
Compositional and Inductive Semantic Definitions in
Fixpoint, Equational, Constraint, Closure-condition,

Rule-based and Game-Theoretic Form *
(invited paper)

P a t r i c k C o u s o t 1 a n d R a d h i a C o u s o t 2

cousot@dmi, ens . f r r c o u s o t @ l i x , p o l y t e c h n i q u s . f r

LIENS,]~cole Normale Sup~rieure, 45 rue d'Ulm, 75230 Paris cedex 05, France
2 LIX, CNRS &]~cole Polytechnique, 91140 Palaiseau cedex, France

A b s t r a c t . We present a language and semantics-independent, compo-
sitional and inductive method for specifying formal semantics or seman-
tic properties of programs in equivalent fixpoint, equational, constraint,
closure-condition, rule-based and game-theoretic form. The definitional
method is obtained by extending set-theoretic definitions in the context
of partial orders. It is parameterized by the language syntax, by the
semantic domains and by the semantic transformers corresponding to
atomic and compound program components. The definitional method
is shown to be preserved by abstract interpretation in either fixpoint,
equational, constraint, closure-condition, rule-based or game-theoretic
form. The features common to all possible instantiations are factored
out thus allowing for results of general scope such as well-definedness,
semantic equivalence, soundness and relative completeness of abstract
interpretations, etc. to be proved compositionally in a general language
and semantics-independent framework.

1. I n t r o d u c t i o n

P r o g r a m semantics as well as p rogram proof and analysis methods can be pre-
sented in m a n y different styles:
- Fixpoint definitions have been in t roduced to define the denota t ional semantics

of p rog ramming languages (see e.g. [14]);
- Equat ional definitions are of common use e.g. in context-free g rammars [3],

abs t rac t in terpreta t ion [6], etc;
- Const ra in t -based definitions are used e.g. in set-based p rog ram analysis [11]

or in type inference [15];
- A typical use of closure-condit ion-based definitions is to define sets of terms

(see e.g. [19], p. 681);
- Rule-based definitions are used e.g. in Hoare-logic [12], in structured opera-

tional semantics [17], type inference [10], program analysis [16];
- Game-theoretic definitions have been used to prove full abstraction for PCF

[1].

* This work was paxtly supported by ESPRIT BRA 8130 LOMAPS.

294

We would like to compare these methods for defining program semantics, proofs
and program analyses compositionally, by induction on the program syntax both
in a language-independent way and in an order-theoretic setting (rather than in
the context of set-theory as in [2]).

As far as the language-independent modeling of the semantics of program-
ming languages is concerned, transition systems are a simple model of the op-
erational semantics. No equivalent exists for notions such that Hoare logic or
Scott-Strachey denotational semantics. In order to proceed compositionally by
induction on the program syntax, these notions are often introduced using a
simple programming language [4, 14]. Reasonings using this particular example
are not general enough. It follows that, with the notable exception of opera-
tional semantics modeled by a (labeled) transition system, formal semantics and
program analyses are difficult to present in the abstract, independently of a par-
ticular programming language. In this paper we propose a method to cope with
such problems.

We show that using a meta-syntax scheme and a meta-semantics scheme,
it is possible to propose a general framework for defining the semantics, proofs
and analysis of programs compositionally by induction on the meta-syntax. We
show that thefixpoint, equational, constraint, closure-condition, rule-based, and
game-theoretic styles of definition of the meta-semantics are not fundamentally
different but a simple matter of presentation with equivalent interpretations. We
next show that this definitional method is preserved by abstract interpretation.
This means that the abstraction of a semantics can be presented in the same
style as the semantics. Finally this definitional method is shown to be useful
for proving general language-independent results such well-definedness, semantic
equivalence, soundness and relative completeness of abstract interpretations.

2. I n t r o d u c t o r y e x a m p l e

Let us first illustrate the definition of the semantics S [pX. 0 + aX] of the p-ex-
pression I~X. 0 + aX [13] in equivalent fixpoint, equational, constraint, closure-
condition, rule-based and game-theoretic form. For the sake of conciseness the
behaviors of/~-expressions are described by sets of finite sequences of actions.

In fixpoint form, the semantics S [I-tX" 0 § aX] is the subset of the set {0, a}*
of finite strings on the alphabet {0, a} defined as:

S [~X. 0 + aX] ~-'lfp AX.{O} U {a~ : ~ E X}

In equivalent equational form, this is the C-least solution to the equation:

x = {01 u e x }

In equivalent set-constraint form, this is the C-least solution to the constraint:

x {0}

This can also be written as the C-least X satisfying the closure-condition:

{ OEX
o'EX ::~ ao'EX

295

The semantics S ~ X . 0 + aX] can also be inductively defined by a formal system
with the following axiom and rule schema:

tr E ,S [ItX" 0 + aX]
0 E 8 [j ~ X . O + a X]

aa ~ $ [gX. 0 + aX]

o (~ } {o, which stands for the formal system with rule instances -~- and act , a E a)*

P
where the rule instance means that from the set P of premises one can infer

c
the conclusion c.
Finally, the semantics S [pX. 0 + aX] can also be inductively defined by the
game with rules (presented in tabular and set of pairs forms):

I I I
''
{o-}) I <~ ~ {o, a}*}

The game starts with player I choosing cr = o"1 E {0, a}*. If after n moves player
I chooses ~'n E {0, a}* then player II must choose some X,, such that (an, X,~)
is allowed by the rules. The answer of player I must be some or,+1 E Xn. A
player who is blocked has lost. If the game goes on for ever, player II has lost.
The semantics S [#X. 0 + aX] is the set of initial ~ for which player II has a
winning strategy in the game.

