code and task code are 
loaded into instruction cache and the scheduler data is loaded into data cache. 
The system then executes a non-stalling busy-wait loop, with interrupts enabled, 
awaiting a clock interrupt. The time at which the first clock interrupt occurs 
following completion of the initialisation phase is denoted f i r s t .  

3.2 Interrupt Behaviour 

The clock interrupt signal is assumed to go high every c l o c k s e p  time units 
and stay high for exactly ho ld  time units. These values are determined by the 
interrupt hardware used, and are configurable. The use of self-clearing interrupts 
simplifies the verification slightly, since the scheduler does not need to clear the 
interrupts. It is also assumed that  no external interrupts occur other than clock 
interrupts. 



397 

3.3 T h e  S c h e d u l i n g  R e q u i r e m e n t :  O v e r v i e w  

The number  of tasks to be scheduled is denoted n t .  Tasks are identified by the 
numbers 0 . . . n t  - 1, and the s tar t ing address of the code for task i, following 
the completion of initialisation activities, is denoted t c o d e ( i ) .  The timeslicr 
allocated to each process is c l o c k s e p .  Figure 1 illustrates the scheduling re- 
quirement for the case n t  = 3. 

first clocksep 
~ O j  clock interrupts 

I I I I I . 

- - - ' 4 <  . . . . .  . . . . .  
initialisation task 0 task 1 task 2 task 0 

period of each task 

Fig .  1. Overview of the scheduling requirement for n t  = 3. 

To account for the t ime consumed by the scheduler itself, we introduce the 
constant maxdelay ,  which equals the m a x i m u m  number of t ime units allowed to 
pass from the t ime the clock interrupt occurs until the next task begins execution. 
Defining the min imum acceptable time-slice for each task to be n i n s l i c e  = 
c l o c k s e p  - maxdelay,  we can state the scheduler requirement more precisely 
as follows. For each integer n > O there must  be a t ime t, where ( f i r s t  + n * 
clocksep) < t _< (first + n* clocksep+maxdelay), such that at time t control 
resides at the starting address of task (n rood at). Furthermore, that task must 
be allowed to execute without interruption for minslice time units from time t. 
See Fig. 2. 

The scheduling requirement is parameterised by clocksep and maxdelay. 
To satisfy the requirement, clocksep may be chosen by suitable configuration 
of the clock interrupt hardware. The requirement can be met by a scheduler 
only if maxdelay satisfies a further constraint, which takes account of the max- 
imum time to execute the scheduler. The particular constraint required for the 
scheduler we verify is given in Section 6.6. 

3.4  T a s k  B e h a v i o u r  

The scheduling requirement can be met  only under certain assumptions about  
the tasks, which are introduced below. 



398 

maxdelay 

hold 
0 

~axstal~_ 

clocksep 

o 

I I I I I I I I i I I I I I 
I I I I I I I I I I I i l I 

clock interrupt current task 
interrupt handler must begin 

may be delayed here or earlier 
until here 

minslice 

I I i I I 
I f I f f 

one time unit 
(machine cycle) 

0 

0 

current task must 
have re-enabled 

interrupts by now 

Fig.  2. Scheduling requirement for a particular interval. 

S t a l l s - B o u n d e d :  In order to analyse the t ime taken by the scheduling activity, 
it is important  to know the time taken to service the clock interrupt and 
transfer control to the scheduler. However, interrupt processing is delayed by 
pipeline stalls, which may happen when a task accesses external memory or 
performs multiplication or division operations. To permit real-time analysis 
of scheduling, tasks are required to limit the duration of stalls during the 
critical period when they may be interrupted (that is, after m i n s l i c e  t ime 
units) to a maximum of r aaxs t a l l  t ime units. 

I n t e r r u p t s - E n a b l e d :  A task must ensure that  the clock interrupt can be taken. 
This requires ensuring that  interrupts are enabled, that  the clock interrupt is 
not masked, and that  no internal interrupts (exceptions) are being generated 
which would take priority over the clock interrupt. See Fig. 2. 

S c h e d u l e r - M e m o r y - U n c h a n g e d :  The tasks must not corrupt the scheduler 
code or data. Further, we require that  tasks do not cause scheduler code or 
data to be moved out of the instruction and data caches. This is achieved 
by requiring that specified instruction and data cache locations associated 
with the scheduler are unchanged. 

I n i t i a l - T a s k - I n s t r u c t i o n s :  It is an intrinsic property of pipelined architec- 
tures that the timing of the 'current instruction' may be influenced by other 
instructions [5]. In our case study, the timing of the last few scheduler in- 
structions may be dependent on properties of the first few task instructions, 
since they will be executing at the same time in the pipeline. 
If the first two instructions of a task are not in instruction cache, the last two 
scheduler instructions will be delayed. Also, if one of the first two of a task's 
instructions accesses the l tI /L0 registers (associated with multiplication and 
division instructions), a delay of the order of hundreds of cycles is possible. 
In order to eliminate this dependence, we require that  the first two instruc- 
tions of each task are in cache, and that  they do not access the HI/L0 reg- 



399 

isters. These requirements can be discharged during the verification of each 
task. Without  these requirements, we would obtain a weaker bound on sched- 
uler t iming, and a longer maxdelay.  

3.5 A T a s k  I n v a r i a n t  

We have required a number  of conditions to be fulfilled by the tasks. However, 
we have not so far introduced any requirement that  the scheduler not corrupt or 
interfere with the code or da ta  of the tasks! In order to introduce that  require- 
ment  in an application independent way, we introduce a task invariant, denoted 
t a s k _ i n v .  We make only two assumptions about  the task invariant: 

1. if all locations other than those associated with scheduler code and data  are 
unchanged, then the task invariant is maintained; 

2. the tasks themselves mainta in  the task invariant. 

We introduce the additional requirement on the scheduler that  it guarantees 
the task invariant at the t ime each task is re-started. Given the assumptions 
just  introduced, this requires showing tha t  the scheduler does not change any 
locations other than its own. In addition, the initialisation phase must  establish 
the task invariant (at t ime first).  

We also make the assumptions about  task behaviour given in Section 3.4 
conditional on the task invariant holding at the t ime a task starts. Thus the tasks 
guarantee certain properties, assuming that  the task invariant is true when they 
start,  and in turn the scheduler guarantees that  the task invariant is true when 
tasks s tar t  (assuming that  previous task behaviour has satisfied its guarantees). 
The usefulness of this type of mutual  assumption-guarantee structure in the 
verification of concurrent systems has been recognised for some t ime [6]. 

4 F o r m a l i s a t i o n  

This section discusses aspects of formalising the assumptions and requirements 
introduced in the previous section. The full formalisation is available in a sepa- 
rate report  [1]. 

4.1 M o d e l  a n d  N o t a t i o n  

We do not a t t empt  to introduce formally the notation of the specification here, 
instead giving intuitive descriptions of the meaning of the notation as it is used. 
Readers interested in the formal basis of the notation may  consult [3, 4, 7]. 

Our underlying model of a real-time system is a set of traces, where each 
trace represents a possible evolution of the system. A trace is indexed by time, 
where t ime is represented by the natural  numbers, and the unit of t ime is the 
clock cycle of the processor. Specification assertions are relative to a trace and 
a time. Operators  are used to make assertions at a particular time, or during a 
sequence of times, and to shift the t ime to the next occurrence of some event in 



400 

the trace. The constant time denotes the current t ime and the operator a t ( T )  
shifts the current t ime to the t ime T. 

Our specification is given in a theory which formalises a model of the proces- 
sor. Amongst  other state components in this model are: two program counters 
(pc and nex t_pc) ,  two instruction registers (ireg, n e x t _ i r e g )  and a location 
run  which indicates whether the current cycle is a run cycle, tha t  is, not a stall 
cycle. The postfix operator " is used to extract the contents of a location. All 
notation in typewriter font can be input directly to the Ergo interactive theorem 
prover. 

4.2 I n t e r r u p t  B e h a v i o u r  

The following assertion formalises the required clock behaviour, stating tha t  
interrupts occur with separation c l o c k s e p  (from f i r s t  onwards) and remain set 
for ho ld  t ime units in each timeslice interval N. The predicate dur ing( t1  , t2,  b) 
includes t ime t l ,  but not t2. 

axiom clock_behaviour 

=== hw and N:nats 

=> during(first+N*clocksep, first+N*clocksep+hold, 

elk_set) and 

during(first+N*clocksep+hold, first+(N+l)*clocksep, 

not clk_set). 