Such set-theoretic definitions are now extended in the context of partial-
orders to proceed compositionally, by induction on the syntax of programs.

3 . S y n t a x S c h e m e

Following [7], we l e t / : be a non-empty set of program components (or fragments)
and P C s be the non-empty subset of complete programs. We let F ['] E s
p (s define the set of immediate strict components of a program fragment. This
set must be finite:

Wr e / 2 ~ F [~r] is finite.

No program fragment can be indefinitely decomposed into strictly smaller com-
ponents:

There is no infinite chain r0, r l , . . . , r i , . . , in s such that Vi > 0 : r~+t E
r [~d.

Subcomponents of a program fragment are all different (this can be obtained
e.g. by labeling):

in s such that for all 0 < If there are chains l r0 , . . . , ~rrn and ~r~,..., ~r n
i < m : ~ r i + l E F [r i] , f o r a l l O < j < n : r ' - s+l e r [~j], ,~o = ~ and

I 7rm = It" then m = n and Vi E [0, n] : ori = ~r i.

The set of all subcomponents F* [.] E s ~ (p(s - {O}) of a program fragment
is:

= {~r' : 3n >__ 0 : 3~r0,.. . , ~r~ e Z: : (Tr = rr0) A

(v i e [0, hi: -~+1 ~ r I-d) ^ (~. = ~')}

296

The set of all atomic subcomponents ~ [.] E/~ ~-~ (p(s - {O}) of a program
fragment is:

The set of all compound suhcomponents F* [.] e s ~-~ (p(L:)) of a program
fragment is:

Ezample The immediate components of the p-expression p X . 0 + aX are
F [pX. 0 + aX] = {0+aX}. Its subcomponents are F* ~uX. 0 + aX] = { p X . O+
aX, O+aX, O, aX, a, X }. Its atomic components are 1"* [ttX. 0 + aX] = {0, a, X}.
Its compound components are I~ [pX. 0 + aX] = { # X . 0 + aX, 0 + aX, aX }.
Depending upon the structural induction which is used other decompositions
may also be used. []

The following proposition is useful to justify definitions and proofs by structural
induction on the syntax of programs:

de~ 71" ! Proposi t ion 1. For all programs 11 E 79, the binary relation 7r ~ -< r = E
d e l

r H and - v -- .) is a wdl-younaea partial ordering o n

r *

4. S e m a n t i c D o m a i n s S c h e m e

The definition of the semantic scheme of program/7 E 79 is parameterized by
a semantic domain/9~ associated with each component rr ~ F* [//] of program
H E 79, such that:

Hypo thes i s2 . The semantic domain V~, 7r E F* [HI is a complete partial
order (cpo) (7)~, E_, _L, I I) so that E-increasing chains have a least upper-bound
(tub) denoted LJ.

5. S e m a n t i c T r a n s f o r m e r s S c h e m e

The definition of the semantic scheme of p rogram/ / i s parameterized by mono-
tonic semantic transformers Y~ associated with each subcomponent 7r o f / / .
Their signatures are defined by induction on the syntax of the program// :

Hypothes i s 3. The semantic transformers g:~ of all components 7r E I ~ [11] of
program H E 7 9 satisfy:
- for atomic program components 7r E F*~ [HI, :T~ E :D~ ~-~ :Dr
- for compound program components r E F[[11]:

6. S e m a n t i c S c h e m e

The semantic scheme of a program H associates an element of the semantic
domain 7)~ to each component 7r o f / / . We consider several styles of presentation
of this semantics by structural induction on the syntax of the program and prove
them to be equivalent.

297

6.1 Fixpoints

The fixpoint definition of the semantics uses the least fixpoint operator lfp E
= m ~ L on the poset (L, E): (L, ~L) l) L s u c h t h a t g i v e n F E L ~ m

F(lfp F) : lfp r if F (X) = X then lfp F E X (1)

For all monotonic operators F E L , m L on a cpo (L, E, _l_, I]), lfp exists and is
such that ((~ is the class of ordinals) lfp F = L J ~ o F~ where the approximan~s

are F ~d~ (I I x < ~ F x) = F where UO = _1_. Let us also recall the fixpoint induction

proof method. For all X E L:

F (X) E X =*. lfp F _E X (2)

6.2 F i x p o i n t s e m a n t i c de f in i t ion s c h e m e

The fixpoint semantic scheme is parameterized by semantic domains :D,r and se-
mantic transformers ~ associated with each program subcomponent 7r E F* [/ /]
according to Hyp. 2 and Hyp. 3. It is defined compositionally, by induction on
the syntax of the p rog ram/ / .