We also require that  after initialisation, clock interrupts are the only external 
interrupts. 

axiom clock_ints_only 

=== hw and first =< T and at(T);int_asserted(X) 

=> X = clk_int. 

To be detectable, a clock interrupt must  "hold" for at least one machine 
cycle. Furthermore,  it would be nonsensical for the hold period to exceed the 
clock interrupt separation. 

axiom clock_ints_duration 

=== 0 < hold and hold =< clocksep. 

4.3 T a s k  B e h a v i o u r  

In order to state assumptions about  task behaviour, we frequently refer to the 
system state in which a task I begins or resumes executing. The following pred- 
icate is used to define this as a state in which the program counter equals the 
starting address of the code for task I and the processor is in a state that  allows 
code to begin normal  execution (this includes requiring the task invariant) . 



f u n c t i o n  t a s k _ s t a r t s ( I )  

=== hw 

and t a s k _ i n v  

and pc"  = t c o d e ( I )  

and i r e g "  = i v a l ( p c  ~) 

and use r_mode  

and n o t  i n t _ m a s k e d ( c l k _ i n t )  

and n o t  i n _ b d s "  

and i n t e r r u p t a b l e .  

401 

and (I : 0 upto nt) 

and irun 

and next_pc" = tcode(I) + 4 

and next_ireg" = ival(next_pc-) 

and ints_enabled 

and not in_ids ̂  

and not data_bus_error" 

# NB. The $kO and Skl registers are reserved for scheduler use. 

# Get pointers to current task control block (TCB) and tab_end. 

lui SkO, ihdata_upper # SkO := address of scheduler data. 

lw Skl, currtask($kO) # Skl := pointer to current TCB. 

lw SkO, tcb_end($kO) # SkO := address after last TCB. 

# Increment the currtask pointer to the next task. 

addiu Skl, $ki, tab_size # Skl := Skl+ tab_size. 

bne  $kO, $ k l ,  2 

lui $kO, ihdata_upper 

a d d i u  $ k l ,  $kO, t c b  
sw $ k l ,  c u r r t a s k ( $ k O )  

$ S t a r t  new t a s k .  
lw #kO, 0 ( $ k l )  
nop 
j r  #kO 
r f e  

# Jump o v e r  t h e  a d d i u  i n s t r u c t i o n  i f  

# Ski  i s  a l e g a l  t a b  p o i n t e r .  
# NB. a lways  e x e c u t e d  ( b r a n c h  d e l a y  s l o t ) .  
# $kO := a d d r e s s  of  s c h e d u l e r  d a t a .  
# $kl  := a d d r e s s  of  TCB O. ( = i h d a t a + t c b )  
# S t o r e  new c u r r e n t  t a s k  p o i n t e r  ( $ k l )  
# i n t o  l o c a t i o n  i h d a t a  + c u r r t a s k .  

# SkO := start pc for current task. 

# Do nothing (load delay slot). 

# Jump to star% pc of current task. 

# Restore status reg settings. 

Fig.  3. An assembler version of the scheduler code. 

Tasks can assume, when they resume executing, that  there are at least 
m i n s l i c e  t ime units available before the next external interrupt.  The follow- 
ing predicate is used to assert this in the preconditions of the task assumptions.  
The expression n e x t _ i n c ( e x t _ i n t e r r u p t )  shifts the current t ime to the t ime 
when an external interrupt next occurs (possibly the current time). Thus the ex- 
pression nex t_  inc  ( ex t_  i n t e r r u p t  ) ; t ime  denotes the t ime of the next external 
interrupt.  

function minslice_available 

=== next_inc(ext_interrupt) ;time >= time+minslice. 



402 

It is convenient to define a function, next_ih, which shifts the current t ime 
to that  at which the next external interrupt is handled. There may be a delay 
between the t ime the interrupt occurs and the next available run cycle, due to 
pipeline stalls, hence the use of n e x t _ i n c  to skip to the next run  cycle. 

funct ion  next_ih 
=== n e x t _ i n c ( e x t _ i n t e r r u p t ) ; n e x t _ i n c ( r u n ' ) .  

The following axioms formalise some of the most  impor tan t  task assumptions 
discussed in Sections 3.4 and 3.5. The predicate t a k e _ i n t e r r u p t  (0) means that  
an external interrupt is taken, and includes in its definition [1] requirements 
sufficient to ensure that  an external interrupt is not preempted by an internal 
interrupt (exception). 

axiom tasks_stalls_bounded 

=== task_starts(I) and minslice_available 

=> (next_ih;time - next_inc(ext_interrupt);time) =< maxstall. 

axiom tasks_enable_ints 

--- task_starts(I) and minslice_available 

=> next_ih;(ints_enabled and not int_masked(clk_int) 

and user_mode and take_interrupt(O)). 

axiom tasks_maintain_invar 

=== task_starts(I) and minslice_available => next_ih;task_inv. 

axiom init_tasks_ready 

=== hw => at(first);task_inv. 

4.4 F o r m a l i s i n g  t h e  R e q u i r e m e n t  

The scheduling requirement introduced in Section 3.3 is formalised as: 

theorem system_behaviour 

=== hw and N:nats 

=> (letabs x N within 

(ex tm (tm:(first+x*clocksep) upto (first+x*clocksep+maxdelay+l) 

and at(tm);(task_starts(x mod nt) 

and minslice_available)))) 

The requirement applies to every t iming interval N, where ' intervals '  are de- 
fined by c l o c k s e p .  The quantifier l e t a b s  is used to define x as an 'absolute '  
value equal to N; absolute values do not change with time. The requirement states 
that ,  within maxdelay  t ime units of the interval beginning, the appropriate  task 
must  begin executing, with at least m i n s l i c e  t ime units in which to do so. 



403 

5 T h e  S c h e d u l e r  C o d e  

We verify the interrupt routine shown in Fig. 3. The following symbolic names 
are used to identify key virtual memory  addresses and constants used by the 
scheduler. 

ihcode:  Address at which the interrupt handler code resides following the ini- 
t ialisation phase. (On the MIPS R3000 this is address 0x80000080, the loca- 
tion to which external interrupts are vectored.) 

i h d a t a :  The  base address of a contiguous area of memory  used to store data  for 
the interrupt handler (address 0x90000000 on the MIPS R3000). For conve- 
nience, we also define i h d a t a  uppe r  to equal i h d a t a  >> 16 (i.e., 0x9000). 

t cb :  The offset f rom i h d a t a  to an array of task control blocks. These task control 
blocks contain state information for each task to be scheduled. The first word 
in each task control block holds the start ing address of the task code. This 
is called the task base address. 

t c b _ s i z e :  The size of each task control block, in bytes. 
c u r r t a s k :  The offset f rom i h d a t a  to a location which contains a pointer to 

the task control block of the current task. This offset effectively records the 
current task. 

tcb_end: The offset f rom i h d a t a  to a location which contains the value i h d a t a +  
t c b + n t * t c b . . s i z e .  This constant is the address of the first location after the 
array of task control blocks. It  is stored to avoid the overhead of recalculating 
it each t ime the interrupt handler runs. 

6 T h e  Ver i f icat ion  

6.1 A S c h e d u l e r  I n v a r i a n t  

In order to verify that  this scheduler implements  the scheduling requirement, we 
introduce a scheduler invariant: s c h e d _ i n v ( I )  asserts that  scheduler code and 
data  are in cache, t c b _ e n d  and the task base addresses contain the expected 
values and that  the 'current '  task recorded by the scheduler is task I .  

function sched_inv (I) 

=== hw and user_mode 

and ints_enabled and not int_masked(clk_int) 

and sched_code_in_cache and sched_data_in_cache 

and (I : 0 upto nt) 

and dval(ihdata+currtask) = ihdata+tcb+I*tcb_size 

and dval(ihdata+tcb_end) = ihdata+tcb+nt*tcb_size 

and (all y ((y : 0 upto nt) 

=> dval (ihdata+tcb+y*tcb_size) = tcode (y)) ). 