Definition 4. The fixpoint semantics S~ [r], 7r E F* [H] of p r o g r a m / / E 79 is
defined such that:
- for atomic program components 7r E/~a [/ /] , S~ [Tr] ~f lfp Y~;
- for compound program components 7r E ~ [//]:

S,, [Tr] a.~ lfp ~ r (H . ' e r [.] S . [Tr'])

The fixpoint semantics S~i [/ /] is well-defined:

Proposition 5. For all ~r E F* [HI, & [Tr] E 9~ .

6.3 Equational s e m a n t i c de f in i t ion scheme

The definition of the equational semantics Seq ITr], ~g E ~ [/ /] uses variables X,
associated with each component 7r of program H chosen such that 7r 5~ lr'
X~ ~ X=,. This definition is compositional, by induction on the syntax of the
p r o g r a m / / .

De f in i t i on 6. The equational semantics S~q [Tr], 7r E F* [/ /] of p r o g r a m / / E 7 9
is the E-least solution to the following system of equations:
- the semantic equation corresponding to an atomic program component 7r E

/~a 1//] is X, = ~ , (X~) ;
- the semantic equation corresponding to a compound program component r E

r: In] is:

x" = Y:" (, rl]t.] x ") (x")
Proposition 7. For all 7r E 1"* [H], the equational definition of the semantics
of program component r is equivalent to its fixpoint definition: S, , [r] : & [Tr].

298

6.4 Constraint-based semantic definition scheme

By the fixpoint induction proof method (2), lfp F is the _U-least solution to the
constraint X ~ F(X) . This remark leads to the definition of the constraint-
based semantics Sr [Tr], 7r E F* [/-/]. Again the definition is compositional, by
induction on the syntax of the program:

Definition 8. The constraint-based semantics Sr [r], 7r e F* [/7] of program
/ / E 7 9 is the ___-least solution to the following system of semantic constraints:
- the semantic constraint corresponding to an atomic program component 7r E

- the semantic constraint corresponding to a compound program component
r E/-~ [/7] is X. ~_ yr.(I-I ,~,erl~lX.,)(x.) .

Usually the constraint can be decomposed into a system of more elementary
set-constraints using simple set-theoretic algebraic identities. For example:

X L J Y C _ Z ~ X U _ Z A Y E _ Z

and, in a complete lattice, if F(X) = U{g(x) : f (x) E_ x } then:

X ~_ F(X) ~ Vx : f (x) E X =c g(x) ~ X

Proposi t ion9. For all program components rr E F* [/7], the constraint-based
definition of the semantics of 7r is equivalent to its fixpoint definition: 8r [v] =
S. [,d.

6.5 Closure semantic definition scheme

Given a poset (L, E), a closure-condition is C E ~(L • L) which is monotonic in
its second component, that is, for all x, X, Y E L, C(x, X) A X E Y ::r C(x, Y)
where C(x, X) is true if and only if (x, X / E C. A closure-definition has the
form:

X is the E-least element X of L satisfying: Vx E L : C(x, X) ~ x E X

The closure-definition is said to be well-formed if X exists. This order-theoretic
definition generalizes the usual set-theoretic definition [2] of the least set X of
L such that Vx E L : C(x, X) ~ x E X.

A closure-definition can be presented in fixpoint form:

Proposit ion 10. I f (i , E) is a cpo and ~ (X) ae~ Lj{x E L : C(x, X)} is well-
defined then the closure-definition is well-formed and X = Ifp ~.

Reciprocally, a fixpoint definition can be presented as a closure-definition:

P r o p o s i t i o n l l . I f L(E,-I-,I I) is a cpo and F E L , =, L then the closure-
definition with condition C(x, X) = x E F(X) is well-formed and defines lfp F.

This leads to the compositional definition of the closure-condition-based seman-
tics 8r [Tr]~, r E F* [/7], by induction on the syntax of the program:

Defini t ionl2 . The closure-condition-based semantics So, [Tr], r E F* [/7] of
program/7 E 7) is the ___-least element X~ of Or satisfying the following closure-
condition C~ (x, X~):

299

- the closure-condition C~(x, X~) corresponding to an atomic program compo-
nent 7r E F~* [/ /] is x E ~r~(X~);

- the closure-condition C~(x, X~) corresponding to a compound program com-
ponent zr E/~r [/ /] is x C ~ (1 - L , e r l ~ l X ~ ,) (x ~) .

P r o p o s i t i o n 13. For all program components ~r E I ~ [II], the closure-condition-
based definition of the semantics of 7r is equivalent to its fixpoint definition:
so , = s , ,

6.6 R u l e - b a s e d formal s y s t e m s

The semantics can also be specified by a formal system based on a poset (L, ~)
with rule instances :

: i E A
G

such that for all i E A, /9/ E L and Ci E L [8]. By definition, this denotes:

l fp~ (3)

where the R-operator �9 is ~ ~f ~X. [[{Ci : 3i E A : pi ~ X}. R is well-defined
if and only if:

VX e L: U { C i : hi e A : Pi E X} exists (4)

which is the case e.g. if (L, ___) is a complete lattice.