The notat ion dva l (X)  extracts the contents of data  cache location X. 
Now we prove the scheduling requirement strengthened by the assertion of 

the scheduler invariant, as follows: 



404 

theorem system_behaviour2 

--- hw and N:nats 

=> (letabs x N within 

(ex tm (tm: (first+x*clocksep) upto 

(first+x*clocksep+maxdelay+l) 

and at(tm);(task_starts(x mod nt) 

and minslice_available 

and sched_inv(x mod nt))))) 

6 .2  P r o o f  S t r a t e g y  

The overall proof  strategy is to prove the sys tera_behaviour2  theorem using in- 
duction on H. This leads to a base case and an inductive step. Figure 4 illustrates 
the inductive step of the proof. The inductive assumption is that  there exists 
a t ime tm in the required range at which task n modnt starts  executing in the 
expected state, with m i n s l i c e  t ime units available, and the scheduler invariant 
holding. We must  show that  these conditions obtain again at an appropriate  
later t ime for task ( n +  1 ) m o d n t .  This involves reasoning through the execu- 
tion of task nmodnt,  and then through the occurrence of the clock interrupt 
and execution of the scheduler code. 

c locksep $ 
maxdelay maxdelay 

@ 0 minslice @ 0 
hold �9 Q hold 

@ 0 . 0 
maxstall maxstall 

0 " 0 

i I i I I I I t i i I i I I I I I I I i I I I I I i i I i I _  
i I I I I I I I I I I I I I I I I I I H I I I I I I i I I I ~  

inductive step 

scheduler task n mod nt scheduler 
executing executing executing 

c l:ku  , sk' mo  t clo! \   sk: lmod t 
begins executing interrupt \ begins executing 

task n - 1 mod nt  task n mod nt 
releases processor releases processor 

Fig .  4. Induction step for proof. 

We conducted a top-down proof, in which the overall induction was proved 
with the aid of  postulated lemmas about  task behaviour and scheduler behaviour. 
These postulated lemmas were then proven in the next phase. 



405 

The sched_behaviour  lemma defines the required behaviour of the scheduler 
code, from the time it starts, until the appropriate task is scheduled (including 
the initial pipeline fill time). 

t h e o r e m  s c h e d _ b e h a v i o u r  
=== first =< T and at(T) ;take_interrupt(O) 

and is abs(I) and at(T);task inv 

and hw and at (T) ; sched_inv(I) 

=> (ex  tin_2 (tin_2 : T+SchedMin u p t o  T+SchedMax 
and  a t ( t i n _ 2 )  ; ( t a s k _ s t a r t s ( ( I + l )  rood n t )  

and sched_inv((I+l) mod at)))). 

The required minimum and maximum execution times of the scheduler were 
initially left as uninstantiated meta-variables. Constraints on those variables 
were postulated as required during the top-level proof, then a specific instantia- 
tion of them was chosen so as to satisfy these constraints. That  instantiated ver- 
sion of the sched_behav iour  lemma was then proven. (SchedMin and SchedMax 
here stand for those ultimate instantiations). 

6.3 Constraints Extracted Interactively in T o p - L e v e l  P r o o f  

It transpired that  the proof could be carried out only if ho ld  < raaxdelay. This 
is a natural  requirement, since the task cannot be started when the interrupt is 
still high, otherwise it will be interrupted straight away. 

Further, to carry through the proof, the following constraints on SchedMin 
and SchedMax were required: 

hold =< SchedMin and SchedMax =< maxdelay-maxstall+l . 

The first of these derives from the fact that the scheduler cannot start the 
task while the clock interrupt is still active. The second follows from the fact 
that  the task must be started before maxdelay time units have expired, but in 
the worst case the previous task may have stalled the pipeline by up to m a x s t a l l  
t ime units. 

A further constraint, m a x s t a l l  < hold,  was extracted during the proof of 
the task behaviour lemma [1] (not given here). Without  this constraint, a task 
could stall the pipeline for so long that  the clock interrupt is missed. 