P r o p o s i t i o n 14. (4) implies that �9 is monotonic hence that (3) is well-defined.

This generalizes the set-theoretic formal systems considered in [2] where L is
(p(U), C, $, U, U, n) for a given universe V. Rules in [2] are written:

: i E A
ci

where P/ _C U and ci E U. Their meaning is defined to be lfp ~" where ~ ~
A-X'~ : 3 i E A : Pi C_ X } . In an order-theoretic setting, we would write them:

{" t - - : i E A

with equivalent meaning lfp~ since: ~ -- AX. U{{ci} :3 i E A : p / c X} -- kv.

6.7 R u l e - b a s e d s e m a n t i c de f in i t ion scheme

Again, the rule-based semantics S.u [/ /] is defined compositionally, by induction
on the syntax of the p rogram/ / . In practice the formal system uses axioms (with
P = _L) and rule schemata which are interpreted as rule instances.

Def in i t i on 15. The rule-based semantics S., [r] , 7r E/-~ [HI is defined by the
following rule instances:

300

- for atomic program components r E/7* [//]:

^ C c_

- for compound program components ~- E/~c [//]:

P r o p o s i t i o n 16. For all ~r E 1 -~ [II], the rule-based definition of the semantics
4 program component ~r is equivalent to its fi~:point definition: ,5,. [~r] -- S~ [Tr].

6.8 G a m e s

Given a poset (L, ~/ , a game is defined by rules R C_ L • L. The rules are
well-defined if and only i fVX E L : LJ{C : 3(C , P) E R " P C X} exists.
The corresponding R-operator �9 is �9 a~ AX.[[{C : 3(C, P) E R : P _E X}.
The game G(R, a) with rules R starting from initial position a E L is played
by two players I and II. Player I must start by choosing x0 - a. If player I
chooses xn in the n-th move, then player II must respond by Xn E ~(L) such
that x , = ~(1 [X,~). For the next move, player I must choose some xn+l E Xn.
A player who is blocked has lost. If the game goes on forever then player II has
lost. We define ~V(R) as the set of initial winning positions for player II:

W (R) d,~ {a E L : player II has a winning strategy in game ~(R, a)}

P r o p o s i t i o n 17. /jr the rules R are well-defined then lfp~ = I] }4)(R)

Now a fixpoint definition can be given an equivalent game-theoretic form:

P r o p o s i t i o n 18. I f (L, E) is a cpo and F E L , "~ L is monotonic then lfp F
= [.J W (R) for the game with rules R = {(C, P) : P E L A C E_ F(P)} .

6.9 G a m e - t h e o r e t i c s e m a n t i c de f in i t ion s c h e m e

Again, the game-theoretic semantics Sg~ [/ /] is defined compositionally, by in-
duction on the syntax of the p rog ram/ / .

Def in i t ion 19. The game-theoretic semantics Sg~ [Tr]~, ~r E / ' * [/ /] is defined by
the following rules R~:
- for atomic program components 7r E / ~ [//]:

R~ = {(C, P) : P _ 7)~ A C _ ~'~(P)}

- for compound program components a- E/~e [/ /] :

= {<c, e>: P E_ ^ c c_ s.. [.,l) (p)}

P r o p o s i t i o n 2 0 . For all 7r 6 F* [/ /] , the game-theoretic definition of the se-
mantics of program component r is equivalent to its fixpoint definition: S ~ [Tr]
= S , , H .

301

6.10 Equivalence of the semant ic definitions

We conclude that the fixpoint, equational, constraint-based, closure-condition-
based, rule-based and game-theoretic semantic definitions are all equivalent:

P ropos i t i on 21. For all components ~r 6 F* [HI of program II 6 7), 8~ [~r] =
So, [~] = Soo [~] = So, M = S.. M

7. E x a m p l e

/~-expressions [13] provide a simple example of semantics definition. #-expres-
sions are defined by the following grammar:

E ::= O I X l aB}E1 +E2]I~X.E

where a 6 A is an action and X 6 V is a variable.
The immediate strict components F [E] of p-expression E are:

F [0] = ~ I' [aE] = {E} F IX] .=
f [E~ + E2] = {E~, E2 } F [a] = ~ r [gX. E] = {E}

We define the following semantic domains:

a: ~ g'{o}uA
~: S %'A +

: v ~' p(s)
: E % ' V ~ Y
: D % ' E ~ V
: T. ~-'D, ~) D
: T~" %' D" , ~, T.

?)

P
~,r

r

action alphabet
nonempty finite strings
values
environments
semantic domain
atomic semantic transformer domain
n > 0, compound semantical transformer domain

The semantic domain (D, C, Ap. $, Ap. S, 0, h) is a complete lattice hence a cpo
for the pointwise partial ordering C.