6.4 Constraint Extraction Technique 

Interactively, additional constraints were derived when a relationship between 
the relevant parameters was required in order to progress. For example, as part 
of the base case of the induction the following predicate had to be proved ( t ime0 
stands for the time at which task 0 starts in the base case): 

timeO< ((first + O*clocksep) + maxdelay) + 1 

To do that ,  its negation was added to the current hypotheses, and automatically 
simplified. The simplified negation appears as hypothesis 5 in the following list. 



406 

3: SchedMin + first =< timeO 

4: I + timeO =< SchedMax + first 

5: I + first + maxdelay =< timeO 

Deriving a contradiction from the augmented hypothesis list became the current 
goal. A linear ari thmetic tactic [2] was then used to eliminate variables, in search 
of a contradiction. In this case, there was no contradiction, so we experimented 
with eliminating various variables. Eliminating e l im  ( f  i r s t )  resulted in the de- 
rived hypothesis 2 + maxdelay  =< SchedMax, which corresponds to a sensible 
constraint on the scheduler implementat ion,  so the negation of this was adopted 
as the weakest conjecture that  permit ted the deduction of false: 

conjecture(SchedMax =< maxdelay + 1) 

Then the command  e l i m ( m a x d e l a y )  resulted in the contradiction 1 =< 0. Note 
that,  in general, the choice of which constraint to add cannot be automated,  
since it is an application-specific design choice. 

6.5 P r o o f  o f  S c h e d u l e r  B e h a v i o u r  

Lemma sched_behav iou r  is instantiated so as to satisfy the constraints identified 
in Section 6.3: SchedMin is instantiated to h o l d  and SchedMax is instantiated 
to m a x d e l a y  - m a x s t a l l  + 1.  

The instantiated l emma is now proven by stepping through the code, carrying 
the machine state forward through each instruction. Since the scheduler code has 
a very simple control structure we undertook its proof on a case-by-case basis. 
There are two situations, where the branch is and is not taken, respectively. The 
proof was split into several lemmas - one for each sequential segment of code. 

The large number  of variables tha t  must  be tracked (CPU registers, CP0 
status registers, data  and instruction cache contents, etc.) necessitated the de- 
velopment of lemmas for each of the instructions used by the scheduler. Each 
l emma  has about a dozen antecedents that  check various pipeline conditions 
and a consequent of similar complexity that  defines the (timed) transition to 
the next machine state. Tactics and heuristics were developed which allowed 
approximately 90% of the antecedent conditions to be discharged automatically.  

In many  cases, to reason through the next instruction it was sufficient to make 
a single tactic call, which guessed which instruction l emma to apply next (by 
looking at the current value of i regA),  instantiated that  l emma appropriately, 
and then discharged M1 its conditions (this typicMly took a couple of minutes).  
If  the tactic failed to discharge a condition, it allowed the user to discharge it 
interactively before continuing with the remaining conditions. 

A total of three person weeks was spent reasoning through the twelve machine 
code instructions, but at least two of those weeks were devoted to developing 
the supporting application-specific tactics and heuristics, which can be re-used 
in other code proofs. 



407 

6.6 S c h e d u l e r  Spec i f ic  C o n s t r a i n t s  

It turns out that  under the imposed conditions, the scheduler code takes 11 or 
12 machine cycles to execute. Adding the three cycles required to fill the pipeline 
when the interrupt handler is called, we deduce that the scheduler Will take 14 
or 15 machine cycles to execute altogether. The instantiated scheduler lemma 
cannot be proven without imposing further constraints on system parameters: 

hold =< 14 and 15 =< maxdelay-maxstall . 

Without the first of these, the scheduler could start the next task when 
the interrupt  signal.was still high. This is a constraint on the environment: the 
scheduler code in Fig. 3 cannot be used in an environment whose clock does not 
adhere to this requirement. 

Without  the second constraint, it would be impossible for the scheduler to 
start  the next task within the user's specified deadline in the case where the 
previous task has stalled the pipeline for the maximum amount of t ime and the 
scheduler takes the maximum time to execute. This imposes a constraint on 
the user's requirement: the task designer must select values for maxdelay and 
m a x s t a l l  that  obey this constraint if they intend using the scheduler in Fig. 3. 