In the definition of the fixpoint semantics Sfl [E] 6 D of p-expression E, we
have p[X := v](X) = v while p[X := v](Y) = p(Y) when X # Y:

S~ [01%' ~p.{0} S,, [El + E2] %' &, [Ell 0 &, [E2]
s , IX] ~' ~p. p(x) & [~x. El %' lfp ~x. ~p. & [Elp[x := x(,)]

[aE] %' Ap.{acr : ~r 6 & [E]p}

These fixpoint definitions can be written in the form required by Hyp. 3:

s~ [0] %' lfp ~-0 & [El + E2] %' lfp ~ l + ~ ((& [El], & [E2]))

&i [Xl %' lfpF• &~ [~X. El %' lfp ~'.x. E(S,, [El)
s . [, z] g ' ~fp 7o~(s. [El)

by defining the following semantic transformers:

~'x %' ~x. ~p. p(x) J:.x. E %' ~(~). ~x . ~,. ~(p[x := x(p)])
.~ ,E a,_,)~(to)") t X .)~p.{ao" : o" �9 W(p)} (5)

302

In the equational definition of the semantics, we use the usual convention of
naming [E] the variable associated with program component E:

[0] = ~p.{0} [E~ + E2] = [E~]0 [E2]
[Xl = ~p. p(X) [~x. E] = ~p. [ElP[X := [~X- E](p)]

[aE] = ~p.{aa : a �9 [E]p}

For the constraint-based definition we use simple identities such as A p . { x } C
X if and only if Vp : x E X(p) and free variables are universally quantified:

0 �9 [O]p [E~] ~ [E~ + E~]

p(X) c_ [Xlp [E2] c_ [E~ + E2]
{aa : a �9 [E]p} C [aE]p [E]P[X : : [# X . E](p)] C [#X. E]p

For the closure-condition-based definition we use the identity X C Y if and
only if Vx E X : x E Y. Free variables are universally quantified:

0 E [0]p a �9 [El] ::~ a �9 [El + E2]
a �9 p (X) :* a �9 [X lp a �9 [E2| ~ a �9 [E~ + E~]

For the rule-based definition of the semantics S,. [E] of #-expression E, the
axioms and rule schemata of the formal system are:

~ p(x)
o �9 s, . [o]p

�9 Sr. [X]p aa �9 $,. [aE]p a �9 $,~ [E~ + E2]p

a e S, . [E]p[X := 8,. [~X. E](p)]
a e ,-gr. [~X . E]p

The interpretation of these axioms and rule schemata in terms of rule instances,
the meaning of which is provided by (3), is as follows:

'0 , X a E

{Ap.{0}} {~p- p(X)} {)~p.{aa: ~ e s , . [EIP}}

E~+E~ El+~2 - - u X . E for all P C ~ and
S,~ [E~] 3.. [E21 {~p. a} a e S . . [E]P[X := P]

For the game-theoretic definition of the semantics S,. [E] of #-expression E,
the rules are:

n0 = {({~p.{0}}, ~)} n x = {({~p. p(x)} , ~)}
R~ = {({),p.{aa : ~ �9 S , , [E]p}, ~)} RE,+E~ = {(S~, IBm], •), (S, , [E2], ~)}

R . x . E ----- {({Ap. a}, P) : P C ~ A a �9 S~.[E]p[X := el}

8 . A b s t r a c t i o n S c h e m e

We now show that abstract interpretation preserves the fixpoint, equational,
constraint, closure-condition, rule-based and game-theoretic definitional method
for specifying abstract semantic properties of programs.

303

8.1 Galois Connections

The abstraction process is formalized using Galois connections between posets
[6, 9]
Defin i t ion22. A Galois connection between posets (L, ~) and (L t, ~t) is a
pair (a, 7) of functions a ~ L ~-~ L t and 7 E L t ~-~ L such that for all x ~ L and

y e L ' a (x) ~ ' y < > x E T (y) which is denoted as (L, ~) ~ (L t ,Et).

In a Galois connection, a is surjective if and only if 7 is injective if and only if
o 7 = 1 (where 1 = Ax. x).

8.2 A b s t r a c t Domains Scheme

Given a semantics S,i [~r] E IDa, ~r E F* [/7] of program/7 E 1 D, we consider an
abstract interpretation given by Galois connections [6]:
H y p o t h e s i s 2 3 . The abstract semantic domains ~)t, r E F*[II] are posers

(V;,E_') such tha~ (V,,~_) ~ (V'~,C").

In a Galois connection, a preserves lubs so that if (L, ~) is a cpo and (L, E)
(L t, E_ t) then (a(L), E t) is also a cpo. It follows that by restricting V~ to an(7),),
Hyp. 23 impfies that all abstract semantic domains are cpos:

Proposition24. For all Ir E F* [HI, i fT~ ~J a~(V,) (where ~(L) = {~(x) :
x 6 L})thenCD~,~_~,i',L2) is a cpo with i ~ d----'~ (~ (i) andH~X ~a,~(U 7~(x)).

rex

8.3 A b s t r a c t Transformers Scheme

The abstraction (a , , 7~) can be lifted to higher-order monotonic functionals:

(m ' " ' m,_d:) ~ (V~, ", V~, C)
by defining the functional abstraction [5]:

~ ~ AF. a n o F o T ~ ~ ~ A F ~ ' 7 ~ ~ noc~

The same way for products:

c)
we define the product abstraction [6]:

&. = " ~ = A x ' . (x ; ,)

Combining the product and functional abstractions:

-' er l-I -'~r l~l
we define:

~. ~' A F . ~ . o F o ~ ~ g-' XF ~ . q ~ o F ~o&~

It follows that the semantic transformers ~ , lr E F* [/7] associated with the
program/7 can be abstracted compositionally into ~-~, ~r E F* [HI, by induction
on the program syntax:

304

Definit ion 25. The abstract semantic transformers ~'~ associated with compo-
nents 7r �9 F* [//] of p r o g r a m / / E P are defined such that:
- for atomic component r �9 F~* [//] o f / / , :T~ ~ ff~ (~'~);
- for compound components Ir �9 F* [HI of H, 9c~ ~' ~(gv~). (6)

Observe that the abstractions of Hyp. 23 completely determine the semantic
transformers for all program subcomponents. We will show that this construction
ensures the soundness of the abstraction. For completeness, we say that:

Definit ion 26. The abstraction c~ is exact, faithful or complete if and only if
for all 7r �9 F* [//] and �9 = 1-I,'evDl S,i [TV]:

{ a~or = JC~oa, i f ~ r E F * [H]

8.4 Abs t r ac t semant ic definit ions

The abstract semantics is defined compositionally, by induction on the syntax
of the p rog ram/ / i n the same way as the concrete semantics:

Definit ion 27. 8~ [//] is defined as in DeE 4 (respectively 8~q [//] as in Def. 6,
$~o [//] as in Def. 8, 8~1 [//] as in Def. 12, S,~ [HI as in Def. 15 and 8~ ~//] as
in Def. 19) using the abstract semantic transformers :T~ in place of the concrete
transformers ~ , , ~r E / ' * [HI.

For all program subcomponents, the abstractions of Hyp. 23 ensure the sound-
ness of the abstract semantics Def. 27:

P ropos i t ion 28. Let S ['] be either St, ['], Sr [-], 8co ['], 8r [.], 8~ [-] or S , . [.]
' " ' ' ,o [.1 or ~nd S' [.] be respectively either S',i ['l, S .q[] , Soo H , S~, H , S' S~. H-

The abstract semantics $~ [~r] is sound i.e. for all ~r e F* [/7], we have S ~ [r]
c, ~ (s M).

Propos i t i on29 . Moreover, if the abstraction is complete, then the abstract
semantics S' [~r] is also complete i.e. for all 7r �9 1"* [//], we have S' [r] =
~,(s M).

9. E x a m p l e

As a very simple example of abstraction, we consider the collecting of letters
occurring in the sentences of a language and apply it to approximate the seman-
tics of/,-expressions. This illustrates the formal compositional derivation of the
abstract semantics from its definition.

The theory of abstract interpretation provides various ways of approximating
each constructor (sum, lift, (smash) product, function space, powerset/domain,
etc.) of set/domain theory [6, 9]. Since semantic domains are defined inductively
using these constructors, abstraction can be lifted compositionally to abstract se-
mantic domains, in general by induction on the rank (measuring the complexity)

305

of the semantic domain. For example, in the case of p-expressions, the basis is
given by the abstraction of a language L by the set of letters z appearing in sen-
tences a of L. av 6 p(S) ~-* p(A) is defined as (~v(0) d.~ O, a, , (L) '~'=~ [.J~,eL as(or)

where c~s(a) d,, {a} and c~s(aer) a,, = = {a} U a , (~) . Let us define the abstract value
domain V ~ d., = ~o(A). Since av is a complete U-morphism, there exists a unique
7v such that

(v, c) @ (~, c) (7)

is a Galois connection. Defining abstract environments]E ~ d.~ V ~-. V t and the
pointwise abstraction:

~e(p) "~ ~X-a~(p(X)) 7e(p') t--' ;~X-Tv(/(X)) (8)

we get the Galois connection:

(~,c) "~~ _ ~ (~, , c_) (9)

The abstract semantic domain D ~ do~]E" ~ V ~ is defined with the functional
abstraction:

clef
a(tP) ---- c%0 ta~ 7e 7(to') a,,= 7vO ~' ~ (10)

which is a Galois connection (D, _C) (/13) ~, _C). The abstract atomic trans-
former domain is T~a d~ " D t. = , , The correspondence with the concrete atomic
transformer domain is defined by the functional abstraction

clef
~(~) = s 0 ~ o 7 q(~,) ao,= 7 0 ~ ' 0 a (11)

This is a Galois connection (T~, C_') + (T~a, C_'). Finally, the abstract compound

transformer domains are T~ n a,[D~n m) = , T"~, for n > 0. The correspondence with
the concrete transformer domains is defined by the functional abstraction:

= ~o ~o ~7"(O') = q o o (12)

where:

(Pn((Xl,... 2n))d,,_.~ <(P(Xl),... ~:~(Xn)) (13)

This is a Galois connection (Ten,'C_') ~ (T~", ~).
Prop. 28 provides the foundation for designing the abstract semantics compo-

sitionally. The only remaining work consists in designing the abstract predicate
transformers.

The abstract predicate transformers can be derived formally from their spec-
ification Def. 25 by algebraic computation. We illustrate this derivation for:

J:~x. E 6 T~ 1

~~ ~ (: r , ,) = X ' E

= a o . r ~ x . ~ o S , x

: ~(~')- ,~(:r , ,x . E(~((~'))))

by definition (6)

by definition (12) of ~1

s ince ~ 0 r =),~. ~(r
by definition (13) of .~1

306

= ~(~=). ~ (~ (~) . A z . ~p. ~ (p [x := z (p)]) ((r (~ ')))) by def. (5) of & x .

= ~(~=). ~ (~ x . ~; . ~ (~ ,) (p[x := x(p) l)) since ~(~) . ~l((e~)) = q [~ := ed

= A(~d}. a o AX. Ap. 7(~d)(P[X := X(p)]) o 7 by definition (11) of

= A(~d}. AX'. ~(AX-Ap. r(~d)(p[X := X(p)])(r(X'))) by ~oo r = A~. ~(~b(x))

= A(~d). AX'. c~(ap.-r(~d)(p[X := 7(X')(p)])) since Ax. ex(e=) = el[x := e2]

= A(~o'}. AX". ~ o ap. r (~f)(P[X := 7(X')(p)]) o 7, by definition (10) of cY

= A(~d). AX". Ap'. a~(~p. 7(~,o~)(p[X := 7(X')(p)])(Te(p')))
since ~ o r = ~ . ~ (~ (~))

= ~(~,). ax, . a;,. ,,~(r(~,')(r,(p')[x := r (x ') (rdp=))]))
since ~ (,) . ~((e=)) = ~ [, := ~,]

= a(~0'}-AX'. Ap'. a~ (%o ~do a~(%(p') [X := r(X=)(U~(p'))]))by def. (10) of r

= ~(~,). ~ x , . ~p,. ~ ' (~o(ro(p ') [x := 7 (x ') (~dp '))]))

since av is surjective so av o % = 1 by (7)

= A{~'). AX'. Ap'. ~=(a~(%(p=)iX :-- % 0 X ' ~ a~(%(p'))])) by def. (10) of y

= x(~,). ~ x =. ~,p,. v = (~ & d p ,) [x := r~o x=(p,)]))

since ~. is surjective so ae o % = 1 by (9)

= A(~o'}. AX#. Ap#. ~d(a.(AZ. %(p#(Z))[X := %0 X#(p#)])) by def. (8) of %

since AZ. x(Z)[X := v] =)~Z.(Z = X ? v: ~(Z))
= A{T'). ~,Y=.),p=. ~d(AV. a~(AZ.(Z = X ? % 0 X=(p=) : %(p'(Z)))(Y)))

by definition (8) of a~

= A(to'}. AX'. Ap'. to=(Ar, av((Y = X ? % o X ' (p ') : "/v(P'(Y)))))
since Ax. e,(e=) = e,[x := e2]

= a (~ ') . AX'. ap ' . ~d(kV. a , o %((Y = X ? Z ' (p ') : p'(Y))))
since (~ ? ~ (<) : ~(e~)) = ~((~ ? ~1: ~))

-- A(~'}. AX'- Ap'. ~ (A Y . (Y = X ? X ' (p ') : p'(Y)))
since ~v is surjective so av o rv = 1 by (7)

= ~(~=}. ~x, . ~p,. ~o,(p,[X := x=(p,)])

since ~,V.(V = X ? ~: ~(V)) = ~[X := ~1

The other abstract semantic transformers are obtained constructively in the
same way:

~:~ =),x~.),p~. p'(X) ~'+~= = ~@"). ~x". ;~p=. r := x"(p")]) p,X" E
~ ~(v~). ~ x ~ ~p~.{~} 0 r

It should be noted that the method for designing the abstract semantics is sys-
tematic as opposed to empirical conception with a posteriori verification of the
soundness.

307

The abstract fixpoint semantics ,~ [E] of p-expression E is:

S,~ [0] d~ :~p'{0} S,", [E~ + E~] ~~ S,"~ [E~] OS,"~ [E~]

,g~, [X]] a.~ Ap'. p~ (X) 8~i [#X- E] a.~ lfp AX ~- Ap'. ,~, [E]p' [X := X ' (p~)]

$~,, [aE] a.=~)~p~ .{a} 0 ,S~, [E]

The equivalent abstract equational semantics S~q [E] of p-expression E is the
C" -least solution to the system of equations:

[0 r =),p~-{0} [E~ + E~] ~ = [El] ~ 0 [E~ r
IX r = Ap ~. p ' (X) [I~X" E] ~ = Ap ~" [E r p~[X := [# X . Er(p ')]

[aE]] ~ =),p~.{a} 0 [E] ~

The equivalent abstract constraint-based semantics 8~o [El of p-expression E is
the C_" -least solution to the system of constraints:

0 �9 [0]",'
p(x) c [Xl","

a �9 [a E r p ~

[El ' ~_ [a E r

[Eli ~ C_ [El + E2]'
[E2] ~ C_ IE1 + E2]'

[E]~p~[X := JINX" E]~(p~)] C_ [/~X-E]~p ~

The equivalent abstract closure-condition-based semantics ,~n [E] of p-expres-
sion E is the C-least solution to the closure-conditions: m

0 �9 [0]'p'
x �9 p (x) ~ �9 �9 [x] " p

a �9 [aE]~p n

x �9 [E]~p ~ => x �9 [aE]'p'

x �9 [E1]"p" => x �9 [El + E2]~p ~

x �9 [E2]"p" :=> x �9 [El -{-E2]=p ~

x �9 [E]~pu[Z := [~X. E]~(p~)] ~ x �9 [~X. El"p"

The equivalent abstract rule-based semantics S~. [E] of p-expression E is defined
by the following formal system:

0 �9 s~u [0]p"

. �9 s~o [E~]p"

x �9 s L [E~ + E2]p"

x E p~(X) x E s [E]P ~
a E S~. [aE]p ~

x E 8~ [X]p u x E 8~. [aE]p u

x �9 8~. [Z2]p ~ x �9 S~. iE]p~[X := 8~. [l~X" E](pn)]

x �9 , .~ [El + E2]p ~ x �9 S~. [# X . E]p ~

Finally, the game-theoretic abstract semantics S~ [E] of p-expression E is de-
fined by the rules:

R'0 = {({~p.{0}} , 0)} R~ = {({~p. p(X)}, 0)}

R~E = {({Ap.{a} U ,~. [E]p, 0)} n ' = {(S~ [Eli, 0), (, ~ [E2]], 0)} E I -[- E 2

R~x . s = {({Ap.x}, P) : P C S A x E $~[E]P[X := P]}

P r o p o s i t i o n 3 0 . The abstraction (~ defined in (10) is complete.

C o r o l l a r y 31. For all p-expressions E, S~ [E] = ,~q [E] = '-gr [E] = 8r [E]
= S~. [E] = S~. [E] = a(S,, [E]).

308

R e f e r e n c e s

[1] S. Abramsky, R. Jagadeesan, & P. Malacaria. Full abstraction for PCF (ex-
tended abstract). Proc. TACS'94, LNCS 789, 1-15, 1994.

[2] P. Aczel. An introduction to inductive definitions. In J. Barwise, ed., Hand-
book of Mathematical Logic, vol. 90, 739-782. Elsevier, 1977.

[3] J. Berstel & L. Boasson. Context-free languages. In [18], ch. 2, 61-102.
[4] P. Cousot. Methods and logics for proving programs. In [18], cA. 15, 843-

993.
[5] P. Cousot et R. Cousot. Static determination of dynamic properties of re-

cursive procedures. In E. Neuhold, ed., IFIP Conference on Formal De-
scription of Programming Concepts, St-Andrews, N.B., Canada, 237-277.
North-Holland Pub. Co., 1977.

[6] P. Cousot & R. Cousot. Systematic design of program analysis frameworks.
In 6 th ACM POPL, 269-282, 1979.

[7] P. Cousot & R. Cousot. A language independent proof of the soundness
and completeness of generalized Hoare logic. In/. 8A Comp., 80(2):165-191,
1989.

[8] P. Cousot & R. Cousot. Inductive definitions, semantics and abstract inter-
pretation. In 19 th ACM POPL, 83-94, 1992.

[9] P. Cousot & 1%. Cousot. Higher-order abstract interpretation (and applica-
tion to comportment analysis generalizing strictness, termination, projec-
tion and PER analysis of functional languages). In Proc. IEEE 1994 ICCL,
95-112, 1994.

[10] L. Damas & R. Milner. Principle type schemes for functional programs. In
9 th ACM POPL, 207-212, 1982.

[11] N. Heintze. Set-based analysis of ML programs (extended abstract). In
Proc. ACM Conf. Lisp 8J Func. Prog., 1994.

[12] C. A. R. Hoare. An axiomatic basis for computer programming. Comm.
ACM, 12(10):576-580, 583, 1969.

[13] R. Milner. A complete axiomatization for observational congruence of finite
state behaviors. Inf. ~ Comp., 81:227-247, 1989.

[14] P. D. Mosses. Denotational semantics. In [18], cA. 11, 575-631.
[15] J. Palsberg ~: P. O'Keefe. A type system equivalent to flow analysis. In

22 th ACM POPL, 367-378, 1995.
[16] J. Palsberg & M. I. Schwartzbach. Binding-time analysis: Abstract inter-

pretation versus type inference. In Proc. IEEE 1994 ICCL, 289-298, 1994.
[17] G. D. Plotkin. A structural approach to operational semantics. Tech. Rep.

DAIMI FN-19, Aarhus University, (DK), Sept. 1981.
[18] J. van Leeuwen, ed. Formal Models and Semantics, vol. B of Handbook of

Theoretical Computer Science. Elsevier, 1990.
[19] M. Wirsing. Algebraic specifications. In [18], cA. 13, 675-788.