7 C o n c l u s i o n s  

We have given an overview of the verification of an interrupt-driven real-time 
scheduler for a pipelined processor. While the scheduler is very simple, the verifi- 
cation demonstrates a number of points which we believe are generally applicable 
to the formal analysis of real-time systems: 

1. Careful analysis of assumptions about the execution environment is required. 
In the present case, a number of non-obvious assumptions were required 
about task behawour, for example, about bounded stall t ime (Section 3.4), 
and properties of the first few task instructions (Section 3.4). 

2. Timing parameters derived from the requirement and from the environment 
need to satisfy a number of constraints in order to make the specified system 
feasible in a given environment. There can be a large number of these con- 
straints with subtle interactions. We found it difficult to (and we did not) 
identify all of these constraints at specification time. A number were derived 
in the proof process. 

3. Formal, machine assisted proof is highly desirable to ensure that  sufficient 
constraints have been identified to ensure the system is implementable. Fur- 
ther, as we have demonstrated, machine assisted proof can be used to derive 
the required (weakest) constraints. Some form of interaction is essential for 
this, since the choice of constraints is a design decision. 

4. In general, all required constraints can be identified only when development 
is complete. For example, the scheduler can only satisfy the requirement if 
the requirement obeys a constraint deriving f rom the timing properties of 
the scheduler. This is an instance of a general phenomenon: some timing 
properties are satisfiable only using particular machines, compilers, etc. 



408 

5. Verification of real-time code requires tracking a large number of state vari- 
ables - more than would be required in a purely functional verification. We 
have demonstrated the feasibility of automating much of this management,  
through the use of appropriate lemmas and tactics. Further, we found that  
machine assistance was necessary: our attempts at paper proofs were over- 
whelmed by detail. 

References 

1. Fidge, C., Kearney, P., and Utting, M., 'Formal Specification and Interactive Proof 
of a Simple Real-time Scheduler', Technical Report 94-11, Software Verification 
Research Centre, Department of Computer Science. April 1994. 

2. Griffiths, A., and Utting, M., 'The Automatic Proof of Theorems Involving Lin- 
ear I~tequalities', Technical Report 94-29, Software Verification Research Centre, 
Department of Computer Science. 

3. Kearney, P., Staples, J., Abbas, A., 'Functional Verification of Hard Real-Time 
Programs', in Algorithms, Software, Architecture, ed. L. van Lueewen, Information 
Processing 92, Volume I, North-Holland 1992, 113-119. 

4. Kearney, P., Staples, J., Abba~A. and Liu, C., 'Functional Verification of Real- 
Time Procedural Code: a Simplified RS232 Software Repeater Problem', Technical 
Report 91-2, Software Verification Research Centre, Department of Computer 
Science. Revised, May 1992. 

5. Kearney, P., and Utting., M., 'A Layered Real-time Specification of a RISC Proces- 
sor', in: Langmaack, H., de Roever, W.-P. and Vytopil J., ads., Formal Techniques 
in Real-time and Fault-Tolerant Systems, Lecture Notes in Computer Science 863, 
September 1994, pp. 455-475. 

6. de Roever, W.P., 'The Quest for Compositionality', in:E.J. Neuhold and G. Chroust 
(eds.) Formal Models in Programming, North Holland, 1985. 

7. Staples J., Robinson, P., Hazel, D., 'A functional logic for higher level reasoning 
about computation', Formal Aspects of Computing, Vol. 6, pages 1-38, 1994. 

8. Utting, M., 'Instruction-level Specification of a MIPS R3000 CPU', Software Ver- 
ification Research Centre Technical Report 93-26, February 1994, revised April 
1994, 27 pages. 

9. Utting, M., Kearney, P., 'Pipeline Specification of a MIPS R3000 CPU', Software 
Verification Research Centre Technical Report 92-6, October 1992, revised April 
1994, 57 pages. 

10. Utting, M. and Whitwell, K., 'Ergo 4.0 Users Manual', Technical Report 93-19, 
Software Verification Research Centre, Department of Computer Science, Univer- 
sity of Queensland, 1994. 

11. Williams, Performance pushes RISC chips into real-time roles, Computer Design, 
September 1991, 79-86. 

8 Acknowledgements 

This work was supported by the Information Technology Division of the Aus- 
tralian Defence Science and Technology Organisation. 


